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A typical example is fractional quantum Hall systems

ex.) Laughlin state

Topological orders are conventionally characterized by the 
ground-state degeneracy depending on topology of the 
space  (= topological degeneracy)

GS degeneracy

Tao-Wu ’84,   Wen-Niu ‘90

Topological order

Wen ‘90
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The ground state degeneracy is useful even for 
symmetry breaking orders

ordered 
2-fold degeneracy

But, the degeneracy is independent of the topology !

not ordered
no degeneracy

2 2 2
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At present, several different systems are known to exhibit 
topological orders.

boson system
fermion system
in the presence or in the absence of magnetic filed

(without or with time-reversal invariance)
2+1 and 3+1 dim. system

X.G.Wen ‘91,
Read-Sachdev ‘91,
Senthil-Fisher ‘00,
Moessner-Sondhi ‘01,
Misguichi-Serban-Pesquir ‘02,
Balents-Fisher-Girvin ‘02,
Motrunich-Senthil ‘02,
Kitaev,   
Lawler-Kee-Y.-B .Kim-Vishwanath ’08, ….
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Common characteristics

① All the known models have an excitation with fractional
charge.

② Some models have an excitation with fractional statistics
or non-abelian statistics.

③ Some models show fractional quantum Hall effects.

But, some models have the following other
interesting characteristics

Oshikawa-Senthil ‘06
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All these fractionalization can be treated in a unified 
way in terms of braid group and large gauge 
transformation.

Fractionalization = Topological Order

Topological Discrete Algebra 



8

Outline

① Introduction
② Topological discrete algebra

(Hidden symmetry, Heisenberg algebra, ‘t Hooft algebra)
③ Ground state degeneracy
④ FQHE 

⑤ Generalization to non-abelian gauge theories in 3+1 dim
& quark (de)confinement   

MS, M.Kohmoto, Y.S.Wu, PRL  ‘06

MS, PRD  ‘08
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② Topological Discrete Algebra (d=2)

① The system is on a torus.
② There exists U(1) symmetry.
③ The system is gapped.
④ Charge fractionalization occurs.

In other words, we assume that 
there exists a quasi-particle with fractional charge

Our assumptions are the following

MS, M.Kohmoto, Y.S.Wu, PRL  ‘06

definition of charge
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We start with the following non-trivial processes on a torus

a. adiabatic unit flux insertions through holes of torus

b. translations of i-th quasi-particle along loops of torus

a unit flux

(Wu-Hatsugai-Kohmoto ’91, Oshikawa-Senthil ’06)
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Note that the unit flux insertions are unitary equivalent to 
the following adiabatic changes of the boundary conditions.

Consider the twisted boundary condition on the torus 

By the large gauge  transformation

1. the flux is reduced as

2. the boundary conditions are changed as

phase

phase
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Using the unitary transformation, we can delete the inserted 
unit flux completely, but the boundary condition parameters θx
and θy change by one period 2π. 

Thus Ux (Uy) is unitary equivalent to adiabatic change 
of θx (θy)  by 2π

The spectrum should be invariant under Ux and Uy

Ux and Uy ・・・ a kind of symmetry
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We also consider the exchange of quasi-particles.

c. exchange  between i-th and (i+1)-th quasi-particles

The reason why we take into account this operation is that 
the translations along the loops are not independent of the 
exchanges of quasi-particles. Indeed they form the braid 
group algebra.
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Braid Group on torus Birman ’69, Einarsson ‘90
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From AB effect, we have

In a similar manner, we obtain

The commutation relations between the braid group operators
and the flux insertions are determined by AB effect.

translation after flux insertionAB phase
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On the other hand, the commutation relation between the flux 
insertion operators is determined by Schur’s lemma  

commutes with all the braid group operators 

Schur’s lemma

Furthermore, Ux
q (and   Uy

q )  commutes with all the braid group operators
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Topological discrete algebra (1)

① Braid Group 
② AB effect

③ Schur’s lemma

Thus, our tool to examine the topological order is 
the following.
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If the quasi-particle obeys abelian statistics, the algebra is
simplified.

The solution of braid group is

Topological  discrete algebra (2)
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The statistical property is naturally combined with the charge
fractionalization in terms of the topological discrete algebra.

Questions: 

1. Can the topological discrete algebra explain the ground 
state degeneracy ?

2. What is the physical meaning of the fractional parameter λ ?
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④ Ground state degeneracy

To count ground state degeneracy, we define Tx on the 
ground state

pair-creation pair-annihilation

In a similar manner, we define Ty on the ground state
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n-fold degeneracy

Let us take the basis of the ground state to be an 
eigenstate of Tx

then, we have n different eigenstates

We have unitary operators which act on the ground 
state and they have non-commutative relations. This 
implies that the ground state must be degenerate.
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qQ eigenvalues

qQ-fold degeneracy

We can also take the basis to be an eigenstate of Tx and Ty
n

In this case, we have qQ different eigenstates
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Ground state degeneracy is obtained from charge 
fractionalization and fractional statistics 

It depends on the topology of the space

The minimal ground state degeneracy is the least common 
multiple of n and qQ=nQ2/N

In general
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1) Laughlin state

The minimal degeneracy = qg

It reproduces the Wen-Niu’s result

This formula reproduces known results for GS degeneracy.

ex. )
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On a torus, the minimal degeneracy is realized by
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2)  When the quasi-particle is charge fractionalized boson or 
fermion,.. 

minimal degeneracy= q2g

The minimal degeneracy is realized when

Oshikawa-Senthil ’06
(Kitaev model, 
quantum dimer model)

Topological degeneracy is explained by the topological 
discrete algebra.
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⑤ The physical meaning of λ
To consider the physical meaning of λ, we calculate the 
Hall conductance by using the linear response theory

average over the boundary conditions

average over degeneracy

Niu-Thouless-Wu ‘84
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Using this, we have

Fractional λ implies the fractional quantum Hall effect
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Summary
Using the braid group formulation, we found a closed 

algebraic structure which characterizes topological orders.

Topological degeneracy is due to the topological 
discrete algebra. 

The fractional quantum Hall effect is a result of the 
non-commutative structure of the flux insertion 
operations

cf.) For symmetry breaking orders

xσ
The degeneracy is due to broken generators.

Part 1.
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⑤ Generalization to Non-Abelian Gauge 
Theories & Quark confinement

Idea The Quark has fractional charges

The quark deconfinement implies the topological order ? 

But.. the quark is an elementary particle, not a collective 
excitation.

yes

Part 2.

M.S. Phys. Rev D (08)
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Due to the existence of gluons,  the unit flux is 
reduced to Φa= 2π /3e

cf.) For electron system, Φa= 2π /e

Nevertheless, non-trivial topological discrete algebra can be 
constructed in a similar manner ..

An important difference

e: the minimal charge of the constitute particle
(charge of down quark )
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Due to gluon fluctuations,  there exist center vortices of SU(3) 
in each holes of  three dimensional torus.  

Thus, the physics is the same after the flux insertion by 2π/3e 
(not 2π/e)

The unit flux is reduced to Φa= 2π /3e
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If the excitation is quark, we have

If the excitation is hadron, we have

translation after flux insertion

AB phase

No AB phase

We  have different Aharanov-Bohm phases between 
quark deconfinement phase and confinement one
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② Permutation group

③ Shur’s lemma

• For quark, 

• For hadron,

Other commutation relations are determined by ..
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In 3+1 dim,  the excitations (quarks or hadrons) are boson or 
fermion, 

The unique  solution of the permutation group
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We have two different topological discrete algebras

For quark deconfinement phase

For quark confinement phase

Ta: quark winding operator

Ta: hadron winding operator

trivial !
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If quarks are deconfined, the physical states are classified 
with the permutation group of quarks.

Non trivial topological discrete algebra

Topological ground state degeneracy !
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If quarks are confined, the physical states are classified with 
the permutation group of hadrons.

On the other hand, …

Topological discrete algebra is trivial

No topological degeneracy !
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The confinement and deconfinement phases in QCD 
are discriminated by the topological ground state 
degeneracy !

For SU(N) QCD on Tn ×R4-n

• deconfinement:     Nn –fold ground state degeneracy

• confinement:         No topological degeneracy
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Test of our argument for quark confinement

• Wilson’s criterion
• 1-loop analysis
• Witten index
• Fradkin-Shenker’s phase diagram

All of them are consistent with our argument
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Summary

A hidden symmetry in topological discrete algebra can 
be explicitly constructed in terms of the braid group ( or 
permutation group ) and flux insertions.

Fractionalization  = Topological Order 

Quark deconfinement = Topological Order
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