Home >  Conference > Theory Seminar: Computational Nano-materials Design and Realization for Energy Creation and Energy Saving Materials

Theory Seminar: Computational Nano-materials Design and Realization for Energy Creation and Energy Saving Materials

Date : Friday, January 16th, 2015 4:00 PM - 5:00 PM Place : Seminar Room 5 (A615), 6th Floor, ISSP Lecturer : Prof. Hiroshi Katayama-Yoshida Affiliation : Graduate School of Engineering Science, Osaka University Committee Chair : Hisazumi Akai (63493)
e-mail: akai@issp.u-tokyo.ac.jp
Language in Speech : Japanese

工業化社会から知識社会へと産業構造が大きく転換するなかで,太陽電池や熱電材料などの高効率エネルギー変換により,低コストで創った再生可能エネルギーをロスなく運び,スピントロニクスなどの省エネルギーで賢く有効に使うシステムの構築が求められている. これらを可能にするための第一原理計算と多階層連結シミュレーションをベースとして,デザイン主導による実証を目的とした,【1】自己組織化ナノ超構造ナノスピントロニクス材料 [1, 2],【2】自己修復する不老不死の自己組織化ナノ超構造太陽電池材料 [3, 4] ,【3】電子論的起源による負の有効電子間相互作用を起源とする超高温超伝導体 [5, 6],の計算機ナノマテリアルデザイン(CMD®)について講演する.
[1] K. Sato, L. Bergqvist, J. Kudnovsky, P. H. Dederichs, O. Eriksson, I. Turek, B. Sanyal, G. Bouzerar, H. Katayama-Yoshida, V. A. Dinh, T. Fukushima, H. Kizaki, R. Zeller, “Electronic structure and magnetism of dilute magnetic semiconductors from first principles theory”, Rev. of Mod. Phys., 82, 1633 (2010).
[2] T. Dietl, K. Sato,T. Fukushima, A. Bonanni, M. Jamet, A. Barski, S. Kuroda, M. Tanaka, Pham Nam Hai, H. Katayama-Yoshida, “Spinodal nanodecomposition in magnetically doped semiconductors”, RMP Preprint.
[3] S. B. Zhang, S. H. Wei, A. Zunger, H. Katayama-Yoshida, “Defect physics of the CuInSe2 chalcopyrite semiconductor”, Phys. Rev. B 57, 9642 (1998).
[4] Y. Tani, K. Sato, H. Katayama-Yoshida, “Materials Design of Spinodal Nanodecomposition in CuIn1-xGaxSe2 for High-Efficiency Solar Energy Conversion”, Applied Physics Express, 3, 101201 (2010); Computational Nano-Materials Design of Low Cost and High Efficiency Cu2ZnSn[Se1-xSx]4 Photovoltaic Solar Cells by Self-Organized Two-Dimensional Spinodal Nanodecomposition, Jpn. J. Appl. Phys., 51 050202 (2012).
[5] T. Fukushima, H. Katayama-Yoshida, H. Uede, Y. Takawashi1, A Nakanishi1 and K. Sato, “Computational materials design of negative effective U system in hole-doped chalcopyrite CuFeS2”, J. Phys.: Condens. Matter 26 355502 (2014). ; http://iopscience.iop.org/0953-8984/labtalk-article/58618 ; H. Katayama-Yoshida, A. Zunger, “Exchange-Correlation Induced Negative Effective-U”, Phys. Rev. Lett., 55 1618 (1985). ; H. Katayama-Yoshida, K. Kusakabe, H. Kizaki, A. Nakanishi, “General rule and materials design of negative effective U system for high-T-c superconductivity”, Applied Physics Express, 1, 081703 (2008). ; A. Nakanishi, T. Fukushima, H. Uede, H. Katayama-Yoshida, “Computational materials design of attractive Fermion system with large negative effective U in the hole-doped Delafossite of CuAlO2, AgAlO2 and AuAlO2”, Preprint 2014.
[6] A.P. Drozdov, M. I. Eremets, I. A. Troyan, “Conventional superconductivity at 190 K at high pressures”, Preprint, 2014.


(Published on: Wednesday December 24th, 2014)