Home >  ニュース > 低温高圧下で新しい氷の相(氷XIX)を発見

低温高圧下で新しい氷の相(氷XIX)を発見

東京大学物性研究所 山根崚特任研究員、東京大学大学院理学系研究科 小松一生准教授、鍵裕之教授らの研究グループは物性研究所、総合科学研究機構 中性子科学センターおよび日本原子力研究開発機構 J-PARCセンターとの共同研究で、低温高圧下における誘電率測定および中性子回折実験(注1)により、新たな氷の多形である氷XIXを発見しました(図1)。

fig1

図1 :提案した氷XIXの結晶構造の一つ。氷VIの結晶構造の特徴である二つの水分子ネットワーク(赤、青)は保ちつつ、水分子の配向が秩序化している。ただ、部分的に無秩序性が残った水分子も存在し、完全な氷の秩序相ではない。紙面内の上下方向(c軸)が分極軸。

この氷は、常温の水を加圧して最初に出現する氷VIを-150 ℃程度まで冷やすことで得られます(図2)。氷VIは酸素原子の位置はきちんと周期的に並んでいるものの、水素原子は隣接する4つの水分子のうち2つと水素結合を作りながらバラバラに配置しています。このような水素配置(水分子の配向)がバラバラな氷は無秩序相と呼ばれます。温度を下げることで水分子全体が互いに特定の方向へと再配向し、氷XIXへと相転移(秩序化)します。このように水分子の配向が秩序化することで新たな構造となる例は、他の氷の多形でも一般的に見られます。例えば、氷Ihは無秩序相ですが、それを-200℃程度まで冷やすと氷XIとなります。これまで秩序化の仕方は、それぞれの無秩序相に対して一通りしかないと考えられてきました。しかし、今回見つけた氷XIXは氷VIの2番目の秩序相であり(最初に見つかった秩序相は氷XV(注2))、氷の秩序化の仕方が複数存在することを初めて示しました。これら二つの秩序相は、圧力によって安定な領域が異なり、今回見つけた氷XIXは、氷XVに比べ高圧側で生成することがわかりました。さらに、得られた氷XIXの結晶構造を調べた結果、二つの秩序相は空間反転対称性(注3)が異なっており、電気的、光学的な性質の違いも今後の研究によって見出される可能性があります。また、理論計算により他の多形でも複数の秩序相の存在が指摘されており、今回の発見がさらなる氷の構造・物性の多様性を見出すきっかけになると期待されます。

本成果は、2月18日づけのNatureCommunicationsに掲載、Editor’s Highlightsに選出されました。

fig1

図 2:本研究で新しく明らかになった氷の温度–圧力相図と水分子の配向が無秩序な氷Ih(通常の氷)および氷VIの結晶構造。相図中の赤と青の点は誘電率測定の実験点。点線は、実験的に未確認な相境界線を示す。氷Ihの結晶構造で赤丸は酸素原子、白丸は水素原子を表す。氷VIの結晶構造では赤と青の二色で酸素原子が表されており、それぞれの色でグループ分けされた水分子は独立にネットワークを作っている。

東京大学大学院理学系研究科発表プレスリリース

発表雑誌:

  • 雑誌名:「Nature Communications
  • 論文タイトル:Experimental evidence for the existence of a second partially-ordered phase of ice VI
  • 著者:Ryo Yamane, Kazuki Komatsu, Jun Gouchi, Yoshiya Uwatoko, Shinichi Machida, Takanori Hattori, Hayate Ito, Hiroyuki Kagi
  • DOI番号:10.1038/s41467-021-21351-9
  • アブストラクトURL:https://www.nature.com/articles/s41467-021-21351-9

用語解説:

(注1)中性子回折と中性子回折実験用の温度圧力可変装置(高圧セル)「Mito system」
中性子回折は、中性子の原子による回折現象を利用した構造解析法です。中性子は原子の中の原子核と相互作用するため、電子と相互作用するX線とは異なる情報が得られます。例えば、X線回折の場合、原子番号の大きいすなわち電子数の多い元素ほど散乱強度が強くなり、逆に電子数の少ない軽元素は散乱強度が弱くなり見えにくくなります。特に共有結合の形成によって電子を失った水素(プロトン)からの散乱は極めて弱いため、プロトンの位置をX線回折で正確に決定することは困難です。一方、中性子回折では軽元素~重元素までほぼ同程度の散乱強度を持つため、水素を含む物質の構造決定によく用いられています。
本研究では、低温高圧下で中性子回折実験を行うため、「Mito system」と呼ばれる温度圧力可変装置を用いました。本装置は2009年ごろから本研究グループによって開発されてきたもので、試料付近をプレス本体から断熱することで効率よく試料の温度を変化できることに最大の特徴があります(詳しくはhttps://www.s.u-tokyo.ac.jp/ja/press/2020/6686/ 参照)
(注2)氷XV
氷の高圧相である氷VIの水分子が秩序化することによって生じる秩序相の一つで、2009年に初めて報告されました。氷XVでは、全ての水分子の配向がそろっているわけではなく、一部の水分子がランダムな配向のままであるため(図1)、厳密に言えば氷XVは「部分秩序相」と呼ぶべきものです(詳しくはhttps://www.s.u-tokyo.ac.jp/ja/press/2016/4927/ 参照)。本研究で発見した氷XIXもまた部分秩序相ですが、このプレスリリースでは、わかりやすさを優先して単に秩序相と表記しました。
(注3)空間反転対称性
結晶における任意の原子の位置(x, y, z)を(-x, –y, –z)となるように操作をしたとき、操作前と後とで結晶構造が変わらない場合、空間反転対称性があると言います。この対称性を欠いている物質では、例えば結晶の表と裏に自発的に正・負の電荷の偏りが生じ、その偏りを電場や応力で制御できる可能性があります(電場で電荷の正・負を入れ替えることができる物質を強誘電体、応力で電荷の偏りの大きさを変えられる物質を圧電体と呼びます)。よって物質の機能性を探る指針として、空間反転対称性の有無が一つの重要な目安となります。
(公開日: 2021年02月19日)