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Some Background

1957— Broadbent & Hammersley: Percolation

1972— de Gennes, des Cloizeaux: Polymers

1986— Saleur, Duplantier: Conformal theory of polymers, percolation
1993— GQGurarie: Logarithmic operators in CFT

1995— Kausch: Symplectic fermions

1992— Rozansky, Read, Saleur, Schomerus, etc: Supergroup Approach to Log CFT
1996— Rohsiepe, Flohr, Gaberdiel, Kausch, Feigin et al: Algebraic Approach to Log CFT
2006— Pearce, Rasmussen & Zuber: Lattice Approach to Log CFT

Lattice Approach: For Potts, RSOS models, ...

local symmetric diagonalizable no rank > 2 not
degrees of = transfer = transfer = indecomposable = logarithmic
freedom matrices matrices representations theory

Paradigm Shift:
® Statistical systems with local “point” degrees of freedom vield rational CFTs.

® Polymers and percolation do not have any local degrees of freedom only nonlocal ‘string”
degrees of freedom (polymers, connectivities) and are associated with Logarithmic CFTs . ..

. . nonlocal
logarithmic
= degrees of
theory
freedom

0-2



Logarithmic Minimal Models £LM(p, p')

® Face operators defined in planar Temperley-Lieb algebra (Jones 1999)

X(u) = u | = sin(A —u) J/ + sinu \\, Xj(u) = sin(A—u) I +sinue;

J

/
. . — p)T .
1 < p < p’ coprime integers, A = (" —p) = Crossing parameter

p/
2cos A = fugacity of loops (closed strings)

uw = spectral parameter, B

Planar Algebra
(Temperley-Lieb Algebra)

AN

YBE N\
Nonlocal Statistical Mechanics (j/j/j/jfjfjfjfjf )
NIV YR
(Yang-Baxter Integrable Link Models) ) ) //> > ) \\ C
continuum lattice ( (LA A T Y IN )
limit realization \\\\J/J///J/J/J/
Logarithmic CFTs Nonlocal Degrees of Freedom = Strings

(Logarithmic Minimal Models)
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Polymers and Percolation on the Lattice

® Critical Dense Polymers: (p,p") = (1,2), A= —

B =0 = no loops = space filling dense polymer

A
® Critical Percolation: (p,p) = (2,3), A= — u =7

Bond percolation on the blue square lattice:

N|—

Critical probability = p. = sin(A—u) = sinu =

B=1 = local stochastic process

g (isotropic)
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Linear Temperley-Lieb Algebra

® The linear TL algebra is generated by eq,...,eny_1 and the identity I acting on N strings
(2 __
e’ B e,
\{€j €k €ej = ¢€;j, 7 —k| = 1, 7,k=1,2,...,N—1; B = 2 COS\
ejer = epey, 7—k| > 1

® The TL generators e;

j are represented graphically by monoids

o= | = ]
1 2 j—1 ]+1g+2 N—1 N
\_/
, \_/
€ = Q a % = Pej €j€j+1€; - %
) iog+1
joj41 "
J J+1ji+2 j J+1j5+4+2
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Integrability I: Yang-Baxter Equation (YBE)

® The YBE express the equality of two planar 3-tangles (w = v — u)

@ = @, Xj(w)X;11(w)Xj(v) = X41(0)X;(u) X419 (w)

® The five possible connectivities of the external nodes give the diagrammatic equations

@ = @ x 3 (120° rotations)
@ ) @—F @—F @—F @ t (1800 rOtationS)

® The first equation is trivial. The second equation follows from the identity

s1(—u)so(v)s1(—w) = Bsg(u)si(—v)so(w) + so(u)si1(—v)s1(—w)
+ s1(—u)s1(—v)sg(w) + so(u)sg(v)so(w)

sin(u + r\)
Sin A

sr(u) = : B = 2cosA = loop fugacity




Integrability II: Boundary Yang-Baxter Equation

® The Boundary Yang-Baxter Equation (BYBE) is the equality of boundary 2-tangles
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® Forr,s=1,2,3,..., the (r,s) = (r,1) ® (1,s) BYBE solution is built as the fusion product

Integrability III: Kac (r,s) BYBE Solutions

of (r,1) and (1, s) integrable seams acting on the vacuum (1,1) triangle:

JORR R W L WA R WA (A S W
TP PP DD
1 il WaWaaaWah

A

p— 1 columns s — 1 columns

® The column inhomogeneities are:

&= (k+ ko + )

® There is at least one choice of the integers p and kg for each r.

® The p+ s— 2 columns are considered part of the right boundary.

The arches at the top close to the left with up to p+ s — 2 defects propagating in the bulk.
The r-arches can not close among themselves and similarly for the s-arches.

But some of the s-arches can close with some of the r-arches.

® Left boundary solutions (+/,s’) are constructed similarly.
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Double-Row Transfer Matrices

® For a strip with N columns, the double-row transfer “matrix” is the N-tangle

® Using the Yang-Baxter (YBE) and Boundary Yang-Baxter Equations (BYBE) in the planar
Temperley-Lieb (TL) algebra, it can be shown that, for any (r,s), these commute and are
Crossing symmetric

D(uw)D(v) = D(v)D(u), D(u) = D\ —u)

® Multiplication is vertical concatenation of diagrams, equality is the equality of N-tangles.

® In the case of one non-trivial boundary condition, the transfer matrices are found to be
diagonalizable. For fusion, we take non-trivial boundary conditions on the left and right
(r',s") ® (r,s). In this case, the transfer matrices can exhibit Jordan cells and are not in
general diagonalizable.

® The double row transfer matrices can be written in terms of the linear TL algebra.
But it is necessary to act on a vector space of states to obtain matrix representatives of
the operators in the planar algebra and their associated spectra.
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Planar Link Diagrams

® The planar N-tangles act on a vector space Vy of planar link diagrams. The dimension
of Vy is given by Catalan numbers. For N = 6, there is a basis of 5 link diagrams:

R N W SN RN

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

® The first link diagram is the reference state. Other states are generated by the action of
the TL generators by concatenation from below

ﬁm = M m ﬂm . = B8 ™ ™M etc.
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

® The action of the TL generators on the states is nonlocal. It leads to matrices with entries
0, 1,3 that represent the TL generators. For N = 6, the action of e; and e, on Vg is

8 0 1 0 1 O 0 0O 0O
O g 0 1 O O 0O 0O 0O
e1 = O 0 06 0 O |, € — 1 0O g 0 O ; etc.
O 0 0O 0O O O 1 0 g 1
O 0 0O 0O O O 0 0O 0 O

® Despite the symmetry of the monoid diagrams, they are not transpose symmetric.
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Defects

® More generally, the vector space of states V](\f) can contain ¢ defects:

N=4, {=2: a2 e IV
1 2 3 4 1 2 3 4 1 2 3 4
® The ¢ defects can be closed on the right or the left. In this way, the number of defects

propagating in the bulk is controlled by the boundary conditions. In particular, for (1,s)
boundary conditions, the ¢/ = s — 1 defects simply propagate along a boundary.

[

/[}JJ[-}JJJ
CCCTCCCoD
DTN
C C C/KJKJKJKD > )
NNTAAAAC

® Defects in the bulk can be annihilated in pairs but not created under the action of TL

e o e

1 2 3 456 1 2 3 456

® The transfer matrices are thus block-triangular with respect to the number of defects.
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Dense Polymer Kac Table

® Central charge: (p,p’) =(1,2)

® Infinitely extended Kac table
of conformal weights:

(p'r — ps)? — (p — p')?
4pp’
(2r —s)2—1

Ars =

Y

3

— : r.s=1,2,3,...

® Kac representation characters:

—e/2a 477 (1 = ¢"%)
[1°52,(1 —q")

XT,S(Q) — (g

® Irreducible Representations:

There is an irreducible representation for
each distinct conformal weight. The Kac
representations which happen to be irre-
ducible are marked with a red quadrant.

10

v
63 | 35 | 15 | 3 | _1| 3
38 38 38 38 38 38
6 | 3| 1| 0] 0| 1

q
35 | 15 | 3 | _1] 3 | 15
8 8 8 8 8 8
3/ 1|00/ 1| 3
15 ] 3 | _1| 3 | 15 | 35
8 8 8 8 8 8
1| 0|l o0o]| 1| 31|66
3 | 1| 3 | 15 | 35 | 63
38 38 38 38 38 38
ol o | 1| 3] 6 |10
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Critical Percolation Kac Table

® Central charge: (p,p’) = (2,3)

S
c 1— 6(p p/)Q = 0 65 21 1
pp/ 10 12 g 5 g 1 3
| u
9 28 | 143 | 10 | 35 1| _1
® Infinitely extended Kac table SO I I s B 24
of conformal weights: s | 7|2 | 2|28 |0t
21 1
A - ps)? — (p — p')? 7|5 | &% | 15| 0] 3
r,s —
Adpp/ 4 VY
6 | 3 52 3 [T 3 | %
3r—2s5)2 -1
= ( 24) : r.s =1,2,3,... 5 . 51
5 2 o 0 = 1 =
® Kac representation characters: 4 1 = 0 2 2 %
1 N 1‘ 1 35‘ 10 143
/24 gBrs(1 — ¢'s) 3 | 3 |72a| 3 | 24| 3 | 24
xr,s(q) = q 1 . (1 — ¢q») ) | 21‘ 65‘
n=1 2 0 2 1 = 5 2
] ] | | |
® Irreducible Representations: 1 0 g 2 % 7 %5
There is an irreducible representation for
each distinct conformal weight. The Kac 12 3 4 5 6 7

representations which happen to be irre-
ducible are marked with a red quadrant.
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Virasoro Representations and Lg

® In the continuum scaling limit, the transfer matrices give rise to a representation of the
Virasoro algebra. Only Lg is readily accessible from the lattice

_ C _
D(u)~e ™, —H > Lo-—7 Zrs(@) = TrD) e ¢7/24 Tr g0 = x05(g)
R ibl

Type Irreducible Fully Reducible Indee?:gf;\?ace)séebﬁe Decomposable
B 0 o O B 0 o
Ln () O W o (0 .> o N
0O 0 B O 0 B

Lo Diagonalizable Diagonalizable ,(J)c]zrch%r:]ESIIQS Jordan Cells

® Rational Theories:

Irreducible representations are the
building blocks for fusion. Fusion
closes on the irreducible representa-
tions.

® Logarithmic Theories:

Kac representations are the building
blocks for fusion. Higher rank inde-
composable representations arise from
fusing Kac representations.
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Lattice Fusion and Indecomposable Representations

® For Critical Dense Polymers, the (1,2) ® (1,2) = (— %) ® (— %) =0 4+ 0=(1,1) 4+ (1,3)

fusion yields an indecomposable representation. For N = 4, the finitized partition function is
(¢ = modular parameter)

202)1.2)@ = ?gjl\f)i)(ql U ?gjl\f)@(ql = q P (1+¢°) + (1+q+)] = g “**(2+q+2¢°)
0 defects 2 defects

® T[T he Hamiltonian

0O 1/0 0 O
2 0|1 0 1
D(u) ~ e %K —H = |0 0[]0 10 |+V2I —H — Lo — »g
0O 0|1 0 1
0O 0/l]0O 1 O
acts on the five states with £ = 0 or ¢ = 2 defects
D ~ A ~ | A~ A
123 4 1 23 4 123 4 1 234 1234
® The Jordan canonical form for 'H has rank 2 Jordan cells
(00100\(01000\ 0 110 0 O
0 V8o 0 1 O 0/l O O O 0 olo o o )
_HNoooooNoo\/ﬁooN001oo=LO
O 0|0 v2 0 0O 0 0| +Vv8 1 0O 0 0|2 1
\o olo o v8) \oo o| o v8| 0 0 0[O0 2

® The eigenvalues of —H approach the integer energies indicated in Lg4) as N — oo.
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Dense Polymer Virasoro Fusion Algebra

® The Virasoro fusion algebra of critical dense polymers LM(1,2) is

((2,1),(1,2)) = ((r,1),(1,2k), Rop; 7,k €N)

® With the identifications (k,2k’) = (k',2k), the fusion rules obtained empirically from the
lattice are commutative, associative and agree with Gaberdiel and Kausch (1996)

r4r'—1 S : : :
(’I“,l) ®(T,,1) — @ (.771) 10 @‘ 35 15| 3 | _ 1] 3
j:|r_7n/|_|_1’ by 2 8 8 8 8 8 8
k+k'—1 o|l6|3|1]0]0]|1
(1’2k) & (1’ Qk/) — @ R2j 359 15 | 3 1| 3 15
j=|k—K'|+1, by 2 8l1% |8 |8| 8| 8|8
k+k/
. (2) ' 713|110 0]|1]|3
(1,2k) @ Rop = | b 5j7{k’k,}(1,29) NI ERETRET
j=|k—FK| 6| % |8 8| 8 | 8| 8
k+k/
5/1/0|0|1]3]6
Ror @ Rop = 52 R
2k @ Teop ._@ AL 2] 39_1] 3 |15 |38 |63
J—|k—_|k_]\€ 4 8 8| 8 8 38 38
r —1
(rnDe@2k) = O  (1,2)=(,2k) R T Tl B e
— 1] 39 159 35" 63 99
j=|r—Fk|+1, by 2 2 sl 8| 8|8 | 8|8
r+k—1 ¥ € € Y € ¥
(r,1) ® Rop, = P Ro; 1{ol1]3]6]10]15
J=Ir—kl+1, by 2 1 2 3 4 5 6 T
. 2
Ry, = indecomposable = (1,2k—1) ¢; (1,2k+1), 5§7{3€7k,} =2 =0 \k—k/| — O K+
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Extended VVacuum of Symplectic Fermions

® Critical dense polymers in the YW-extended picture is identified with symplectic fermions.
® The extended vacuum character of symplectic fermions is known to be
N o
X11(¢0) = > (2n—1)Xx2p-1,1(q)
n=1

T his suggests the corresponding integrable boundary condition is the direct sum

©.@)
(1,)yw= € (2n—1)(2n —1,1) = W-irreducible representation

n=1

® However, the BYBE is not linear and sums of solutions do not usually give new solutions.
Rather, the BYBE is closed under fusions. If we can construct this direct sum from fusions,
then automatically it will be a solution of the BYBE.

® Consider the triple fusion

2n-1,1) @ 2n—-1,1)®(2n—-1,1)=(1,1) @ 3(3,1))®5(5,1))d--- 2 (2n—-1)2n—-1,1) & - --

For large n, the coefficients stabilize and reproduce the extended vacuum (1,1))y. So the
integrable boundary condition associated to the extended vacuum boundary condition is
constructed by fusing three r-type integrable seams to the boundary

(1, Dy = lim 2n—-1,1)®(2n—1,1) ® (2n—1,1) = é (2n —1)(2n — 1,1)
n=1
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Extended Boundary Conditions

® The extended vacuum (1,1)yy, must act as the identity. In particular
(1L, Dw & (1, 1)y = (1, Dy

where & denotes the fusion multiplication in the extended picture.

® T he extended vacuum has the stability property

2m—1,1)® (1, 1)y = (2m — 1) ( D (2n— 1) (2n— 1, 1)) — (2m — 1) (1, 1)y

n=1

® The extended fusion & is therefore defined by

(1, D ® (1, Dy = fim_ ((Qni1)3(2n—1, D®@n-1,1)® (2n—1,1)® (1, 1)W) — (1, 1)

® The representation content is 4 W-irreducible and 2 YW-indecomposable representations.
Additional stability properties enable us to define

©.@)
(17S)W = (178) %Y (17 1)W — @ (272, o 1) (272, o 178)7 S — 172
n=olO
(2,9 = 5(2,5)® (1,1)y = @ 2n(2n,s), s=1,2
o n=1
Ri=Riyw =R1(1, 1)y = @ 2n—1)Rou—1
Ro=(Ro)w = 5R2® (1,1)y = P 2nRyy,
n=1
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Cayley Table of Symplectic Fermion Fusion Rules

® The W-extended fusion rules follow from the Virasoro fusion rules combined with stability.
The extended fusion rules and characters agree with Gaberdiel and Runkel (2007):

® | 0 1 -1 s Ro R1

0 |0 1 ~% s Ro R1

1 |1 o0 s -1 R1 Ro
-3|-5 3 Ro R1 2(-3) +2@) 2(-3) +23)
3 |3 s R1 Ro 2(—g) +23) 2(-g) +23)
Ro | Ro R1|2(—3) +2@3) 2(-5)+23@) | 2Ro+2R1  2Ro+ 2R,
R1 | R1 Ro|2(—3) +2@3) 2(-5)+23@) | 2Ro+2R1  2Ro+ 2R,

Example: Consider the extended fusion rule 1® 1 = O:
2D, Dy = (3211, Dw)d(3(2,1) ® (1, 1))
= 2((2De@D)e (@, Dy & 1,1)y)
= (@, De B ),y = 0+, Dw = 1,y
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W-Representation Content of LM (p,p’)

LM(p,p") Symplectic Fermions | Critical Percolation
W-reps 6pp’ — 2p — 2p’ 6 26
Rank 1 2p+ 2p' — 2 4 3
Rank 2 4pp’ — 2p — 29/ 14
Rank 3 2(p — 1) (' — 1) 0 4
Wh-irred chars | 2pp’ + %(p —1)(p' - 1) 4 13

® Kac tables of 4 and 13 Wh-irreducible representations for symplectic fermions and critical

percolation:

103
8| 8
o | 1
1 2 r

S

5| 110 |_1 35
3’ 3 241 24
1 21
2 88
5 33
1 88
1 2
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Xo(q)

X1(q)

X2(q)

X5(q)

X7(q)

<)
Wl

<)
wg
N\
<)
N’

~
K
—

<)
o0l

<)
o0l0n

W-Characters of Critical Percolation

1

1 3 k2[ (12k—

n(a) ‘=

T k2[ (12k—

n(q) re7
n(q) re7

n(q) ey

n(Q) 2, (2k =

keZ

o1 3(4k—
n(q) ,;G:Z !

n(Q) 2, (2k =

keZ

n(q) 2, (2k =

keZ

Y k(k+1)|q

S k(k+1)|q

7)2/24 (12k—|—1)2/24]
5)2/24 (12k—1)2/24]
| (12k—1)2/24 q(12k—|—7)2/24]
| (12k+1)2/24 q(12k—|—5)2/24]
3(4k—3)2/8 X o1 (q)
3
1)%/8 X33(q)
8
(6k—5)2/6 X 1 (Q)
—24
(6k—4)2/6 X35 (q)
>4

Z ok q(6k 2)2/6

n(q) re7
_ 1 o (6k— 1)2/6
n(q)k%:Z !
ok (6k—6)2/6
n(q) ,;E:Z(

_ Z ok q(6k: 3)2/6

n(q) e

® These agree with Feigin, Gainutdinov, Semikhatov and Tipunin (2005).
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Summary

® Critical dense polymers and critical percolation are the first two members LM(1,2) and
LM(2,3) of the Yang-Baxter integrable series of logarithmic minimal models LM (p,p).

® In the Virasoro picture, there is an infinity of integrable boundary conditions labelled by
r,.s = 1,2,3,.... In the continuum scaling limit, these give rise to so-called Kac represen-
tations (r,s) of the Virasoro algebra. These representations are organized into an infinitely
extended Kac table and are not in general irreducible.

® Fusion of two representations is implemented on the lattice by taking the integrable bound-
ary conditions associated to the representations on the left and right boundaries of the strip.
Fusion of the Kac representations (r,s) can give rise to reducible but indecomposable repre-
sentations with Jordan cells of rank 2 or 3.

® The Virasoro fusion rules for LM(p,p’) have been obtained empirically by studying fusion
on the lattice. These fusion rules are closed, commutative and associative.

® Critical dense polymers in the extended WW-algebra picture is identified with symplectic
fermions.

® For LM(p,p’) in the extended W-algebra picture, the infinity of Virasoro representations
are reorganized into a finite number of W-representations that close amongst themselves
under fusion. The W fusion rules are obtained from the Virasoro fusion rules.

® It remains an open problem to find the Verlinde formula for LM(p,p’) with p > 1.
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Chiral Symplectic Fermions (Kausch 1995)

® The central charge of symplectic fermions is ¢ = —2 and the stress-energy tensor is

T(z) = ¥ Loz "2 = Ldag x*()x(2):
nel

where d,g is the inverse of the anti-symmetric tensor deP with o, 8 = =+.

® The chiral algebra VW is generated by a two-component fermion field

X“(z) = Y xG2 a ==
nez

of conformal weight A = 1. The modes satisfy the anticommutation relations

{X%,Xg} — mdaﬁ 5m,—n

® Alternatively, the extended symmetry algebra VW is generated by the Virasoro modes L,
and the modes of a triplet of weight 3 fields W7.
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10

Logarithmic Ising and Yang-Lee Kac Tables

225 | 161 | 323 | 65 33 35
16 16 438 16 16 48
15 14 5 1
11| 5 | 3 | 3 1 G
u
133 | 85 | 143 | 21 5 | 1
16 16 48 16 16 48
7 5 1 1
6 2 3 2 O 6
65 | 33 | 35 | 1 | 1 | 35
16 16 48 16 16 48
5 1 1 5
2 1 6 O 2 3
L L
21 | 5 | _ 1] 5 | 21 | 143
16 16 48 16 16 48
1 1 ‘ 5 14 ‘
> 0 G 1 > | 3
u
1 | 1 | 35 ] 33 | 65 | 323
16 16 438 16 16 48
1 5 ‘ 7 55 ‘
0 > 3 > 6 | &
1 2 3 4 5 6

10

27 91 2 _9 2 91
5 40 5 40 5 40
11 _ 1 27
4 8 0 38 1 38
14 27 _1 e 9 187
5 40 5 40 5 40
9 e _ 1 27 14 247
5 40 5 40 5 40
1 11 63
1 38 0 8 4 38
| 9
2 _9 2 91 27 391
5 40 5 40 5 40
1‘ 27‘ 95‘
0 —3 1 3 V4 5
| | |
_1 e 9 187 44 567
5 40 5 40 5 40
9
_1 27 14 247 54 667
5 40 5 40 5 40
11 N 63 h 155‘
0 5 4 5 13 5
1 2 3 4 5 6
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