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Band Touching

• Spaghetti Diagram

• When do they touch?

• Level repulsion 
argument

• Must tune 3 
parameters for a 
touching at a generic 
wavevector - get 
“accidental” touchings 
at points in 3d.



Graphene

• Sometimes 2d bands do 
touch!



Stability

• Common reason: irreducible 
representation of Little group has dim>1.

• these touchings are very sensitive to 
symmetry.

• But sometimes they are more stable...



• Dirac spinor: 

• More generally:

• Berry gauge field

• Flux

• T+I: 

• Singularity must be preserved!

Topological stability

ψ → −ψ2π rotation

!A = Im 〈u|!∇ku〉∮
d!k · !A =

∫
d2k B(k) = π

B(k) = 0



This talk

• A different kind of topological band 
touching

• Real space topology instead of momentum 
space



Frustrated Hopping 
Models

• Certain lattice hopping Hamiltonians 
display flat bands

• These are interesting because they offer 
prospects for strong interaction physics 
(c.f. FQHE)

Heff = P̂ V P̂ if  V is small compared to 
the gap to the next band



Optical lattices

Theoretical proposals from various atomic 
theory groups (Lewenstein, Demler/Lukin, 

Zoller)



High field 
antiferromagnets

H

Single magnon excitations governed by frustrated 
hopping  Hamiltonian

c.f. Tsunetsugu and others



Kagome lattice



Kagome lattice

• Flat band

• Band touchings

• Dirac points and 
touching of flat band



Kagome lattice

• Flat band

• Band touchings

• Dirac points and 
touching of flat band

no Berry phase here!



Honeycomb p-bands

17

Honeycomb lattice: a surge of research interest

• Graphene: 2pz-orbital band; Dirac cone; 
isotropic and non-degenerate.

However, in graphene, 2px, 2py-orbital 
bands hybridize with 2s.

• In optical lattices, px and py-orbital bands 
are well separated from s.

• Even more interesting physics in the 
px, py-orbital bands.

19

• If !-bonding is included, the flat 
bands acquire small width at the 
order of     .

Flat bands in the entire Brillouin zone!

• Flat band + Dirac cone. • localized eigenstates.
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Pyrochlore lattice

Chromium Spinels

ACr2O4

(A=Zn,Cd,Hg)

• spin S=3/2

• no orbital degeneracy

• isotropic

• Spins form pyrochlore lattice

cubic Fd3m

• Antiferromagnetic interactions

!CW = -390K,-70K,-32K 

for A=Zn,Cd,Hg

Takagi group



Pyrochlore bands

Γ L U X W K Γ

Band 
touching



Why all this touching?

• Touching is troublesome for strong 
interaction physics

• projection into flat band problematic 
because there is no gap

• Can we keep the flat band but remove the 
touching?



Why flat bands?

• Wannier states are 
eigenstates

• localized states with 
finite support

• reason: interference

3

with ψµ(q) = sin(q·aµ+2/2)√
(3−Λ(q))/2

, where the greek index arith-

metic is always modulo 3, and 3−Λ(q)
2 =

∑3
µ=1 sin2(q ·

aµ+2/2).

B. Localized states

We can construct localized eigenstates by taking the
linear combinations

A†
R = N

∫

q
e−iq·Ra†

0(q)
√

(3 − Λ(q)) /2 , (5)

with N being some normalization. Here and elsewhere
we will use A†

R to denote the creation operator for the
localized eigenstates. Choosing R to be the position at
the center of an hexagonal plaquette of the lattice, and
normalizing the operator we find

A†
R =

1√
6

6∑

j=1

(−1)jc†j , (6)

where the indices 1 . . . 6 enumerate the 6 successive sites
around the hexagonal plaquette, as illustrated in Fig. 2.
These local operators are very useful, but they are un-
fortunately not canonical bosons or fermions. Rather, if
cj are bosonic, the commutation relations are

[
AR, A†

R′

]
= δR,R′ − 1

6
ΓR,R′ , (7)

where the matrix ΓR,R′ is the adjacency matrix of the
triangular lattice formed by the centers of the plaquettes.
For fermions, Eq. (7) holds with the commutator replaced
by an anticommutator.

The localized model can be understood directly in real
space by considering a single triangle around the bound-
ary of the plaquette. One of the corners has an amplitude
of 1√

6
, a second has −1√

6
and a third has 0 amplitude. The

hopping amplitude from the first and second sites onto
the third site cancels out. Thus the eigenstate is localized
as a result of destructive interference, which is a very use-
ful guiding principle in identifying these states in other
flat band models. For a strictly localized wavefunction
to be an eigenstate, the sum of hopping amplitudes onto
sites outside the support of the wavefunction must vanish
(see for illustration Fig. 4).

One can create similar exact single-particle eigenstates
on larger loops, by summing over the plaquette states on
a number of contiguous plaquettes, and normalizing the
state by the length of the boundary of the area covered
by the plaquettes

A†
∂A =

∑

R∈A
A†

R

√
6√

|∂A|
. (8)

Here A denotes the area covered by the plaquettes, and
|∂A| denotes the length of the boundary of this area. In
Fig. 2 we show one example of a three-plaquette loop.

6

R

1 2

3

45

FIG. 2: (Color online) Depiction of localized eigenstates, on
the boundary of a single and triple plaquette. Those sites
with nonzero weight are denoted by a full (red) circle. The
magnitude of the weights is always the same, but the phases
alternate between ±1. The phases are denoted by ± signs
next to the relevant lattice sites.

C. State counting and band touching

We now turn to the main question addressed in this
paper, of the origin of the band touching. We will show
that the set of localized eigenstates contains too many
states to fit into the flat band alone. Specifically, the
dimension of the space of localized state with the energy
of the flat band has a dimension which is 1 larger than
that of the flat band. This requires a contribution from a
state of another band, which, since it is continuous, must
touch the flat band at one point.

Because the difference in question involves only a finite
number of basis states (here 1, but there may be more
in other examples in the next section), it is necessary to
consider a large but finite system to make this count-
ing precise. It is advantageous to use periodic boundary
conditions (with a finite integral number of unit cells in
each of two directions), since in this case the Bloch states
in Eq. (4) remain eigenstates (with discrete q) in the fi-
nite system. We must count carefully the number of lin-
early independent states with energy ε0. The plaquette
states created by Eq. (6), näıvely all seem linearly inde-
pendent, since they occur on different plaquettes. With
open boundary conditions, the sum over all the plaque-
ttes in the lattice leads to a state of the form of Eq. (8) at
the boundary of the system. For periodic boundary con-
ditions (putting the lattice on a torus), however, this sum
vanishes since there is no boundary A†

q=0 =
∑

R A†
R = 0.

So when considering the Hilbert space spanned by the
plaquette states (6) we have only (N − 1) independent
states, where N is the number of plaquettes (and unit
cells) in the lattice. This accounts for all but one state
of the flat band.
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C. State counting and band touching

We now turn to the main question addressed in this
paper, of the origin of the band touching. We will show
that the set of localized eigenstates contains too many
states to fit into the flat band alone. Specifically, the
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states, where N is the number of plaquettes (and unit
cells) in the lattice. This accounts for all but one state
of the flat band.



Similar in other lattices

19

• If !-bonding is included, the flat 
bands acquire small width at the 
order of     .

Flat bands in the entire Brillouin zone!

• Flat band + Dirac cone. • localized eigenstates.
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Flatness is not robust

• Interference condition 
violated by most 
additional hoppings



Flatness is not robust

• Interference condition 
violated by most 
additional hoppings



A sort of protection

• As long as the flat band remains flat, the 
touching always remains

• (somewhat) bad news for “LLL” 
projection

• Reason: real space topology



Counting

• Flat band = localized states but...

• How many (linearly independent) localized 
states are there?

• Flat band (with periodic B.C.’s)

• 1 state per unit cell



Elementary Hexagons

One per unit cell?



Elementary Hexagons

One per unit cell?



Elementary Hexagons

One per unit cell?



Superposition



Superposition



Superposition



Superposition



Superposition

Sum of all elementary hexagons = 0 with PBCs!



Problem

• On torus with N unit cells, find N-1 linearly 
independent states

• Where is the missing state?



Loops on torus



Loops on torus

Non-trivial loop



Non-trivial Loops
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FIG. 3: (Color online) The two non-contractible loop states
around the handles of the torus. One loop consists of the
sites marked by full (blue) circles, and the other by the empty
(red) circles. As the other eigenstates in the flat band, the
wavefunction has an alternating ± phase on the sites along
the loops.

The missing state is accounted for by a non-
contractible loop around the torus. By decorating such
a loop with alternating plus/minus signs, as illustrated
in Fig. 3, one again satisfies the conditions for destruc-
tive interference of outgoing waves, and the associated
wavefunction represent an exact eigenstate, with the flat
band energy. This state cannot be expressed as a sum
of plaquette operators, or it would be possible to con-
tract the loop just as any sum of plaquette states is. We
have therefore found the missing state! However, we have
an embarrassment of riches – there is not one such non-
contractible loop, but two. In total we have (N + 1)
states, all with the same energy. From the band struc-
ture we know the flat band contains precisely N states,
and so the additional state must come from another band,
and for this reason one of the dispersive bands touches
the flat band at exactly one point.

In fact, from the loop states we can construct the plane
wave Bloch state which touches the flat band explicitly.
By taking an equal weight linear superposition of the
non-contractible loops translated in any direction other
than that along which the loop runs, one obtains a state
with the same configuration in any unit cell, which there-
fore has the Bloch form with momentum q = 0. The
double degeneracy of states with q = 0 signifies that not
only must one of the dispersing bands touch the flat band
at a point, but that the point is at q = 0.

FIG. 4: (Color online) The localized states are exact eigen-
states due to destructive interference between the hopping
amplitudes from sites with nonzero weight (filled circles) to
sites outside the boundary (empty circle). The lattice sites
with nonzero weight are contained in a finite area, within a
boundary marked by the dashed line.

III. LOCAL EIGENSTATES

A. Pyrochlore lattice model

Taking the nearest neighbor hopping model
(1) on the pyrochlore lattice (instead of the
kagome lattice) has two degenerate flat bands
at ε0 = 2t, and two dispersive bands ε± =
−2t

(
1 ±

√
1 + cos q1

2 cos q2
2 + cos q2

2 cos q3
2 + cos q3

2 cos q1
2

)
,

where we have used the conventions a1 = 1
2 (0, 1, 1),

a2 = 1
2 (0, 1, 1), and a3 = 1

2 (0, 1, 1) for the (FCC) Bravais
lattice vectors, and e0 = 1

8 (1, 1, 1), e1 = 1
8 (−1, 1, 1),

e2 = 1
8 (1,−1, 1) and e3 = 1

8 (1, 1,−1) for the pyrochlore
basis. Both flat bands touch the upper dispersive band
at q = 0. The same localized plaquette modes that
appear in the kagome model, are exact eigenstates for
this pyrochlore model as well. However, whereas the
number of hexagonal plaquettes in the kagome lattice is
equal the number of unit cells, in the pyrochlore lattice
the number of plaquettes is 4 times that of the number
of unit cells. With two flat bands containing only 2N
states, clearly these are not all linearly independent.

Consider a volume enclosed by 4 plaquettes (see Fig 5).
Placing plaquette states with equal weight, and appro-
priate relative signs, on each one of these 4 faces gives a
total of zero. There are 2N such cells in the pyrochlore
lattice, and therefore 2N such constraints. This reduces
the number of independent states we can construct out
of the plaquette states to 2N . We choose to keep all the
plaquette states for the plaquettes perpendicular to two
out of the 4 〈111〉 directions of the pyrochlore lattice.

Now if we consider any one of the kagome planes along
the two directions we chose above, we have the same
additional constraint as in the kagome lattice - putting
a plaquette state on every plaquette in the plane, with
periodic boundary conditions results in zero, giving us
one additional constraint. Taking into account the cell-
constraints from the previous paragraph, there are only

• Two non-contractible 
loops can be formed on 
the torus

• The difference between 
any two loops with the 
same topology is a sum 
of elementary hexagons

Two more linearly independent states!



Counting

• Elementary hexagons: N-1 states

• Non-contractible loops: 2 states

• Total states: N+1 states

• 1 more state than the flat band!

• This requires another band to touch the 
flat band.



Summary

• Band touchings in most frustrated hopping 
hamiltonians are “protected” in this way

• kagome, dice, pyrochlore, honeycomb p-
orbital models


