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電流標準の現状と展望

後に Vg2を調整することで電子を一番右側の金属（Right 
Lead）へと運ぶ（図 13b）3）．このサイクルを一秒間に f 
回行えば電子は，右側から左側へと f 個移動したことに
なり 

     　　　（17）

の一定電流が生成される．これを単電子ポンプという．
1992年フランスサクレー研究所の Pothierらはこの手

法を用いて初めて一定電流を生成した 17）．図 14は 
Pothierによって行われた実験の結果である．この時用い
られた金属は Alであり，金属を蒸着後チャンバー内で
酸化処理を施すことによって酸化膜を形成し絶縁膜とし
て用いている．アルミニウムは低温で超伝導転移を起こ
すため，この実験では磁場を印加し常伝導化させている．
この実験で得られた電流値は数百 fAであり，実験的な
不確かさは数十 fA程度であった．彼らはこのエラーの
起源について考察を行い，電子が競合して飛び移るコト
ンネリング *3が不確かさの主な要因の一つであると結
論づけている．このコトンネリングを抑制するため 1996
年 NISTの Kellerらは，図 15のように 7つのトンネル接
合をつなげる素子構造を考案し実験を行った．コトンネ
リングの発生確率は，簡単には各接合の抵抗の積の逆数
に比例するため，接合数を直列に増やすことでエラーを
抑制できる．この実験ではポンプした電子をキャパシタ
ンスに溜め，別の単電子トランジスタを電荷計として利
用することで電子を数え上げている．その結果，0.8 pA
で 15 ppbの不確かさの電流を生成できることが示され 
た 18）．1992年 NISTの Jensenと Martinisは，単電子ポン
プにおけるエラーの主な原因は「コトンネリング」以外
にも「熱擾乱」や「高い周波数での SET駆動」があるこ
とを指摘し，数値計算と解析的手法を用いて単電子ポン
プにおける不確かさの評価を行った 19）．「熱擾乱」とは，
有限温度の効果で電子が熱的なエネルギーを受けてトン
ネルしてしまう現象である．これは温度の上昇に対して
指数関数的に増加する．「高い周波数での SET駆動」に
よるエラーには，主に二つの要因が含まれる．一つ目は
ゲート電極に印加する電圧を変化させる速さが，電子が
接合をトンネルする速さよりも早くなると，ゲート電極
に印加する電圧の変化に合わせて電子を運ぶことができ
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図 14　 直列に結合した金属単電子トランジスタによる定電流生
成 17）

図 13　金属単電子トランジスタを用いた単電子ポンプ

*3  複数のトンネル接合が組み合わされた系を考える．単一のト
ンネル接合をトンネルすることはエネルギー的に損であって
も，複数の電子協力して複数のトンネル接合を同時に飛び越え
るとエネルギー的には得するという過程が生じる．これをコト
ンネリングという．
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Two-parameter pump
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Fig. 1. - Principle of reversible transfer of a single electron using a “pumps controlled by two gate 
voltages U1 and Uz. a) Circuit schematic: the nanoscale junctions constituting the pump are 
represented by double-box symbols. b)  Stable configuration diagram for V = 0 and C = C’ = C”. One 
turn around a triple point such as P or N ,  obtained by modulating the gate voltages by two phase- 
shifted signals, induces one electron to go around the circuit. 

The pump is operated by first applying d.c. voltages to the gates so as to place the circuit 
in the vicinity of a triple point, the bias voltage being much lower than the Coulomb gap 
voltage, which is given by el3C when C = C’ = Cf‘(’). Two periodic signals with the same 
frequency f but dephased by @ - x12 are then superimposed on the gate voltages. The circuit 
then follows a closed trajectory like the circle shown around point P in fig. lb). If the 
frequency f is low enough (f << (RC)-l), the system remains in the stable configuYation 
associated with its location in gate voltage space. This configuration changes along the 
trajectory when domain boundaries are crossed. Suppose that the initial island configuration 
is (0,O) and that the trajectory is followed counterclockwise. The circuit goes first from (0,O) 
to (1,O) by letting one electron tunnel through the leftmost junction. Then the island 
configuration changes to (0 , l )  when one electron goes through the central junction. Finally, 
the system returns to its initial island configuration (0,O) by letting one electron out through 
the rightmost junction. In a complete cycle one electron is transferred from the left end to 
the right end of the device. If the sense of rotation in gate voltage space is reversed, in 
practice by adding x to the phase shift @, the electron transfer will take place in the opposite 
direction. Note that the same original positive rotation around a type. triple point also 
produces a transfer in the opposite direction. In summary, these geometrical considerations 
show that for zero bias voltage V, two r.f. gate voltages induce a current I = ef around the 
circuit, provided that the d.c. gate voltages are set in the vicinity of a triple point. The 
direction of current is determined solely by the phase shift @ and the type of the triple point. 

As the voltage V is increased, electrons can still be pumped, even if V and I have opposite 
signs, provided that the trajectory followed in gate voltage space encloses the conduction 
regions. Numerical simulations have shown that regular electron transfers can persist up to 
one-fifth of the Coulomb gap voltage for an optimal r.f. amplitude. Co-tunnelling events 151, 
which provide the mechanism for transitions between nonneighbour configurations, are 
expected to slightly degrade the regularity of the pump. If the electrodes of the pump were 
in an ideal superconducting state with all electrons paired (no quasi-particle present), the 
same type of gate voltage modulation around a triple point of the pair configuration stability 

(l) The critical charge (see ref. [31) of each junction of the pump is found to be e/3 when c = C’ = C”. 
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current between - 0.8ef and - 1.05ef (lower pair of dashed lines) and the absence of dots 
means a current between - 0.8efand + 0.8ef. Apart from a slight global deformation and an 
overall translation, the pattern of hills and basins reproduces the honeycomb pattern of 
fig. lb) ,  a hill (basin) corresponding to a P-type (N-type) triple point. We attribute the slight 
deformation of this experimental honeycomb pattern to the stray capacitance C,, which is 
the only capacitance not included in the schematic of fig. 1. We have calculated the stability 
diagram for arbitrary C1, C2, C,, (C + C”)/C’ and (C - C”)/C’. The best fit to the data is 
shown in the bottom panel of fig. 2 and corresponds to C l = 7 4 k 2 a F ,  C z = 6 1 f 2 a F Y  
C, = 7 f la F, (C + C”)/C’ = 2.1 k 0.5 and (C - C”)/C’ = - 0.3 k 0.06. In the fitting, we have 
allowed an overall translation of the diagram corresponding to arbitrary offset charges [71 on 
the gate capacitors. Although these offset charges were found to be constant on the time 
scale of a few hours, abrupt shifts of the pattern on longer time intervals were often 
observed. The capacitances that we obtain from the fit agree with the values estimated from 
the geometry of the nanolithographic mask. Figure 3 shows the bias voltage dependence of 
the current at a aP type. triple point withf= 4 MHz and for two phase shifts separated by 
x;  a plateau is observed near the centre of the I-V curve. The sign of the height of the 
plateau reverses abruptly as the phase shift between the r.f. voltages is varied continuously 
from + x/2 to - x/2. The dashed line marks the current I= kef. We also show for 
comparison the I-V curve with no r.f. signals. The pronounced conductivity at V = 0 is due to 
the suppression of the Coulomb gap at the triple point. 

In order to quantitatively compare experiment and theory we show in fig. 3 the result of a 
finite-temperature numerical simulation which takes into account co-tunnelling through two 
junctions (full line). To fit the experimental results the capacitance values were allowed to 
vary inside the error bars of the measurement described above. The phase shift was the only 
true free parameter since it had only been determined by r.f. measurements at room 
temperature. The extent of the plateau on either side of the inflexion point is well explained 
by the double-tunnel events. At the precision level of the simulation, which was the 
tangent to the calculated curve at the inflexion point is the line I = e$ We attribute the 
deviation between experiment and theory at larger voltages mostly to higher-order CO- 

-ef . . . . . . . . . . . , . . . . . . . ~ 

Fig. 3. Fig. 4. 

Fig. 3. - Current-voltage characteristics with and without a f = 4 MHz gate voltage modulation around 
a uP-type. triple point. The U1 and U2 r.f. amplitudes were 1 mV and 0.6 mV, respectively. Current 
plateaus axe seen at  Z = k ef (marked with dashed lines), the sign depending on the phase shift @ 
between the two r.f. signals. Results of numerical simulations including co-tunnelling events are 
shown in full lines. 

Fig. 4. - Current at the inflexion point of the plateaus of fig. 3 vs. r.f. frequency. Full line: theoretical 
prediction I = ef. 
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Figure 1 The hybrid turnstile and its basic characteristics. a, An electron micrograph of the measured NSN turnstile. It is a single-electron transistor fabricated by
standard electron beam lithography. The leads are made of copper metal (N) and the island, the small grain in the centre, is superconducting aluminium (S). The
measurement configuration is added to this image: d.c. bias voltage V is applied across the transistor, and a voltage composing of d.c. and a.c. components acts on the gate
electrode. b, A magnified image of the island, indicating notation in c. c, A basic pumping cycle of the turnstile. The normalized gate voltage ng ⌘ CgVg/e, and the
instantaneous charge number n on the island are shown in the top panel against time over one period. The bottom frame shows the relevant tunnelling rates, in units of
�0 ⌘�/ (e2RT ) through junctions J1 (left one) and J2 (right one), respectively. Besides the dominant forward processes, the two most important backward rates are shown.
The tunnelling occurs when � is of order frequency f. Note that when it takes place for instance through junction J2 in the charge state n= 0, the island transits into the
n= �1 state, and the system stays in this state for a while because all of the tunnelling rates for the n= �1 state are vanishingly small right after this event. In one full
cycle, one electron is transferred through the turnstile from left to right. d, Current–voltage (IV ) characteristics measured at various values of d.c. gate voltage with no
a.c. voltage applied. The separation of the extreme IV curves is a signature of the charging energy EC = e2/ (2C6 ), where C6 is the total capacitance of the island. The arrow
marks the working point in the turnstile experiments unless otherwise stated. The top inset shows a magnification of the IV within the gap region demonstrating high subgap
resistance of above 10G�. The lower inset shows the energy diagram for one junction biased at a voltage VJ. Normal metal is to the left of the barrier in the centre, and the
superconductor to the right, with forbidden states within the energy interval 2� around the Fermi level.

dimensions or symmetry of the device, operational temperature,
gate oVset or its amplitude, or the exact form of the driving signal
in general. Some of these dependencies are demonstrated in Fig. 2d
based on our present measurements.

Figure 3a shows the IV curves measured for ng0 ' Ag ' 0.5
at various frequencies. The frequency dependence of the current
corresponding to the first plateau in measurements of the type
that were shown in Fig. 2b is plotted in Fig. 3b against ef in the
frequency regime up to 80 MHz. The predicted I = ef relation
is followed closely within smaller than 1% deviations in absolute
current throughout this range. We stress here that in the present
measurement, using just a room-temperature current preamplifier,
we cannot test the agreement between the prediction and the
absolute value of the measured, relatively small current to a higher
degree than this.

Next we discuss the choice of the operating conditions of a
hybrid turnstile and the potential accuracy of this device. Within
the classical model of sequential single-electron tunnelling, the
bias voltage V across the turnstile is a trade-oV: small bias leads
to tunnelling events in the backward direction and large V to
errors due to replacement of the tunnelled charge by another one
tunnelling in the forward direction through the other junction.
Unwanted events of the first type occur at the relative rate of
' exp(�eV/kBTN), where TN is the temperature of the normal-
metal electrodes. Errors of the second type occur at the relative rate
of ⇠exp(�(2�� eV )/kBTN). The prefactor of this expression is
of the order of unity in relevant cases of interest. Minimizing these
errors thus yields eV ' �, which is chosen as the operation point
in the experiments. At this bias point, the two errors are of the order
exp(��/kBTN). For �'200 µeV (aluminium) and TN < 100 mK,
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Figure 3 The frequency dependence of the NSN turnstile operation. a, IV curves measured at different frequencies ranging from 0 to 20MHz, at gate settings
corresponding to the centre of the first (N= 1) current plateau. b, The measured current at the centre of the N= 1 plateau at the fixed bias of V= 200µV. Linear
dependence up to 80MHz corresponding to I' 13 pA can be seen.

electrodes is then the co-tunnelling of one electron and one
Cooper pair, the rate �CPE of which can be estimated roughly as
�CPE/�0 ⇠ (1/N )( ¯h/e

2
RT)

2. These processes can be suppressed
eYciently by a proper choice of device parameters.

Subgap leakage, due, for instance, to non-zero density of
quasiparticle states within the gap, introduces a material- and
fabrication-specific source of errors into our system. This eVect is
demonstrated by the non-vanishing slope of the IV curve in the top
inset of Fig. 1d and by an equal slope in the bias dependence of the
bottom panel in Fig. 2d showing the current on the first plateau.
The parabolic gate oVset dependence around ng0 = 0.5 is likewise
caused by leakage. Our estimates show that as far as co-tunnelling
is concerned, such errors are smaller than those measured in the
present devices. For sequential tunnelling, subgap leakage causes
a substantial extra contribution to the current, of the order of
10�3 in the present device. With high-quality tunnel junctions,
possibly by an improved fabrication process, its influence can be
suppressed further. Furthermore, the separation of the current
plateaux, with only one bias polarity, is in principle not sensitive to
this eVect, unlike the absolute value of current on a single plateau.
Yet the subgap leakage is the main issue to be solved to realize a
metrologically compatible turnstile. We would also like to point
out that a series connection of a few SN junctions would present
an improved version of a multijunction electron pump6,7 in terms
of leakage and co-tunnelling errors, because this device can be
operated without external bias voltage.

The charge transport in these systems is associated with non-
trivial heat flux: on the basis of the same strategy as discussed here,
a single-electron refrigerator can be realized29. In this device the
superconductor is always heated, but under proper bias conditions
heat flows out from the normal metal. Therefore, in a single-island
realization, an SNS configuration is more favourable, as compared
with the NSN turnstile. With quite realistic parameters it is possible
to refrigerate the small, thermally well-isolated N island of an SNS
turnstile substantially, and hence the error rates can be further
suppressed. For example, with the parameters of the present sample
but in the SNS configuration, the island would cool from 100 mK
down to 70 mK on the first current plateau when pumping at
20 MHz frequency. The source and drain leads can be thermalized
close to the bath temperature by a proper choice of geometry and
materials. Another diVerence between the SNS and NSN structures
is the role of the parity eVect in the NSN turnstile, in which
the pumping cycle leads to unavoidable excitation of at least one

odd quasiparticle in the central S electrode, limiting the ultimate
turnstile accuracy. Such a limitation should be absent in the SNS
case. The parity eVect does not aVect the current quantization at
the accuracy of the present experiment, and was not observed in
our devices.

One of the key advantages of the single-island turnstile, as
compared with multi-island pumps, is that the influence of the
background charges30 can be compensated by adjusting just a single
d.c. gate voltage. Therefore, the level of the current can be increased
by a relatively straightforward parallelization of several turnstiles. If
an enhancement in current by, for example, an order of magnitude
is necessary, the d.c.-gate settings of each of the ten turnstiles can be
adjusted individually, whereafter their currents can be combined.
The whole device can then be operated with common-to-all d.c.
bias and a.c. gate drive.

METHODS

Several hybrid turnstiles with aluminium as the superconductor, copper as
the normal metal and aluminium oxide as the tunnel barrier in between were
fabricated by standard electron beam lithography. Both the aluminium and the
copper films were 50 nm thick. Figure 1a shows the NSN sample whose data
we present here. The charging energy of the aluminium island is EC/kB ' 2 K.
The sum of the tunnel resistances of the two junctions is 700 k�, that is,
350 k� per junction on average. The current–voltage (IV ) characteristics of
the transistor are shown in Fig. 1d at various values of the d.c. gate voltage
and with no a.c. gate voltage applied. The superconducting gap suppresses
the current strongly in the bias region |V | ⇠< 0.4 mV. Outside this region, the
typical gate modulation pattern shows up2. The charging energy of the device
was determined on the basis of the envelopes of these IV curves. The turnstile
experiments were carried out by voltage biasing the transistor at V ' �/e,
highlighted by an arrow in Fig. 1d.
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Fig. 1. - Principle of reversible transfer of a single electron using a “pumps controlled by two gate 
voltages U1 and Uz. a) Circuit schematic: the nanoscale junctions constituting the pump are 
represented by double-box symbols. b)  Stable configuration diagram for V = 0 and C = C’ = C”. One 
turn around a triple point such as P or N ,  obtained by modulating the gate voltages by two phase- 
shifted signals, induces one electron to go around the circuit. 

The pump is operated by first applying d.c. voltages to the gates so as to place the circuit 
in the vicinity of a triple point, the bias voltage being much lower than the Coulomb gap 
voltage, which is given by el3C when C = C’ = Cf‘(’). Two periodic signals with the same 
frequency f but dephased by @ - x12 are then superimposed on the gate voltages. The circuit 
then follows a closed trajectory like the circle shown around point P in fig. lb). If the 
frequency f is low enough (f << (RC)-l), the system remains in the stable configuYation 
associated with its location in gate voltage space. This configuration changes along the 
trajectory when domain boundaries are crossed. Suppose that the initial island configuration 
is (0,O) and that the trajectory is followed counterclockwise. The circuit goes first from (0,O) 
to (1,O) by letting one electron tunnel through the leftmost junction. Then the island 
configuration changes to (0 , l )  when one electron goes through the central junction. Finally, 
the system returns to its initial island configuration (0,O) by letting one electron out through 
the rightmost junction. In a complete cycle one electron is transferred from the left end to 
the right end of the device. If the sense of rotation in gate voltage space is reversed, in 
practice by adding x to the phase shift @, the electron transfer will take place in the opposite 
direction. Note that the same original positive rotation around a type. triple point also 
produces a transfer in the opposite direction. In summary, these geometrical considerations 
show that for zero bias voltage V, two r.f. gate voltages induce a current I = ef around the 
circuit, provided that the d.c. gate voltages are set in the vicinity of a triple point. The 
direction of current is determined solely by the phase shift @ and the type of the triple point. 

As the voltage V is increased, electrons can still be pumped, even if V and I have opposite 
signs, provided that the trajectory followed in gate voltage space encloses the conduction 
regions. Numerical simulations have shown that regular electron transfers can persist up to 
one-fifth of the Coulomb gap voltage for an optimal r.f. amplitude. Co-tunnelling events 151, 
which provide the mechanism for transitions between nonneighbour configurations, are 
expected to slightly degrade the regularity of the pump. If the electrodes of the pump were 
in an ideal superconducting state with all electrons paired (no quasi-particle present), the 
same type of gate voltage modulation around a triple point of the pair configuration stability 

(l) The critical charge (see ref. [31) of each junction of the pump is found to be e/3 when c = C’ = C”. 
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current between - 0.8ef and - 1.05ef (lower pair of dashed lines) and the absence of dots 
means a current between - 0.8efand + 0.8ef. Apart from a slight global deformation and an 
overall translation, the pattern of hills and basins reproduces the honeycomb pattern of 
fig. lb) ,  a hill (basin) corresponding to a P-type (N-type) triple point. We attribute the slight 
deformation of this experimental honeycomb pattern to the stray capacitance C,, which is 
the only capacitance not included in the schematic of fig. 1. We have calculated the stability 
diagram for arbitrary C1, C2, C,, (C + C”)/C’ and (C - C”)/C’. The best fit to the data is 
shown in the bottom panel of fig. 2 and corresponds to C l = 7 4 k 2 a F ,  C z = 6 1 f 2 a F Y  
C, = 7 f la F, (C + C”)/C’ = 2.1 k 0.5 and (C - C”)/C’ = - 0.3 k 0.06. In the fitting, we have 
allowed an overall translation of the diagram corresponding to arbitrary offset charges [71 on 
the gate capacitors. Although these offset charges were found to be constant on the time 
scale of a few hours, abrupt shifts of the pattern on longer time intervals were often 
observed. The capacitances that we obtain from the fit agree with the values estimated from 
the geometry of the nanolithographic mask. Figure 3 shows the bias voltage dependence of 
the current at a aP type. triple point withf= 4 MHz and for two phase shifts separated by 
x;  a plateau is observed near the centre of the I-V curve. The sign of the height of the 
plateau reverses abruptly as the phase shift between the r.f. voltages is varied continuously 
from + x/2 to - x/2. The dashed line marks the current I= kef. We also show for 
comparison the I-V curve with no r.f. signals. The pronounced conductivity at V = 0 is due to 
the suppression of the Coulomb gap at the triple point. 

In order to quantitatively compare experiment and theory we show in fig. 3 the result of a 
finite-temperature numerical simulation which takes into account co-tunnelling through two 
junctions (full line). To fit the experimental results the capacitance values were allowed to 
vary inside the error bars of the measurement described above. The phase shift was the only 
true free parameter since it had only been determined by r.f. measurements at room 
temperature. The extent of the plateau on either side of the inflexion point is well explained 
by the double-tunnel events. At the precision level of the simulation, which was the 
tangent to the calculated curve at the inflexion point is the line I = e$ We attribute the 
deviation between experiment and theory at larger voltages mostly to higher-order CO- 

-ef . . . . . . . . . . . , . . . . . . . ~ 

Fig. 3. Fig. 4. 

Fig. 3. - Current-voltage characteristics with and without a f = 4 MHz gate voltage modulation around 
a uP-type. triple point. The U1 and U2 r.f. amplitudes were 1 mV and 0.6 mV, respectively. Current 
plateaus axe seen at  Z = k ef (marked with dashed lines), the sign depending on the phase shift @ 
between the two r.f. signals. Results of numerical simulations including co-tunnelling events are 
shown in full lines. 

Fig. 4. - Current at the inflexion point of the plateaus of fig. 3 vs. r.f. frequency. Full line: theoretical 
prediction I = ef. 
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Figure 1 The hybrid turnstile and its basic characteristics. a, An electron micrograph of the measured NSN turnstile. It is a single-electron transistor fabricated by
standard electron beam lithography. The leads are made of copper metal (N) and the island, the small grain in the centre, is superconducting aluminium (S). The
measurement configuration is added to this image: d.c. bias voltage V is applied across the transistor, and a voltage composing of d.c. and a.c. components acts on the gate
electrode. b, A magnified image of the island, indicating notation in c. c, A basic pumping cycle of the turnstile. The normalized gate voltage ng ⌘ CgVg/e, and the
instantaneous charge number n on the island are shown in the top panel against time over one period. The bottom frame shows the relevant tunnelling rates, in units of
�0 ⌘�/ (e2RT ) through junctions J1 (left one) and J2 (right one), respectively. Besides the dominant forward processes, the two most important backward rates are shown.
The tunnelling occurs when � is of order frequency f. Note that when it takes place for instance through junction J2 in the charge state n= 0, the island transits into the
n= �1 state, and the system stays in this state for a while because all of the tunnelling rates for the n= �1 state are vanishingly small right after this event. In one full
cycle, one electron is transferred through the turnstile from left to right. d, Current–voltage (IV ) characteristics measured at various values of d.c. gate voltage with no
a.c. voltage applied. The separation of the extreme IV curves is a signature of the charging energy EC = e2/ (2C6 ), where C6 is the total capacitance of the island. The arrow
marks the working point in the turnstile experiments unless otherwise stated. The top inset shows a magnification of the IV within the gap region demonstrating high subgap
resistance of above 10G�. The lower inset shows the energy diagram for one junction biased at a voltage VJ. Normal metal is to the left of the barrier in the centre, and the
superconductor to the right, with forbidden states within the energy interval 2� around the Fermi level.

dimensions or symmetry of the device, operational temperature,
gate oVset or its amplitude, or the exact form of the driving signal
in general. Some of these dependencies are demonstrated in Fig. 2d
based on our present measurements.

Figure 3a shows the IV curves measured for ng0 ' Ag ' 0.5
at various frequencies. The frequency dependence of the current
corresponding to the first plateau in measurements of the type
that were shown in Fig. 2b is plotted in Fig. 3b against ef in the
frequency regime up to 80 MHz. The predicted I = ef relation
is followed closely within smaller than 1% deviations in absolute
current throughout this range. We stress here that in the present
measurement, using just a room-temperature current preamplifier,
we cannot test the agreement between the prediction and the
absolute value of the measured, relatively small current to a higher
degree than this.

Next we discuss the choice of the operating conditions of a
hybrid turnstile and the potential accuracy of this device. Within
the classical model of sequential single-electron tunnelling, the
bias voltage V across the turnstile is a trade-oV: small bias leads
to tunnelling events in the backward direction and large V to
errors due to replacement of the tunnelled charge by another one
tunnelling in the forward direction through the other junction.
Unwanted events of the first type occur at the relative rate of
' exp(�eV/kBTN), where TN is the temperature of the normal-
metal electrodes. Errors of the second type occur at the relative rate
of ⇠exp(�(2�� eV )/kBTN). The prefactor of this expression is
of the order of unity in relevant cases of interest. Minimizing these
errors thus yields eV ' �, which is chosen as the operation point
in the experiments. At this bias point, the two errors are of the order
exp(��/kBTN). For �'200 µeV (aluminium) and TN < 100 mK,
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Figure 3 The frequency dependence of the NSN turnstile operation. a, IV curves measured at different frequencies ranging from 0 to 20MHz, at gate settings
corresponding to the centre of the first (N= 1) current plateau. b, The measured current at the centre of the N= 1 plateau at the fixed bias of V= 200µV. Linear
dependence up to 80MHz corresponding to I' 13 pA can be seen.

electrodes is then the co-tunnelling of one electron and one
Cooper pair, the rate �CPE of which can be estimated roughly as
�CPE/�0 ⇠ (1/N )( ¯h/e

2
RT)

2. These processes can be suppressed
eYciently by a proper choice of device parameters.

Subgap leakage, due, for instance, to non-zero density of
quasiparticle states within the gap, introduces a material- and
fabrication-specific source of errors into our system. This eVect is
demonstrated by the non-vanishing slope of the IV curve in the top
inset of Fig. 1d and by an equal slope in the bias dependence of the
bottom panel in Fig. 2d showing the current on the first plateau.
The parabolic gate oVset dependence around ng0 = 0.5 is likewise
caused by leakage. Our estimates show that as far as co-tunnelling
is concerned, such errors are smaller than those measured in the
present devices. For sequential tunnelling, subgap leakage causes
a substantial extra contribution to the current, of the order of
10�3 in the present device. With high-quality tunnel junctions,
possibly by an improved fabrication process, its influence can be
suppressed further. Furthermore, the separation of the current
plateaux, with only one bias polarity, is in principle not sensitive to
this eVect, unlike the absolute value of current on a single plateau.
Yet the subgap leakage is the main issue to be solved to realize a
metrologically compatible turnstile. We would also like to point
out that a series connection of a few SN junctions would present
an improved version of a multijunction electron pump6,7 in terms
of leakage and co-tunnelling errors, because this device can be
operated without external bias voltage.

The charge transport in these systems is associated with non-
trivial heat flux: on the basis of the same strategy as discussed here,
a single-electron refrigerator can be realized29. In this device the
superconductor is always heated, but under proper bias conditions
heat flows out from the normal metal. Therefore, in a single-island
realization, an SNS configuration is more favourable, as compared
with the NSN turnstile. With quite realistic parameters it is possible
to refrigerate the small, thermally well-isolated N island of an SNS
turnstile substantially, and hence the error rates can be further
suppressed. For example, with the parameters of the present sample
but in the SNS configuration, the island would cool from 100 mK
down to 70 mK on the first current plateau when pumping at
20 MHz frequency. The source and drain leads can be thermalized
close to the bath temperature by a proper choice of geometry and
materials. Another diVerence between the SNS and NSN structures
is the role of the parity eVect in the NSN turnstile, in which
the pumping cycle leads to unavoidable excitation of at least one

odd quasiparticle in the central S electrode, limiting the ultimate
turnstile accuracy. Such a limitation should be absent in the SNS
case. The parity eVect does not aVect the current quantization at
the accuracy of the present experiment, and was not observed in
our devices.

One of the key advantages of the single-island turnstile, as
compared with multi-island pumps, is that the influence of the
background charges30 can be compensated by adjusting just a single
d.c. gate voltage. Therefore, the level of the current can be increased
by a relatively straightforward parallelization of several turnstiles. If
an enhancement in current by, for example, an order of magnitude
is necessary, the d.c.-gate settings of each of the ten turnstiles can be
adjusted individually, whereafter their currents can be combined.
The whole device can then be operated with common-to-all d.c.
bias and a.c. gate drive.

METHODS

Several hybrid turnstiles with aluminium as the superconductor, copper as
the normal metal and aluminium oxide as the tunnel barrier in between were
fabricated by standard electron beam lithography. Both the aluminium and the
copper films were 50 nm thick. Figure 1a shows the NSN sample whose data
we present here. The charging energy of the aluminium island is EC/kB ' 2 K.
The sum of the tunnel resistances of the two junctions is 700 k�, that is,
350 k� per junction on average. The current–voltage (IV ) characteristics of
the transistor are shown in Fig. 1d at various values of the d.c. gate voltage
and with no a.c. gate voltage applied. The superconducting gap suppresses
the current strongly in the bias region |V | ⇠< 0.4 mV. Outside this region, the
typical gate modulation pattern shows up2. The charging energy of the device
was determined on the basis of the envelopes of these IV curves. The turnstile
experiments were carried out by voltage biasing the transistor at V ' �/e,
highlighted by an arrow in Fig. 1d.

Received 7 September 2007; accepted 6 November 2007; published 9 December 2007.

References
1. Averin, D. V. & Likharev, K. K. in Mesoscopic Phenomena in Solids (eds Altshuler, B. L., Lee, P. A. &

Webb, R. A.) 173–271 (North-Holland, Amsterdam, 1991).
2. Grabert, H. & Devoret, M. H. (eds) Single Charge Tunneling—Coulomb Blockade Phenomena in

Nanostructures (Plenum, New York, 1992).
3. Devoret, M. H., Esteve, D. & Urbina, C. Single-electron transfer in metallic nanostructures. Nature

360, 547–553 (1992).
4. Piquemal, F. et al. Fundamental electrical standards and the quantum metrological triangle. C.R.

Physique 5, 857–879 (2004).
5. Geerligs, L. J. et al. Frequency-locked turnstile device for single electrons. Phys. Rev. Lett. 64,

2691–2694 (1990).
6. Pothier, H., Lafarge, P., Urbina, C., Esteve, D. & Devoret, M. H. Single-electron pump based on

charging eVects. Europhys. Lett. 17, 249–254 (1992).

nature physics VOL 4 FEBRUARY 2008 www.nature.com/naturephysics 123

H.#Pothier#et#al.,#EPL#17,#(3)#249#(1992)�

R.#I.#Shekhter#et#al.,#PRL#97,$156801#(2006)�
ö�

ε1

ε2

0

ε1

φ

−1

1

t23 = t31 = 0

Gr =

(
ε− ε1 + i

2ΓL t
t ε− ε2 + i

2ΓR

)−1

=
1

(ε− ε1 + i
2ΓL)(ε− ε2 + i

2ΓR)− t2

(
ε− ε2 + i

2ΓR −t
−t ε− ε1 + i

2ΓL

)

t→ −∞ ∝ − 1

t2
(−t)

(
− ε−ε2+

i
2ΓR

t 1

1 − ε−ε1+
i
2ΓL

t

)

=
1

t

(
− ε−ε2+

i
2ΓR

t 1

1 − ε−ε1+
i
2ΓL

t

)

I = ef

I = 2ef

4

ε1

ε2

0

ε1

φ

−1

1

t23 = t31 = 0

Gr =

(
ε− ε1 + i

2ΓL t
t ε− ε2 + i

2ΓR

)−1

=
1

(ε− ε1 + i
2ΓL)(ε− ε2 + i

2ΓR)− t2

(
ε− ε2 + i

2ΓR −t
−t ε− ε1 + i

2ΓL

)

t→ −∞ ∝ − 1

t2
(−t)

(
− ε−ε2+

i
2ΓR

t 1

1 − ε−ε1+
i
2ΓL

t

)

=
1

t

(
− ε−ε2+

i
2ΓR

t 1

1 − ε−ε1+
i
2ΓL

t

)

I = ef

I = 2ef

4

Sca$ering*matrix*approach*to*quantum*adiaba5c*pumping�

Series&of&two&dot�
Hamiltonian,*

Background*and*mo5va5ons�

1>parameter*pumping*

 

∆ 
Γ! 
Γ! 
T! 
T! 
!! 
!! 

∆ 
Γ! 
Γ! 
T! 
T! 
!! 
!! 

∆ 
Γ! 
Γ! 
T! 
T! 
!! 
!! 

∆ 
Γ! 
Γ! 
T! 
T! 
!! 
!! 

∆ 
Γ! 
Γ! 
T! 
T! 
!! 
!! 

∆ 
Γ! 
Γ! 
T! 
T! 
!! 
!! 

∆ 
Γ! 
Γ! 
T! 
T! 
!! 
!! 

 

∆ 
Γ! 
Γ! 
!! 
!! 
!! 
!! 
ℏ! 

∆ 
Γ! 
Γ! 
!! 
!! 
!! 
!! 
ℏ! 
!"#. 1 

Fig. 1 
!(!) 

One*of*the*candidates*for*next*genera5on*

quantum*current*standard*

Single>Electron*Transistor*�

In*quantum*electrical*standards,*

only*current*standard*is*not*realized.**�

Present,*current*standard*is*defined*by*Ohm’s*low,*

using*voltage*and*resistance*standards.*(right*figure)�

But,*the*error*is*large*!!*

So,*we*want*to*decide*current*standard*independently,**

using*corresponding*appropriate*physical*phenomena.*�

Note*“Frequency*is*one*of*the*most*

accurate*measurable*values.”�

However,*there*are*some*problems*

1.   Co/tunneling&
Tunneling*caused*by*the*compe55on*of*

electrons*(secondary*order*tunneling)*

2.   Hot/electron&
If*electrons*in*the*leads*are*in*the*large*

electric*field,*they*obtain*large*kine5c*energy*

by*impact*ioniza5on,*etc,…*

Quantum&adiaba;c&pumping�

Scattering approach to parametric pumping
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A dc current can be pumped through a quantum dot by periodically varying two independent parameters X1
and X2 , like a gate voltage or magnetic field. We present a formula that relates the pumped current to the
parametric derivatives of the scattering matrix S(X1 ,X2) of the system. As an application we compute the
statistical distribution of the pumped current in the case of a chaotic quantum dot. @S0163-1829~98!52240-0#

An electron pump is a device that generates a d.c. current
between two electrodes that are kept at the same bias. In
recent years, electron pumps consisting of small semicon-
ductor quantum dots have received considerable experimen-
tal and theoretical attention.1–11 A quantum dot is a small
metal or semiconductor island, confined by gates, and con-
nected to the outside world via point contacts. Several dif-
ferent mechanisms have been proposed to pump charge
through such systems, ranging from a low-frequency modu-
lation of gate voltages in combination with the Coulomb
blockade1,2,11 to photon-assisted transport at or near a reso-
nance frequency of the dot.5–8 Their applicability depends on
the characteristic size of the system and the operation fre-
quency.
Most experimental realizations of electron pumps in semi-

conductor quantum dots made use of the principle of Cou-
lomb blockade. If the dot is coupled to the outside world via
tunneling point contacts, the charge on the dot is quantized,
and ~apart from degeneracy points! transport is inhibited as a
result of the high energy cost of adding an extra electron to
the dot. Pothier et al. constructed an electron pump that op-
erates at arbitrarily low frequency and with a reversible
pumping direction.2 The pump consists of two weakly
coupled quantum dots in the Coulomb blockade regime and
operates via a mechanism that closely resembles a peristaltic
pump: Charge is pumped through the double dot array from
the left to the right and electron-by-electron as the voltage
U1}sin(vt) of the left dot reaches its minima and maxima
before the voltage U2}sin(vt2f) of the right one.2 The
pumping direction can be reversed by reversing the phase
difference f of the two gate voltages.
A similar mechanism was proposed by Spivak, Zhou, and

Beal Monod for an electron pump consisting of single quan-
tum dot only.4 In this case a d.c. current is generated by
adiabatic variation of two different gate voltages that deter-
mine the shape of the nanostructure, or any other pair of
parameters X1 and X2 , like magnetic field or Fermi energy,
that modify the ~quantum mechanical! properties of the sys-
tem, see Fig. 1~a!. The magnitude of the current is propor-
tional to the frequency v with which X1 and X2 are varied
and ~for small variations! to the product of the amplitudes
dX1 and dX2 . The direction of the current depends on mi-
croscopic ~quantum! properties of the system, and need not
be known a priori from its macroscopic properties. As in the
case of the double-dot Coulomb blockade electron pump of
Ref. 2, the direction of the current in the single-dot paramet-

ric pump of Spivak et al.4 can be reversed by reversing the
phases of the parameters X1 and X2 . An important difference
between the two mechanisms is that a parametric electron
pump like the one in Ref. 4 does not require that the quantum
dot is in the regime of Coulomb blockade; it operates if the
dot is open, i.e., well coupled to the leads by means of bal-
listic point contacts. Experimentally, an electron pump in an
open quantum dot has been realized only very recently.12 A
measurement of the pumped current provides a promising
tool to study properties of open mesoscopic systems at zero
bias or at zero current.
In this paper we consider a parametric electron pump

through an open system in a scattering approach. Our main
result is a formula for the pumped current in terms of the
scattering matrix S(X1 ,X2). Such a formula is the analogue
of the Landauer formula, which relates the conductance G
5dI/dV of a mesoscopic system with two contacts to a sum
over the ~squares of! matrix elements Sab ,

dI5GdV5
2e2

h dV(
aP1

(
bP2

uSabu2. ~1!

The indices a and b are summed over all channels in the left
and right contacts, respectively, and dV is the applied volt-
age. For the case of the parametric electron pump, where two
parameters X1 and X2 are varied periodically, dX1(t)
5dX1sin(vt) and dX2(t)5dX2sin(vt2f), we find that the
d.c. component of the current I depends on the derivatives
]Sab /]X ,

FIG. 1. ~a! A quantum dot with two parameters X1 and X2 that
describe a deformation of the shape of the quantum dot. As X1 and
X2 are varied periodically, a dc current I is generated. ~b! In one
period, the parameters X1(t) and X2(t) follow a closed path in
parameter space. The pumped current depends on the enclosed area
A in (X1 ,X2) parameter space.
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the mesa, called ‘air bridges’. A phase difference J between the two
paths is introduced via the Aharonov–Bohm (AB) effect10,11, J¼
2pBA=f0; with B the magnetic field, A the area enclosed by the two
paths (,45 mm2), and f0 ¼ 4:14£ 10215 Tm2 the flux quantum. A
few modulation gates, MG, are added above the outer path in order
to tune the phase J by changing the area A.

We briefly review the operation of the interferometer. At filling
factor 1 in the QHE regime, a single chiral edge state carries the
current. The interfering current, in turn, is proportional to the
transmission probability from source to drain, TSD. Neglecting
dephasing processes and having the transmission (reflection) ampli-
tude t i (r i) of the ith QPC fulfilling jrij2 þ jtij2 ¼ 1; then7 ID1 /
TSD1 ¼ j t1t2 þ r1r2 eiJ j 2 ¼ j t1t2 j 2 þ jr1r2j2 þ 2jt1t2r1r2jcosJ and
ID2 /TSD2 ¼ jt1r2 þ r1t2 eiJ j2 ¼ jt1r2j2 þ jr1t2j2 2 2jt1t2r1r2jcosJ;
where ID1 and ID2 are the currents in detectors D1 and D2,
respectively. Note that ideally the two currents oscillate out of
phase as function of J while TSD1 þTSD2 ¼ 1: The visibility of the
oscillation is defined as: n¼ ðImax 2 IminÞ=ðImax þ IminÞ, where Imax

and Imin are the maximum and minimum currents in one of the
detectors. For example, when QPC2 is tuned so that T2 ¼ 0.5, the
visibility is n¼ 2

p
T1ð12T1Þ, where jtij2 ¼ Ti.

Measurements were done at filling factor 1 (magnetic field
,5.5 T) and also at filling factor 2 with similar results. With a
refrigerator temperature of ,6mK, the electron temperature was
determined by measuring the equilibrium noise12 to be ,20mK.
High-sensitivity measurements of the interference pattern were
conducted at ,1.4MHz with a spectrum analyser. Current at
D1 (or D2) was filtered and amplified in situ by an LC
(inductance þ capacitance) circuit and a low-noise, purpose-built
pre-amplifier, both placed near the sample and cooled to 1.5 K. A
standard lock-in technique, with a low-frequency signal (7Hz,
10 mV r.m.s.), gave similar results, but the measurement lasted
much longer and was affected by the instability of the sample. At
5.5 T, each flux quantum occupies an area of some 10215m2 (some
60,000 flux quanta thread the area A), so a minute fluctuation in the
superconducting magnet’s current or in the area would smear the
interference signal. Two measurement methods were used. The first
relied on the unavoidable decay of the short-circuited current that
circulates in the superconducting magnet, which is in the so-called

Figure 1 The configuration and operation of an optical Mach–Zehnder interferometer,
and its realization with electrons. a, An optical Mach–Zehnder interferometer. D1 and D2
are detectors, BS1 and BS2 are beam splitters, and M1 and M2 are mirrors. With 0 (p)

phase difference between the two paths, D1 measures maximum (zero) signal and D2

zero (maximum) signal. The sum of the signals in both detectors is constant and equal

to the input signal. b, The electronic Mach–Zehnder interferometer and the measurement
system. Edge states are formed in a high, perpendicular, magnetic field. The incoming

edge state from S is split by QPC1 (quantum point contact 1) to two paths; one moves

along the inner edge, and the other along the outer edge, of the device. The two

paths meet again at QPC2, interfere, and result in two complementary currents in D1 and

in D2. By changing the contours of the outer edge state and thus the enclosed area

between the two paths, the modulation gates (MGs) tune the phase difference between

the two paths via the Aharonov–Bohm effect. A high signal-to-noise-ratio measurement of

the current in D1 is performed at 1.4MHz with a cold LC resonant circuit as a band-pass

filter followed by a cold, low-noise, preamplifier. c, Scanning electron micrograph of the
device. A centrally located small ohmic contact (3 £ 3mm2), serving as D2, is connected

to the outside circuit by a long, metallic, air bridge. Two smaller metallic air bridges

bring the voltage to the inner gates of QPC1 and QPC2—both serve as beam splitters for

edge states. The five metallic gates (at the lower part of the figure) are MGs.

Figure 2 Interference pattern of electrons in a Mach–Zehnder interferometer and the
dependence on transmission. a, Two-dimensional colour plot of the current collected by
D1 as function of magnetic field and gate voltage at an electron temperature of,20mK.

The magnet was set in its persistent current mode (B < 5.5 T at filling factor 1 in the bulk)

with a decay rate of some 0.12mT h21, hence time appears on the abscissa. The two

QPCs were both set to transmission T 1 ¼ T 2 ¼ 0:5: Red (blue) stands for high (low)
current. b, The current (a.u., arbitrary units) collected by D1 plotted as function of the

voltage on a modulation gate, V MG (red plot), and as function of the magnetic field, B (blue

plot)—along the cuts shown in a. The visibility of the interference is 0.62. c, The visibility
of the interference pattern (data points) as a function of the transmission probability T1 of

QPC1 when QPC2 is set to T2 ¼ 0.5. Red dashed line is a fit to the experimental data with

visibility 2h
p
T 1ð12 T 1Þ: The normalization coefficient h ¼ 0.6 accounts for possible

decoherence and/or phase averaging.

letters to nature

NATURE | VOL 422 | 27 MARCH 2003 | www.nature.com/nature416 © 2003        Nature  Publishing Group

the potential arrives at the QPC !at a distance !Q" with a
delay time of !Q /v after the application of the voltage pulse
to the source. Another voltage pulse, VPG!t− td", is applied to
the lower gate of the QPC in the tunneling regime to probe
the local potential. Here, td is the time interval between the
two voltage pulses, which can be experimentally controlled
with a mechanical delay line and a pulse pattern generator as
shown in Fig. 2!b". The pulse applied to the QPC changes
the barrier potential of the QPC, U!t", and hence the conduc-
tance, GQ!t", by "GQ!t"#"U!t"#VPG!t" for sufficiently
small amplitude of the pulse. In the linear transport regime,
the current through the QPC, i!t", is proportional to the po-
tential difference "$!t"=$!!Q, t"−$D across the QPC,
where $D is the !time independent" electrochemical potential
of the drain. Instead of measuring i!t" directly, we measured
the average current IDS!td"= #i!t"$ as a function of td. Then,
the average current has a form of correlation function,

IDS!td" =
1
e

#"GQ!t − td""$!t"$ . !1"

One can evaluate the time-dependent local potential "$!t" if
"GQ!t" abruptly changes in a delta-function "GQ!t"#%!t" or

in any known functions. The actual potential waveforms in
the device can be estimated by analyzing IDS!td" for various
pulse widths.19

The IDS!td" curves shown in Fig. 2!c" were obtained by
varying the pulse width &PS of VPS!t" from 0.4 to 3.6 ns while
keeping the pulse width &PG of VPG!t" constant at 0.08 ns
!minimum available pulse width in our setup". The peak
width in the observed IDS!td" curve increases with pulse
width &PS. Since "GQ!t" effectively changes in a delta func-
tion, the observed IDS!td" curves reflect the time evolution of
the EMP pulse in the device. Here, the time constant of 0.6
ns, which is obtained by fitting with an exponential function
%Fig. 2!c", solid line& is larger than that measured at zero
magnetic field !0.28 ns".19 The increased time constant may
be related to the higher Ohmic resistance in the magnetic
field or to the nonlinear dispersion of EMPs, which will be
investigated in the future. In this way, we can evaluate the
time-dependent potential or the charge distribution of the
EMP pulse. In this paper, we focus on the velocity of the
EMPs. The following data were measured at &PS=0.4 ns and
&PG=0.08 ns.

III. EXPERIMENTAL RESULTS

Edge channels can be defined either by chemically etch-
ing the heterostructure or electrostatically depleting the
2DEG under a metallic gate. Edge channels defined by a
metallic gate are useful for electrical switching of the path
length. Here, we use four additional gates !delay gates; typi-
cally '100 $m in length" between the source contact and

FIG. 1. !Color online" !a" Schematic device structure and ex-
perimental setup for time-of-flight measurement. A short voltage
pulse VPS!t" of 1.0 mV in amplitude is applied to the source to
inject a pulse of EMPs. Another voltage pulse VPG!t" of 20 mV in
amplitude is applied to the QPC to probe the local potential. The
time interval between the two voltage pulses is changed by the
mechanical delay line. Four delay gates between the source and the
QPC can be used to add extra path length. !b" A scanning electron
micrograph of the device. The white lines are metallic gates for the
delay gates. The QPC is shown in an enlarged view inside the white
circle. Disabled gates are biased at '+0.2 V to minimize back-
scattering. The complicated gate patterns are designed for another
purpose, but their different perimeters are useful for this work.

FIG. 2. !Color online" !a" Schematic potential diagram of the
EMP pulse and the QPC. If the timing of the voltage pulse applied
to the QPC coincides with the arrival of the EMP pulse at the QPC,
the EMP pulse passes through the QPC !solid line"; otherwise, the
EMP pulse is reflected at the QPC and returns to the source contact
!dashed line". !b" Schematic pulse patterns of the two voltage
pulses. !c" IDS!td" curves observed at B=6.5 T for various pulse
widths. The solid line is an exponential fit.
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pressing these proteins in high concentration often results in
aggregation. Of the tens of thousands of known structures
fewer than 250 are transmembrane proteins.5

Of the 41 000 known protein structures, more than 6000
have been determined by nuclear magnetic resonance. NMR
of biological molecules is a rich field; dramatic advances
have included Fourier-transform !FT" spectroscopy, nuclear
Overhauser effect distance measurements, and innumerable
multidimensional experiments.6 Still, elucidating a protein
structure by liquids NMR places restrictions on the structures
that can be studied. As with crystallography, NMR requires
expressible proteins that are soluble in millimolar concentra-
tions. Additionally, proteins bigger than about 50 kDa be-
come difficult to study.

Solid-state NMR !ssNMR" can in principle provide de-
tailed structural information, especially since long-range di-
polar spin-spin couplings are retained, but obtaining spectra
at high resolution remains challenging.7 Recent advances
have allowed measurements on fully protonated proteins at
high resolution8 and chemical shift tensors for bond angle
assignments.9 Interestingly, ssNMR has provided the only
detailed structures of amorphous amyloid fibrils important in
the study of Alzheimer’s disease.10 Despite these advances,
and the many important structures which have been deter-
mined, ssNMR remains limited to the study of macromolecu-
lar biomolecules that form solids and by the intrinsic low
sensitivity of inductive detection.

B. Improving NMR sensitivity

The distinct advantage of MRFM is the dramatic im-
provement in sensitivity over conventional inductive detec-
tion. While inductive detection, thus far, requires #1013

nuclei/$Hz to detect an observable signal,11,12 MRFM pre-
sents the real possibility of single nucleus sensitivity. In or-
der to put MRFM into perspective, we briefly consider com-
peting techniques for detecting magnetic resonance from
single spins. Early high sensitivity techniques, including
beam measurements, optical detection, and detection by per-
turbed angular correlations of radioactive nuclei emissions,
have been reviewed by Abragam.13

Recent experiments have demonstrated the detection of
magnetic resonance using a scanning tunneling microscope
!STM". Manassen et al. have shown that electron spin reso-
nance !ESR" can be detected as a radiofrequency oscillation
in the electron tunneling current of a STM.14–17 While the
mechanism of the effect is not well understood, ESR-STM is
close to demonstrating single-spin detection. However, the
method requires the unpaired electron spin to be within an
atomic layer of the surface, and requires a sample or sample
substrate that is nearly atomically flat and either conducting
or semiconducting. It is hard to see how ESR-STM could be
applied to determine the angstrom-scale structure of biologi-
cal samples.

In strongly luminescent materials, magnetic resonance
has been detected optically with high sensitivity.13,18–26 Al-
though single-spin NMR and ESR optical magnetic reso-
nance has been demonstrated in isolated molecules in doped
molecular crystals at 1.2 K,20,21,26 and at single defect sites in

diamond up to room temperature,25,27–33 these techniques
lack generality and are not applicable to arbitrary organic
samples. While very sensitive, optical detection lacks the
spatial resolution needed for single-spin imaging where spins
are a few angstroms apart as is the case in biomolecules.

Superconducting quantum interference devices
!SQUIDs" are capable of detecting extremely small magnetic
fluxes and have been used to detect magnetic resonance. The
highest sensitivity achieved with a SQUID, to our knowl-
edge, is 40 electron spins/ $Hz with a 3!3 "m2 device.34

The authors report that if they were operating this device at
the theoretical thermal limit35 at 8 K, their sensitivity would
be 2.5 electron spins/ $Hz. While SQUID detection exhibits
exquisite sensitivity and is generally applicable to nuclear
and electron magnetic moments, like optical detection it
lacks sufficient spatial resolution to elucidate detailed atomic
connectivity.

These single-spin detection techniques cannot generally
be applied to detect NMR in large biomolecules in the con-
densed phase. In contrast, MRFM puts few restrictions on
the properties of the sample that can be studied and no re-
strictions on the type of magnetic moment that can be inter-
rogated. Magnetic resonance force microscopy remains the
most feasible route yet proposed for detecting single-spin
NMR in large biomolecules at high sensitivity and high spa-
tial resolution.

III. RECENT ADVANCES IN MECHANICALLY
DETECTED MAGNETIC RESONANCE

A schematic of early MRFM experiments appears in Fig.
1. A magnetic-tipped cantilever is brought close to a sample
surface containing spins to be studied. The spins can be un-
paired electron spins or nuclear spins, e.g., hydrogen nuclei.
A polarizing magnetic field B0 may be applied to align the
sample spins. A radio frequency !rf" magnetic field produced
by a nearby coil is applied to the sample. The rf is resonant
with spins in a constant-field “sensitive slice” in which the
magnetic field induced spin energy level splitting equals the
energy of the rf radiation. The rf frequency !or the polarizing
field" is modulated so that the spins in the sensitive slice are
cyclically inverted at the cantilever’s mechanical resonance
frequency, a few kilohertz typically. Through the gradient-
dipole force between the sample spins and the magnetic par-
ticle at the end of the cantilever, the cyclic spin inversion
drives the cantilever into an oscillation of a few nanometers
amplitude. The cantilever oscillation is detected with an op-
tical fiber interferometer !not shown".

FIG. 1. A schematic of a magnet-on-cantilever magnetic resonance force
microscope experiment.
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be precisely defined and ‘‘quantum alternative’’ paths for
the electrons through the screen appear. Figures 1(c) and
1(d) show two examples of such a ‘‘quantum geometry’’,
giving rise to electron paths through the hole that are
multiply connected. Such an intimate, coherent nanoelec-
tromechanical coupling between electronic and mechani-
cal degrees of freedom leads to characteristic quantum
interference among the electron paths and, in particular,
to an Aharonov-Bohm-type of effect in the presence of an
external magnetic field.

Because of their low mass and unique mechanical
and electronic properties, single-wall carbon nanotubes
(SWNTs) offer perhaps the best possibility for studying
quantum nanoelectromechanical phenomena [3,4].
Figure 2 shows a sketch of the system we have in mind
to achieve coherent coupling between quantum electronic
transport and quantum flexural vibrations of a nanotube: a
free-hanging SWNT, doubly clamped to two metallic leads
and subject to a transverse magnetic field, H. This system
is described by the Hamiltonian,

 Ĥ ! Ĥleads " Ĥel " Ĥmech " Ĥtunn; (1)

where the first term,

 Ĥ leads !
X

k

"l;kâ
y
l;kâl;k "

X

k

"r;kâ
y
r;kâr;k; (2)

models electrons in states k in the left (l) and right (r) leads
and âyl=r;k [âl=r;k] is the corresponding creation [annihila-
tion] operator. The second term,
 

Ĥel !
Z
d3 ~r

!
# @2

2m
 ̂y$ ~r%

"
@
@~r
# ie
c@

~A$ ~r%
#

2
 ̂$~r%

"U!y# û$x%; z" ̂y$ ~r% ̂$ ~r%
$
; (3)

describes the SWNT electrons, confined in the transverse
direction by a potential U$y; z% that depends on the deflec-
tion u$x% of the tube (in the y direction). The operator  ̂y$~r%
[ ̂$~r%] creates [annihilates] an electron at ~r ! $x; y; z%;
f ̂y$ ~r%;  ̂$~r0%g ! !$ ~r# ~r0% and ~A$~r% ! $#Hy; 0; 0%.

The bending of the tube is modeled by the third term in
the Hamiltonian (1) as

 Ĥ mech !
Z L=2

#L=2
dx
!

1

2"
#̂2$x% " EI

2

"
@2û$x%
@x2

#
2
$
: (4)

Here #̂$x% is the momentum density operator conjugate
with the deflection field operator û$x%, i.e. &û$x%; #̂$x0%' !
i@!$x# x0%, " is the linear mass density of the SWNT, I is
its area moment of inertia and E is the Young’s modulus.
The tube is doubly clamped, which gives the boundary
conditions u$x% ! 0 and u0$x% ! 0 for jxj ( L=2.

The tunneling Hamiltonian, Ĥtunn ! T̂l " T̂r, where

 T̂ l=r !
X

k

Z
d~rT l=r$ ~r; k% ̂y$ ~r%âl=r;k " H:c:; (5)

and T l=r$ ~r; k% are overlap integrals, describes how electron
tunneling couples the SWNT and the two leads.

In order to proceed it is convenient to make the unitary
transformation eiŜĤe#iŜ, with
 

Ŝ ! #i
Z
d3 ~r

!
û$x% ̂y$~r% @ ̂$~r%
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" i eH@c
"Z x

0
dx0û$x0%

#
 ̂y$ ~r% ̂$~r%

$
:

Here the first term produces a coordinate transformation to
the nanotube reference frame, while the second generates a
gauge transformation that eliminates the vector potential
from the Hamiltonian Ĥel. Furthermore, since the trans-
verse electron motion in the SWNT is strongly quantized it
may be decoupled from the longitudinal motion by letting
 ̂$ ~r% ! !$y; z% ̂$x%. Here !$y; z% ! !$~rt% is the wave
function corresponding to a transverse quantized energy
level Et. As a result the terms Ĥel, Ĥmech and T̂l=r in the
Hamiltonian (1) simplify to
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T̂l=r ! exp
%
i
eH
@c

Z )L=2

0
dxû$x%

&

*
X

k

Z
dxTl=r$x;k% ̂y$x%âl=r;k"H:c;

(6)

where Tl=r$x; k% !
R
d~rtT l=r$ ~r; k%j!$ ~rt%j2 and [5] "t!

Et"$e2H2=2mc2%RRd~rty2j!$~rt%j2.
By analogy one may think of the elementary excitations

created by  ̂y$x% in the transformed Hamiltonian (6) as
polarons. It is important that due to the quantum vibrations
of the nanotube the wave function of this polaronic state is
extended in the direction perpendicular to the tube axis.

Y
u(x)

x
y

L
+H

FIG. 2 (color online). Nanoelectromechanical system pro-
posed to show the coherent coupling between quantum electron
transport and quantum flexural vibrations discussed in the text.
Electrons tunneling through a doubly clamped SWNT excite
quantized vibrations of the SWNT in the presence of a magnetic
field, H. The resulting effective multiconnectivity of the system
leads to a negative magnetoconductance (see text).
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直列２ドットに対して retardedグリーン関数を導出し、散乱行列を求め、Brouwer の公式*1を適用する。
ハミルトニアンは、

H = Hlead +HQD +HT (1)

Hlead =
∑

kα

εkαc
†
kαckα (2)

HQD =
2∑

i=1

εid
†
idi + (t12e

iφd†1d2 + h.c.) (3)

HT =
∑

k

[VkLc
†
kLd1 + h.c.] +

∑

k

[VkRc
†
kRd2 + h.c.] (4)

ただし、トンネル振幅 t12、VkL、VkR は物理的な整合性から負の実数にとることにする。
ドットのグリーン関数は、以下の (22 =)4種類がある。（n,m = 1, 2）

Gr
nm(t, t

′
) = − i

!θ(t− t
′
) < {dn(t), d†m(t

′
)} > (5)

n,m = 1, 2

それぞれ運動方程式をたてると、

!
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)} >

= −δ1nδ(t− t
′
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′
) < { i! [H(t), d1(t)]}, d†n(t

′
) > (6)

ここで、Heisenberg 表示を用いて、
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†
2(t)ckR(t)], d1(t)]

= −ε1d1(t)− t12e
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∑

k

VkLckL(t) (7)

ここで、

[ab, c] = a{b, c}− {a, c}b (8)
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直列２ドット

2013年 9月 16日

直列２ドットに対して retardedグリーン関数を導出し、散乱行列を求め、Brouwer の公式*1を適用する。
ハミルトニアンは、
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HQD =
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εid
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HT =
∑

k

[VkLc
†
kLd1 + h.c.] +

∑

k

[VkRc
†
kRd2 + h.c.] (4)

ただし、トンネル振幅 t12、VkL、VkR は物理的な整合性から負の実数にとることにする。
ドットのグリーン関数は、以下の (22 =)4種類がある。（n,m = 1, 2）
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′
) = − i

!θ(t− t
′
) < {dn(t), d†m(t

′
)} > (5)

n,m = 1, 2

それぞれ運動方程式をたてると、
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ここで、

[ab, c] = a{b, c}− {a, c}b (8)

*1 P.W.Brouwer, PRB 58 16 (1998)

1

AB&ring/QDs&hybrid&system�

３ドットリング (ε1,Φ)

2013年 9月 16日

３ドットリングに対して retardedグリーン関数を導出し、散乱行列を求め、Brouwerの公式*1を適用する。
このノートは Brouwerの公式を用いてポンプ電流を求めるためのもので、パラメーターは時間変化させず
に扱う。
ドット１が左のリードに、ドット２が右のリードに結合しており、ドット１、２を直接結ぶアームとドット
３を介した接続が並列になってリングを成しているとする。
そして、このリングに磁束 Φが貫いているとする。
とりあえず、ドット１とドット２を直接結ぶアームの振幅 t12 に磁束 Φを持たせるとする。Φ0 = h

e は単位
磁束量子である。φ ≡ 2π Φ

Φ0
とおく。

ハミルトニアンは、
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ただし、トンネル振幅 t12、t23、t31、VkL、VkR は物理的な整合性から負の実数にとることにする。
ドットのグリーン関数は、以下の (32 =)9種類がある。（n,m = 1, 2, 3）

Gr
nm(t, t

′
) = − i

!θ(t− t
′
) < {dn(t), d†m(t

′
)} > (6)

それぞれ運動方程式をたてると、まず、

!
i

∂

∂t
Gr

1n(t, t
′
) = −∂θ(t− t

′
)

∂t
< {d1(t), d†n(t

′
)} > −θ(t− t

′
) < {∂d1(t)

∂t
, d†n(t

′
)} >

= −δ1nδ(t− t
′
)− θ(t− t

′
) < { i! [H(t), d1(t)]}, d†n(t

′
) > (7)

は、ここで、Heisenberg 表示を用いて、

[H(t), d1(t)] = [
∑

kα

εkαc
†
kα(t)ckα(t) +

∑

i

εid
†
i (t)di(t) + t12e

iφd†1(t)d2(t) + t12e
−iφd†2(t)d1(t)

*1 P.W.Brouwer, PRB 58 16 (1998)

1

Hamiltonian�

:*Tunnel*coupling*between*QD*and*lead�

:*Tunnel*coupling*between*QDs�

:*energies*of*each*QDs*

VL

VR

H = Hlead +HQD +HT

Hlead =
∑

kα

εkαc
†
kαckα

HQD = εdd
†d

HT =
∑

k

[VkLc
†
kLd+ VkLd

†ckL] +
∑

k

[VkRc
†
kRd+ VkRd

†ckR]

\

Gr
d(t, t

′
) = − i

!θ(t− t
′
) < {d(t), d†(t

′
)} >

Q = e

∫ ∫
dX1dX2Π(X1, X2)

Π(X1, X2) =
1

π
Im

[
∂S∗

LL

∂X1

∂S∗
LL

∂X2
+
∂S∗

LR

∂X1

∂S∗
LR

∂X2

]

X1

X2

X1 = ε1, X2 = ε2

X1 = ε1, X2 = φ2

t12

VL

VR

ε1

ε2

ε1(t)

2

VL

VR

H = Hlead +HQD +HT

Hlead =
∑

kα

εkαc
†
kαckα

HQD = εdd
†d

HT =
∑

k

[VkLc
†
kLd+ VkLd

†ckL] +
∑

k

[VkRc
†
kRd+ VkRd

†ckR]

\

Gr
d(t, t

′
) = − i

!θ(t− t
′
) < {d(t), d†(t

′
)} >

Q = e

∫ ∫
dX1dX2Π(X1, X2)

Π(X1, X2) =
1

π
Im

[
∂S∗

LL

∂X1

∂S∗
LL

∂X2
+
∂S∗

LR

∂X1

∂S∗
LR

∂X2

]

X1

X2

X1 = ε1, X2 = ε2

X1 = ε1, X2 = φ2

t12

VL

VR

ε1

ε2

ε1(t)

2

,*

φ

t12

VL

VR

ε1

ε2

ε1(t)

ε2(t)

ε3

t23

t31

t12e
iφ(t)

t12e
iφ(t)

Φ(t) = B(t)× S(t)

Φ(t)

= B(t)× S(t)

Φ0 =
h

e

0 ≤ ε1 ≤ 1, 0 ≤ ε2 ≤ 1

−1 ≤ ε1 ≤ 0,−1 ≤ ε2 ≤ 0

3

ε2(t)

ε3

t23

t31

t12e
2πiΦ(t)

Φ0

Φ(t) = B(t)× S(t)

Φ(t)

= B(t)× S(t)

Φ0 =
h

e

0 ≤ ε1 ≤ 1, 0 ≤ ε2 ≤ 1

−1 ≤ ε1 ≤ 0,−1 ≤ ε2 ≤ 0

ΓLL = ΓRR = 1

t12 ≡ t

εF = 0

t12 = t23 = t31 ≡ t

Φ0 =
h

e

ε2 = ε3 = 0.1

3

ε2(t)

ε3

t23

t31

t12e
2πiΦ(t)

Φ0

Φ(t) = B(t)× S(t)

Φ(t)

= B(t)× S(t)

Φ0 =
h

e

0 ≤ ε1 ≤ 1, 0 ≤ ε2 ≤ 1

−1 ≤ ε1 ≤ 0,−1 ≤ ε2 ≤ 0

ΓLL = ΓRR = 1

t12 ≡ t

εF = 0

t12 = t23 = t31 ≡ t

Φ0 =
h

e

ε2 = ε3 = 0.1

φ ≡ 2π
Φ

Φ0

3

Magne5c*flux*quanta:�
Retarded*Green’s*func5on*for*QD�

直列２ドット

2013年 9月 16日

直列２ドットに対して retardedグリーン関数を導出し、散乱行列を求め、Brouwer の公式*1を適用する。
ハミルトニアンは、

H = Hlead +HQD +HT (1)

Hlead =
∑
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†
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†
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[VkLc
†
kLd1 + h.c.] +
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[VkRc
†
kRd2 + h.c.] (4)

ただし、トンネル振幅 t12、VkL、VkR は物理的な整合性から負の実数にとることにする。
ドットのグリーン関数は、以下の (22 =)4種類がある。（n,m = 1, 2）
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ここで、Heisenberg 表示を用いて、
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VkLckL(t) (7)

ここで、

[ab, c] = a{b, c}− {a, c}b (8)
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Nanoampere charge pump by single-electron ratchet using silicon
nanowire metal-oxide-semiconductor field-effect transistor

Akira Fujiwara,a! Katsuhiko Nishiguchi, and Yukinori Ono
NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi,
Kanagawa 243-0198, Japan

!Received 16 November 2007; accepted 3 January 2008; published online 28 January 2008"

Nanoampere single-electron pumping is presented at 20 K using a single-electron ratchet
comprising silicon nanowire metal-oxide-semiconductor field-effect transistors. The ratchet features
an asymmetric potential with a pocket that captures single electrons from the source and ejects them
to the drain. Directional single-electron transfer is achieved by applying one ac signal with the
frequency up to 2.3 GHz. We find anomalous shapes of current steps which can be ascribed to
nonadiabatic electron capture. © 2008 American Institute of Physics. #DOI: 10.1063/1.2837544$

Clocked transfer of single electrons is attracting much
interest for the application to current standards in metrology1

and integrated single-electron !SE" circuits.2 While the origi-
nal proposal and demonstration of SE pumps3 and turnstiles4

were made using multiple metal islands separated by fixed
tunnel junctions of metal oxide, the use of gate-induced elec-
trostatic tunable barriers in semiconductors has a clear ad-
vantage for higher-frequency operation. The RC time can be
reduced since the R is likely to be tuned independently; R
and C are resistance and capacitance of the tunnel barrier,
respectively. Turnstiles using two barriers modulated by two
phase-shifted ac signals were reported using GaAs !15 MHz"
!Ref. 5" and Si !100 MHz".6 Recently, gigahertz operation
using GaAs has been reported based on the similar method.7

However, the current level is still limited to a subnanoam-
pere regime and the higher-frequency operation with a larger
current is desired since a nanoampere level is necessary for
the so-called metrological triangle experiment using a cryo-
genic current comparator.8

We report here a nanoampere SE pump operated with a
simple scheme using only one ac signal applied to one gate
in Si nanowire metal-oxide-semiconductor field-effect tran-
sistors !MOSFETs". We name the proposed device a SE
ratchet since it utilizes the asymmetry potential to capture
electrons from the source and eject them to the drain, thereby
causing directional SE transport without any source-drain
bias. It is shown that the nonadiabatic process plays a sig-
nificant role in the electron capture. Ratchets9 are known to
generate a directional motion in particles when their spatial
asymmetry is combined with an oscillating external field or a
nonequilibrium process. Such behavior has attracted much
interest in regard to the underlying physics and Brownian
motor in a biological system.

The device comprises two-gate-array Si nanowire
MOSFETs fabricated on a silicon-on-insulator wafer. Figures
1!a" and 1!b" show the schematic top view and cross-
sectional view of the device, respectively. The 30 nm wide
Si-wire channel and fine poly-Si gates with the gate length
!LG" of 40 nm and the gap !S" of 100 nm are fabricated by
electron beam lithography. A double-layer gate structure is
employed. The wide upper poly-Si gate !UG" is used as an
implantation mask during the formation of n-type source and

drain regions. The thicknesses of the Si wire !tSi", the gate
oxide under the fine gates !tox1", the oxide under UG !tox2",
and the buried oxide !tbox" are approximately 20, 30, 80, and
400 nm, respectively. Figures 1!c" and 1!d" show a top-view
scanning-electron-microscope image before the UG forma-
tion and a schematic diagram of the ratchet potential, respec-
tively. An ac pulse voltage !VG1" with a frequency !f" is
applied to the central gate !G1" thereby forming an oscillat-
ing barrier in the Si wire. In order to introduce asymmetry,
we applied a constant negative voltage !VG2" to the drain-
side gate !G2" and in so doing formed a fixed barrier on the
drain side. The third gate on the left was not used to form a
barrier and its voltage was constant at 2 V. In the gap region
between G1 and G2, a potential pocket is dynamically
formed so that it can capture electrons from the source and
eject them to the drain. Cross capacitance between G1 and
the pocket is essential for the electron ejection. The average
number of transferred electrons per cycle !n" is controlled by
the upper gate voltage !VUG". It is expected that the SE box is
formed as the barrier at G1 is raised and thereby a quantized

a"Electronic mail: afuji@will.brl.ntt.co.jp.

FIG. 1. !a" Schematic top view of the device. !b" Schematic cross section
along the line A-A!. !c" Scanning-electron-microscope image of the device
before the upper gate formation. Repetitive pulse voltage denoted by VG1 is
applied to the central gate and the constant negative voltage !VG2" is applied
to the right gate. The left-gate voltage is fixed at 2 V. !d" Schematic diagram
of the operation of the SE ratchet.
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If,

T [H0,S(s1)...H0,S(sn)] = H0,S(s1)...H0,S(sn)

then,

Texp(...) → exp(...)

ex) constant (indep. of time)
but, it is not realized in this case.

1 Model Hamiltonan
We consider the general case “time-dependent”.

The Hamiltonian of the system is follows,

H = Hlead +HQD +HT

= H0 +HT

Hlead =
∑

kα

εkαc
†
kαckα,

HQD = ε(t)d†d

HT =
∑

kα

[Vkαc
†
kαd+H.c.]

1.1 The lead part Hlead:

Hlead,S(t) ≡
∑

kα

ϵkα(t)c
†
kαckα, (18)

where the index α shows the R (right) or L (left) contacts. The energy of the
wave number k in the contact α is

ϵkα = ϵ0kα +∆kα(t), (19)

where ϵ0kα is time independent and ∆kα(t) designates external fluctuation of the
bias. First, we define “less” Green’s function of isolated contact α

g<kα(t, t
′
) ≡ i < c†kα,I(t

′
)ckα,I(t) >0, (20)

where < ... >0 means the avaregae of H0. The time-dependence of contact
creation / anihilation operators can be derived following,

We introduce interaction picture ckα,I(t) = e
i
!
´ t
s dt1H0(t)ckα,Se−

i
!
´ t
s dt1H0(t) =

U(t)†ckα,SU(t), thinking equation of motion
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∆依存性
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まず、時間依存する電流

JL(t) = −
2e

! ΓL

∫ t

−∞
dt1

∫ ∞

−∞

dε

2π
Im{e−iε(t1−t)[G<(t, t1) + fL(ε)G

r(t, t1)]} (1)

を時間平均した電流

IL = −2e

! ΓL
ω

2π

∫ 2π
ω

0
dt

∫ t

−∞
dt1

∫ ∞

−∞

dε

2π
Im{e−iε(t1−t)[G<(t, t1) + fL(ε)G

r(t, t1)]}

IL(t) = < JL(t) >

=
ω

2π

∫ 2π
ω

0
dtJL(t)

= IL1 + IL2 (2)

という風に G< と Gr に依存する部分の２つに分ける。ここで、

IL1 = −2e

! ΓL
ω

2π

∫ 2π
ω

0
dt

∫ t

−∞
dt1

∫ ∞

−∞

dε

2π
Im{e−iε(t1−t)G<(t, t1)} (3)

IL2 = −2e

! ΓL
ω

2π

∫ 2π
ω

0
dt

∫ t

−∞
dt1

∫ ∞

−∞

dε

2π
Im{e−iε(t1−t)fL(ε)G

<(t, t1)} (4)

である。
いま、∂2IL(∆)

∂∆2 |∆=0 を求めるが、

TL =
∂2IL(∆)

∂∆2
|∆=0 (5)

= TL1 + TL2

ここで、

TL1 =
∂2IL1(∆)

∂∆2
|∆=0 (6)

TL2 =
∂2IL2(∆)

∂∆2
|∆=0 (7)

とする。
ドットの retardedグリーン関数 Gr(t, t1)の定義は、

Gr(t, t1) = −iθ(t− t1) < {d(t), d(t1)†} > (8)
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直列２ドット

2013年 9月 16日

直列２ドットに対して retardedグリーン関数を導出し、散乱行列を求め、Brouwer の公式*1を適用する。
ハミルトニアンは、

H = Hlead +HQD +HT (1)

Hlead =
∑

kα

εkαc
†
kαckα (2)

HQD =
2∑

i=1

εid
†
idi + (t12d

†
1d2 + h.c.) (3)

HT =
∑

k

[VkLc
†
kLd1 + h.c.] +

∑

k

[VkRc
†
kRd2 + h.c.] (4)

ただし、トンネル振幅 t12、VkL、VkR は物理的な整合性から負の実数にとることにする。
ドットのグリーン関数は、以下の (22 =)4種類がある。（n,m = 1, 2）

Gr
nm(t, t

′
) = − i

!θ(t− t
′
) < {dn(t), d†m(t

′
)} > (5)

n,m = 1, 2

それぞれ運動方程式をたてると、

!
i

∂

∂t
Gr

1n(t, t
′
) = −∂θ(t− t

′
)

∂t
< {d1(t), d†n(t

′
)} > −θ(t− t

′
) < {∂d1(t)

∂t
, d†n(t

′
)} >

= −δ1nδ(t− t
′
)− !θ(t− t

′
) < { i! [H(t), d1(t)]}, d†n(t

′
) > (6)

ここで、Heisenberg 表示を用いて、

[H(t), d1(t)] = [
∑

kα

εkαc
†
kα(t)ckα(t) +

∑

i

εid
†
i (t)di(t) + t12d

†
1(t)d2(t) + t12d

†
2(t)d1(t)

+
∑

k

[VkLc
†
kL(t)d1(t) + VkLd

†
1(t)ckL(t)] +

∑

k

[VkRc
†
kR(t)d2(t) + VkRd

†
2(t)ckR(t)], d1(t)]

= −ε1d1(t)− t12d2(t)−
∑

k

VkLckL(t) (7)

ここで、

[ab, c] = a{b, c}− {a, c}b (8)

*1 P.W.Brouwer, PRB 58 16 (1998)

1

Hamiltonian*

below a threshold value, electrons are pumped from source
to drain, i.e., ISD!0, as shown in Fig. 2!a". A finite bias
voltage, VSD= +50 "V, was applied opposite to the pumping
direction to prove the pumping regime. The results for dif-
ferent experimental conditions are offset in V2 for clarity,
plotting the current versus #V2, which is the change in V2.
Four clear plateaus are observed in case !i" as #V2 is varied
from −5 to −50 mV. The ratio ISD /ef switches between in-
teger values to within the noise level of the measurement
setup. We conclude that in this configuration, up to four elec-
trons are robustly transferred in one cycle, depending on the
value of V2.

The tolerance in channel width was investigated by re-
peating the above measurements in device B having a litho-
graphic channel width of about 700 nm. The corresponding
pumped current is shown by the colored curves in Fig. 2!a".
The transition regions between the plateaus are wider than in
device A, but do not significantly change as the frequency is
increased by almost an order of magnitude. The following
examples are shown for frequencies in curves: !ii" 0.1 GHz,
!iii" 0.47 GHz, and !iv" 0.8 GHz. The current values at fixed
V1 and V2, corresponding to the first plateau, are plotted in
Fig. 2!b" and show the expected linear dependence on f .
Quantization was robust for the measured range of Prf=
−26 to –23 dBm, while the range of V1 for which quantized
pumping was observed increases with applied rf power Prf.

For a quantitative theoretical analysis of the quantization
mechanism, we consider a simple quantum model of nonin-
teracting electrons confined in a one-dimensional wire and
subjected to a time-dependent double-barrier potential, as
plotted in the insets of Fig. 2,

U!x,t" = U1!t"e−!x + x0"2/w2
+ U2e−!x − x0"2/w2

, !1"

with a harmonically oscillating left barrier, U1!t"=U1
dc

−U1
ac cos!2$ft". The boundary conditions are defined by a

Fermi distribution of electrons coming from the left, fF!"
+eVSD", and from the right, fF!"", where " is the electro-
chemical potential of electrons in the drain. Standard para-
bolic dispersion is taken for the wire assuming bulk GaAs
effective electron mass of m*=0.067me.

Full statistics of the stationary state in this model, includ-

ing the dc current and the Fano factor, can, in principle, be
obtained by solving the corresponding Floquet scattering
problem.13,22 However, the high number of excited side
bands in the vicinity of the adiabatic limit renders such a
calculation impractical. In order to proceed with the calcula-
tion, we restrict the parameters such that at all times there
exists at least one quasibound state in the potential well
formed between the barriers.

The instantaneous energy level %0!t" and its broadenings
due to tunneling coupling to the left &L!t" and to the right
&R!t" for the lowest of these states are obtained numerically
by solving the frozen-time scattering problem and approxi-
mating the corresponding resonance with a Breit–Wigner
formula.

The other quasibound states can be ignored if the gap
from the lowest state, #%#%1−%0, is sufficiently large, such
that #%'"−%0, hf , kBT. It has been shown in Ref. 16 that
exact results for adiabatic !f →0" pumping via a single reso-
nance can be accurately approximated for &(kBT by solving
a simple rate equation for the level occupation probability
P!t",
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FIG. 1. !Color online" Picture of a typical device !left" with
TiAu finger gates over the etched channel. In the scanning electron
microscopy picture !right", bias and gate voltages are indicated,
showing the gate colored in red as being modulated. The source !S"
and drain !D" reservoirs are indicated. The hatched regions are de-
pleted of the two-dimensional electron gas. A quasibound state is
formed between gates 1 and 2, as indicated by the white ellipse. The
direction of the pumped electrons is indicated by the white arrow on
the left. The lowest gate is not in use in this experiment.
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FIG. 2. !Color online" !a" Pumped current ISD normalized by ef
is shown versus the variation of the dc voltage applied to gate 2,
#V2. Experimental conditions are listed in the table. The corre-
sponding results are offset in V2 for clarity. Snapshots of the time-
dependent potential U during loading and unloading of a single
electron are shown in the insets. Calculated U and the wave func-
tion of the relevant transport state ) correspond to the calculation
presented in Fig. 3. !b" ISD generated by device B when operated at
different frequencies.
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これを直列２ドットの結果
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e
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2
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|(εF − ε1 + i
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が一致していることがわかる。
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q =
Q
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=
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π

ΓLLΓRRt212
|(εF − ε1 + i

2ΓLL)(εF − ε2 + i
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4
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RR(εF − ε1)]
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Mono-parametric quantum charge pumping:
Interplay between spatial interference and photon-assisted tunneling
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We analyze quantum charge pumping in an open ring with a dot embedded in one of its arms. We show that
cyclic driving of the dot levels by a single parameter leads to a pumped current when a static magnetic flux is
simultaneously applied to the ring. Based on the computation of the Floquet-Green’s functions, we show that
for low driving frequencies !0, the interplay between the spatial interference through the ring plus photon-
assisted tunneling gives an average direct current, which is proportional to !0

2. The direction of the pumped
current can be reversed by changing the applied magnetic field.

DOI: 10.1103/PhysRevB.72.245339 PACS number!s": 73.23."b, 72.10."d, 73.40.Ei, 05.60.Gg

I. INTRODUCTION

A direct current !dc" is usually associated to a dissipative
flow of the electrons in response to an applied bias voltage.
However, in systems of mesoscopic scale a dc current can be
generated even at zero bias. This captivating quantum coher-
ent effect is called quantum charge pumping1–3 and it is of
considerable interest both theoretically1–8 and
experimentally.9,10 A device capable of providing such effect
is called a quantum pump and typically involves the cyclic
change of two device-control parameters with a frequency
!0. The operational regime of the pump can be characterized
according to the relative magnitude between !0 and the in-
verse of the time taken for an electron to traverse the sample,
1 /#T. When !0$1/#T the pump is in the so-called adiabatic
regime, whereas the opposite case, !0%1/#T, the pump is in
the nonadiabatic regime.

For adiabatic pumping, Brouwer3 gave an appealing ap-
proach that is based on a scattering matrix formulation to
low-frequency ac transport due to Büttiker et al.11 In this
formulation, the pumped current, which flows in response to
a the cyclic variation of a set #Xj$ of device-control param-
eters, is expressed in terms of the scattering matrix S!#Xj$" of
the system. One of the outcomes of this parametric pumping
theory, which is valid in the low-frequency regime !!0
$1/#T" and up to first order in frequency, is that the charge
pumped during a cycle is proportional to the area enclosed
by the path in the scattering matrix parameter space. Thus, to
have a nonvanishing pumped charge, at least two time-
dependent parameters that oscillate with a frequency !0 and
with a nonvanishing phase difference & between them are
needed.

In this context, a natural question that arises is whether a
pumped current can be obtained using a single time-
dependent parameter. In most of the works considered up to
now, at least two parameters are used to obtain pumping. A
typical configuration that has been extensively studied theo-
retically and experimentally10 consists of a dot connected to
two leads with two out-of-phase time-dependent gate volt-
ages that produce cyclic changes in its shape %see Fig. 1!a"&.
In contrast, pumps based on a single parameter variation
have attracted much less attention. This is partly due to the

fact that no pumping can be obtained from them in the low-
frequency regime up to first order in !0. Hence, obtaining a
nontrivial result requires going beyond the adiabatic limit
described by the standard parametric pumping theory3 as in
Refs. 5, 12, and 13. In spite of giving a current, which, at low
frequencies, is a priori weaker than the one obtained using a
two-parameter variation, they can give comparable pumped
currents at intermediate and high frequencies.14 Besides, the
understanding of such “mono-parametric pumps” constitutes
a necessary step in the comprehension of driven systems.

Previous theoretical studies in this direction include the
works by Kravtsov and Yudson16 and Aronov and
Kravtsov,17 where pumping in a ring !not connected to leads"
threaded by a time-dependent flux was studied. In Ref. 18,
Wang et al. considered the case in which the height of one of
the barriers of a double-barrier system connected to external
leads is modulated periodically. This modulation dynami-
cally breaks the inversion symmetry of the system producing
a pumped current. Other theoretical works aiming at the fre-

FIG. 1. !a" Schematic representation of a typical quantum pump
consisting in an open dot driven by two out-of-phase time-
dependent gate voltages. !b" Scheme of the system considered in
this work, a ring connected to two leads. The ring, which is
threaded by a magnetic flux, contains a dot embeded in one of its
arms. Charge pumping is obtained by driving the dot levels through
a time-periodic potential.
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∆依存性 ２次（一般の時間依存の場合）

2013年 11月 26日

このノートは、非平衡グリーン関数の方法により、１パラメーターで量子ポンプが起こるかどうかを調べる
ためのものである。以前のノートでドットの時間依存が

∆(s) = ∆cos(ωs+ φ) (1)

のときは、得られた電流の表式はランダウアー型（エネルギー積分の被積分関数の overallにフェルミ分布
関数の差がかかっている）になり、絶対零度・零バイアスでは電流は０になった。（∆ の一次の係数は 0 に
なった。）
今回は、一般の時間依存の場合

ε(t) =

∆(t) = ∆
∞∑

n=−∞
[∆ne

inωt] (2)

ただし、∆(s)は実数であるから、

∆∗
n = ∆−n (3)

また、ドットのエネルギー準位の時間変化分であるので

∆0 = 0 (4)

を満たす。
この場合（このような場合は時間に対して一般的に激しく時間非対称な場合: racketのような状況を含む。）
で電流の表式を調べる。
まず、時間依存する電流

JL(t) = −
2e

! ΓL

∫ t

−∞
dt1

∫ ∞

−∞

dε

2π
Im{e−iε(t1−t)[G<(t, t1) + fL(ε)G

r(t, t1)]} (5)

を時間平均した電流

IL(t) ≡ JL(t)

=
ω

2π

∫ 2π
ω

0
dtJL(t)

= IL1 + IL2 (6)
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Scattering approach to parametric pumping

P. W. Brouwer
Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138
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A dc current can be pumped through a quantum dot by periodically varying two independent parameters X1
and X2 , like a gate voltage or magnetic field. We present a formula that relates the pumped current to the
parametric derivatives of the scattering matrix S(X1 ,X2) of the system. As an application we compute the
statistical distribution of the pumped current in the case of a chaotic quantum dot. @S0163-1829~98!52240-0#

An electron pump is a device that generates a d.c. current
between two electrodes that are kept at the same bias. In
recent years, electron pumps consisting of small semicon-
ductor quantum dots have received considerable experimen-
tal and theoretical attention.1–11 A quantum dot is a small
metal or semiconductor island, confined by gates, and con-
nected to the outside world via point contacts. Several dif-
ferent mechanisms have been proposed to pump charge
through such systems, ranging from a low-frequency modu-
lation of gate voltages in combination with the Coulomb
blockade1,2,11 to photon-assisted transport at or near a reso-
nance frequency of the dot.5–8 Their applicability depends on
the characteristic size of the system and the operation fre-
quency.
Most experimental realizations of electron pumps in semi-

conductor quantum dots made use of the principle of Cou-
lomb blockade. If the dot is coupled to the outside world via
tunneling point contacts, the charge on the dot is quantized,
and ~apart from degeneracy points! transport is inhibited as a
result of the high energy cost of adding an extra electron to
the dot. Pothier et al. constructed an electron pump that op-
erates at arbitrarily low frequency and with a reversible
pumping direction.2 The pump consists of two weakly
coupled quantum dots in the Coulomb blockade regime and
operates via a mechanism that closely resembles a peristaltic
pump: Charge is pumped through the double dot array from
the left to the right and electron-by-electron as the voltage
U1}sin(vt) of the left dot reaches its minima and maxima
before the voltage U2}sin(vt2f) of the right one.2 The
pumping direction can be reversed by reversing the phase
difference f of the two gate voltages.
A similar mechanism was proposed by Spivak, Zhou, and

Beal Monod for an electron pump consisting of single quan-
tum dot only.4 In this case a d.c. current is generated by
adiabatic variation of two different gate voltages that deter-
mine the shape of the nanostructure, or any other pair of
parameters X1 and X2 , like magnetic field or Fermi energy,
that modify the ~quantum mechanical! properties of the sys-
tem, see Fig. 1~a!. The magnitude of the current is propor-
tional to the frequency v with which X1 and X2 are varied
and ~for small variations! to the product of the amplitudes
dX1 and dX2 . The direction of the current depends on mi-
croscopic ~quantum! properties of the system, and need not
be known a priori from its macroscopic properties. As in the
case of the double-dot Coulomb blockade electron pump of
Ref. 2, the direction of the current in the single-dot paramet-

ric pump of Spivak et al.4 can be reversed by reversing the
phases of the parameters X1 and X2 . An important difference
between the two mechanisms is that a parametric electron
pump like the one in Ref. 4 does not require that the quantum
dot is in the regime of Coulomb blockade; it operates if the
dot is open, i.e., well coupled to the leads by means of bal-
listic point contacts. Experimentally, an electron pump in an
open quantum dot has been realized only very recently.12 A
measurement of the pumped current provides a promising
tool to study properties of open mesoscopic systems at zero
bias or at zero current.
In this paper we consider a parametric electron pump

through an open system in a scattering approach. Our main
result is a formula for the pumped current in terms of the
scattering matrix S(X1 ,X2). Such a formula is the analogue
of the Landauer formula, which relates the conductance G
5dI/dV of a mesoscopic system with two contacts to a sum
over the ~squares of! matrix elements Sab ,

dI5GdV5
2e2

h dV(
aP1

(
bP2

uSabu2. ~1!

The indices a and b are summed over all channels in the left
and right contacts, respectively, and dV is the applied volt-
age. For the case of the parametric electron pump, where two
parameters X1 and X2 are varied periodically, dX1(t)
5dX1sin(vt) and dX2(t)5dX2sin(vt2f), we find that the
d.c. component of the current I depends on the derivatives
]Sab /]X ,

FIG. 1. ~a! A quantum dot with two parameters X1 and X2 that
describe a deformation of the shape of the quantum dot. As X1 and
X2 are varied periodically, a dc current I is generated. ~b! In one
period, the parameters X1(t) and X2(t) follow a closed path in
parameter space. The pumped current depends on the enclosed area
A in (X1 ,X2) parameter space.
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the mesa, called ‘air bridges’. A phase difference J between the two
paths is introduced via the Aharonov–Bohm (AB) effect10,11, J¼
2pBA=f0; with B the magnetic field, A the area enclosed by the two
paths (,45 mm2), and f0 ¼ 4:14£ 10215 Tm2 the flux quantum. A
few modulation gates, MG, are added above the outer path in order
to tune the phase J by changing the area A.

We briefly review the operation of the interferometer. At filling
factor 1 in the QHE regime, a single chiral edge state carries the
current. The interfering current, in turn, is proportional to the
transmission probability from source to drain, TSD. Neglecting
dephasing processes and having the transmission (reflection) ampli-
tude t i (r i) of the ith QPC fulfilling jrij2 þ jtij2 ¼ 1; then7 ID1 /
TSD1 ¼ j t1t2 þ r1r2 eiJ j 2 ¼ j t1t2 j 2 þ jr1r2j2 þ 2jt1t2r1r2jcosJ and
ID2 /TSD2 ¼ jt1r2 þ r1t2 eiJ j2 ¼ jt1r2j2 þ jr1t2j2 2 2jt1t2r1r2jcosJ;
where ID1 and ID2 are the currents in detectors D1 and D2,
respectively. Note that ideally the two currents oscillate out of
phase as function of J while TSD1 þTSD2 ¼ 1: The visibility of the
oscillation is defined as: n¼ ðImax 2 IminÞ=ðImax þ IminÞ, where Imax

and Imin are the maximum and minimum currents in one of the
detectors. For example, when QPC2 is tuned so that T2 ¼ 0.5, the
visibility is n¼ 2

p
T1ð12T1Þ, where jtij2 ¼ Ti.

Measurements were done at filling factor 1 (magnetic field
,5.5 T) and also at filling factor 2 with similar results. With a
refrigerator temperature of ,6mK, the electron temperature was
determined by measuring the equilibrium noise12 to be ,20mK.
High-sensitivity measurements of the interference pattern were
conducted at ,1.4MHz with a spectrum analyser. Current at
D1 (or D2) was filtered and amplified in situ by an LC
(inductance þ capacitance) circuit and a low-noise, purpose-built
pre-amplifier, both placed near the sample and cooled to 1.5 K. A
standard lock-in technique, with a low-frequency signal (7Hz,
10 mV r.m.s.), gave similar results, but the measurement lasted
much longer and was affected by the instability of the sample. At
5.5 T, each flux quantum occupies an area of some 10215m2 (some
60,000 flux quanta thread the area A), so a minute fluctuation in the
superconducting magnet’s current or in the area would smear the
interference signal. Two measurement methods were used. The first
relied on the unavoidable decay of the short-circuited current that
circulates in the superconducting magnet, which is in the so-called

Figure 1 The configuration and operation of an optical Mach–Zehnder interferometer,
and its realization with electrons. a, An optical Mach–Zehnder interferometer. D1 and D2
are detectors, BS1 and BS2 are beam splitters, and M1 and M2 are mirrors. With 0 (p)

phase difference between the two paths, D1 measures maximum (zero) signal and D2

zero (maximum) signal. The sum of the signals in both detectors is constant and equal

to the input signal. b, The electronic Mach–Zehnder interferometer and the measurement
system. Edge states are formed in a high, perpendicular, magnetic field. The incoming

edge state from S is split by QPC1 (quantum point contact 1) to two paths; one moves

along the inner edge, and the other along the outer edge, of the device. The two

paths meet again at QPC2, interfere, and result in two complementary currents in D1 and

in D2. By changing the contours of the outer edge state and thus the enclosed area

between the two paths, the modulation gates (MGs) tune the phase difference between

the two paths via the Aharonov–Bohm effect. A high signal-to-noise-ratio measurement of

the current in D1 is performed at 1.4MHz with a cold LC resonant circuit as a band-pass

filter followed by a cold, low-noise, preamplifier. c, Scanning electron micrograph of the
device. A centrally located small ohmic contact (3 £ 3mm2), serving as D2, is connected

to the outside circuit by a long, metallic, air bridge. Two smaller metallic air bridges

bring the voltage to the inner gates of QPC1 and QPC2—both serve as beam splitters for

edge states. The five metallic gates (at the lower part of the figure) are MGs.

Figure 2 Interference pattern of electrons in a Mach–Zehnder interferometer and the
dependence on transmission. a, Two-dimensional colour plot of the current collected by
D1 as function of magnetic field and gate voltage at an electron temperature of,20mK.

The magnet was set in its persistent current mode (B < 5.5 T at filling factor 1 in the bulk)

with a decay rate of some 0.12mT h21, hence time appears on the abscissa. The two

QPCs were both set to transmission T 1 ¼ T 2 ¼ 0:5: Red (blue) stands for high (low)
current. b, The current (a.u., arbitrary units) collected by D1 plotted as function of the

voltage on a modulation gate, V MG (red plot), and as function of the magnetic field, B (blue

plot)—along the cuts shown in a. The visibility of the interference is 0.62. c, The visibility
of the interference pattern (data points) as a function of the transmission probability T1 of

QPC1 when QPC2 is set to T2 ¼ 0.5. Red dashed line is a fit to the experimental data with

visibility 2h
p
T 1ð12 T 1Þ: The normalization coefficient h ¼ 0.6 accounts for possible

decoherence and/or phase averaging.
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the potential arrives at the QPC !at a distance !Q" with a
delay time of !Q /v after the application of the voltage pulse
to the source. Another voltage pulse, VPG!t− td", is applied to
the lower gate of the QPC in the tunneling regime to probe
the local potential. Here, td is the time interval between the
two voltage pulses, which can be experimentally controlled
with a mechanical delay line and a pulse pattern generator as
shown in Fig. 2!b". The pulse applied to the QPC changes
the barrier potential of the QPC, U!t", and hence the conduc-
tance, GQ!t", by "GQ!t"#"U!t"#VPG!t" for sufficiently
small amplitude of the pulse. In the linear transport regime,
the current through the QPC, i!t", is proportional to the po-
tential difference "$!t"=$!!Q, t"−$D across the QPC,
where $D is the !time independent" electrochemical potential
of the drain. Instead of measuring i!t" directly, we measured
the average current IDS!td"= #i!t"$ as a function of td. Then,
the average current has a form of correlation function,

IDS!td" =
1
e

#"GQ!t − td""$!t"$ . !1"

One can evaluate the time-dependent local potential "$!t" if
"GQ!t" abruptly changes in a delta-function "GQ!t"#%!t" or

in any known functions. The actual potential waveforms in
the device can be estimated by analyzing IDS!td" for various
pulse widths.19

The IDS!td" curves shown in Fig. 2!c" were obtained by
varying the pulse width &PS of VPS!t" from 0.4 to 3.6 ns while
keeping the pulse width &PG of VPG!t" constant at 0.08 ns
!minimum available pulse width in our setup". The peak
width in the observed IDS!td" curve increases with pulse
width &PS. Since "GQ!t" effectively changes in a delta func-
tion, the observed IDS!td" curves reflect the time evolution of
the EMP pulse in the device. Here, the time constant of 0.6
ns, which is obtained by fitting with an exponential function
%Fig. 2!c", solid line& is larger than that measured at zero
magnetic field !0.28 ns".19 The increased time constant may
be related to the higher Ohmic resistance in the magnetic
field or to the nonlinear dispersion of EMPs, which will be
investigated in the future. In this way, we can evaluate the
time-dependent potential or the charge distribution of the
EMP pulse. In this paper, we focus on the velocity of the
EMPs. The following data were measured at &PS=0.4 ns and
&PG=0.08 ns.

III. EXPERIMENTAL RESULTS

Edge channels can be defined either by chemically etch-
ing the heterostructure or electrostatically depleting the
2DEG under a metallic gate. Edge channels defined by a
metallic gate are useful for electrical switching of the path
length. Here, we use four additional gates !delay gates; typi-
cally '100 $m in length" between the source contact and

FIG. 1. !Color online" !a" Schematic device structure and ex-
perimental setup for time-of-flight measurement. A short voltage
pulse VPS!t" of 1.0 mV in amplitude is applied to the source to
inject a pulse of EMPs. Another voltage pulse VPG!t" of 20 mV in
amplitude is applied to the QPC to probe the local potential. The
time interval between the two voltage pulses is changed by the
mechanical delay line. Four delay gates between the source and the
QPC can be used to add extra path length. !b" A scanning electron
micrograph of the device. The white lines are metallic gates for the
delay gates. The QPC is shown in an enlarged view inside the white
circle. Disabled gates are biased at '+0.2 V to minimize back-
scattering. The complicated gate patterns are designed for another
purpose, but their different perimeters are useful for this work.

FIG. 2. !Color online" !a" Schematic potential diagram of the
EMP pulse and the QPC. If the timing of the voltage pulse applied
to the QPC coincides with the arrival of the EMP pulse at the QPC,
the EMP pulse passes through the QPC !solid line"; otherwise, the
EMP pulse is reflected at the QPC and returns to the source contact
!dashed line". !b" Schematic pulse patterns of the two voltage
pulses. !c" IDS!td" curves observed at B=6.5 T for various pulse
widths. The solid line is an exponential fit.
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pressing these proteins in high concentration often results in
aggregation. Of the tens of thousands of known structures
fewer than 250 are transmembrane proteins.5

Of the 41 000 known protein structures, more than 6000
have been determined by nuclear magnetic resonance. NMR
of biological molecules is a rich field; dramatic advances
have included Fourier-transform !FT" spectroscopy, nuclear
Overhauser effect distance measurements, and innumerable
multidimensional experiments.6 Still, elucidating a protein
structure by liquids NMR places restrictions on the structures
that can be studied. As with crystallography, NMR requires
expressible proteins that are soluble in millimolar concentra-
tions. Additionally, proteins bigger than about 50 kDa be-
come difficult to study.

Solid-state NMR !ssNMR" can in principle provide de-
tailed structural information, especially since long-range di-
polar spin-spin couplings are retained, but obtaining spectra
at high resolution remains challenging.7 Recent advances
have allowed measurements on fully protonated proteins at
high resolution8 and chemical shift tensors for bond angle
assignments.9 Interestingly, ssNMR has provided the only
detailed structures of amorphous amyloid fibrils important in
the study of Alzheimer’s disease.10 Despite these advances,
and the many important structures which have been deter-
mined, ssNMR remains limited to the study of macromolecu-
lar biomolecules that form solids and by the intrinsic low
sensitivity of inductive detection.

B. Improving NMR sensitivity

The distinct advantage of MRFM is the dramatic im-
provement in sensitivity over conventional inductive detec-
tion. While inductive detection, thus far, requires #1013

nuclei/$Hz to detect an observable signal,11,12 MRFM pre-
sents the real possibility of single nucleus sensitivity. In or-
der to put MRFM into perspective, we briefly consider com-
peting techniques for detecting magnetic resonance from
single spins. Early high sensitivity techniques, including
beam measurements, optical detection, and detection by per-
turbed angular correlations of radioactive nuclei emissions,
have been reviewed by Abragam.13

Recent experiments have demonstrated the detection of
magnetic resonance using a scanning tunneling microscope
!STM". Manassen et al. have shown that electron spin reso-
nance !ESR" can be detected as a radiofrequency oscillation
in the electron tunneling current of a STM.14–17 While the
mechanism of the effect is not well understood, ESR-STM is
close to demonstrating single-spin detection. However, the
method requires the unpaired electron spin to be within an
atomic layer of the surface, and requires a sample or sample
substrate that is nearly atomically flat and either conducting
or semiconducting. It is hard to see how ESR-STM could be
applied to determine the angstrom-scale structure of biologi-
cal samples.

In strongly luminescent materials, magnetic resonance
has been detected optically with high sensitivity.13,18–26 Al-
though single-spin NMR and ESR optical magnetic reso-
nance has been demonstrated in isolated molecules in doped
molecular crystals at 1.2 K,20,21,26 and at single defect sites in

diamond up to room temperature,25,27–33 these techniques
lack generality and are not applicable to arbitrary organic
samples. While very sensitive, optical detection lacks the
spatial resolution needed for single-spin imaging where spins
are a few angstroms apart as is the case in biomolecules.

Superconducting quantum interference devices
!SQUIDs" are capable of detecting extremely small magnetic
fluxes and have been used to detect magnetic resonance. The
highest sensitivity achieved with a SQUID, to our knowl-
edge, is 40 electron spins/ $Hz with a 3!3 "m2 device.34

The authors report that if they were operating this device at
the theoretical thermal limit35 at 8 K, their sensitivity would
be 2.5 electron spins/ $Hz. While SQUID detection exhibits
exquisite sensitivity and is generally applicable to nuclear
and electron magnetic moments, like optical detection it
lacks sufficient spatial resolution to elucidate detailed atomic
connectivity.

These single-spin detection techniques cannot generally
be applied to detect NMR in large biomolecules in the con-
densed phase. In contrast, MRFM puts few restrictions on
the properties of the sample that can be studied and no re-
strictions on the type of magnetic moment that can be inter-
rogated. Magnetic resonance force microscopy remains the
most feasible route yet proposed for detecting single-spin
NMR in large biomolecules at high sensitivity and high spa-
tial resolution.

III. RECENT ADVANCES IN MECHANICALLY
DETECTED MAGNETIC RESONANCE

A schematic of early MRFM experiments appears in Fig.
1. A magnetic-tipped cantilever is brought close to a sample
surface containing spins to be studied. The spins can be un-
paired electron spins or nuclear spins, e.g., hydrogen nuclei.
A polarizing magnetic field B0 may be applied to align the
sample spins. A radio frequency !rf" magnetic field produced
by a nearby coil is applied to the sample. The rf is resonant
with spins in a constant-field “sensitive slice” in which the
magnetic field induced spin energy level splitting equals the
energy of the rf radiation. The rf frequency !or the polarizing
field" is modulated so that the spins in the sensitive slice are
cyclically inverted at the cantilever’s mechanical resonance
frequency, a few kilohertz typically. Through the gradient-
dipole force between the sample spins and the magnetic par-
ticle at the end of the cantilever, the cyclic spin inversion
drives the cantilever into an oscillation of a few nanometers
amplitude. The cantilever oscillation is detected with an op-
tical fiber interferometer !not shown".

FIG. 1. A schematic of a magnet-on-cantilever magnetic resonance force
microscope experiment.
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be precisely defined and ‘‘quantum alternative’’ paths for
the electrons through the screen appear. Figures 1(c) and
1(d) show two examples of such a ‘‘quantum geometry’’,
giving rise to electron paths through the hole that are
multiply connected. Such an intimate, coherent nanoelec-
tromechanical coupling between electronic and mechani-
cal degrees of freedom leads to characteristic quantum
interference among the electron paths and, in particular,
to an Aharonov-Bohm-type of effect in the presence of an
external magnetic field.

Because of their low mass and unique mechanical
and electronic properties, single-wall carbon nanotubes
(SWNTs) offer perhaps the best possibility for studying
quantum nanoelectromechanical phenomena [3,4].
Figure 2 shows a sketch of the system we have in mind
to achieve coherent coupling between quantum electronic
transport and quantum flexural vibrations of a nanotube: a
free-hanging SWNT, doubly clamped to two metallic leads
and subject to a transverse magnetic field, H. This system
is described by the Hamiltonian,

 Ĥ ! Ĥleads " Ĥel " Ĥmech " Ĥtunn; (1)

where the first term,

 Ĥ leads !
X

k

"l;kâ
y
l;kâl;k "

X

k

"r;kâ
y
r;kâr;k; (2)

models electrons in states k in the left (l) and right (r) leads
and âyl=r;k [âl=r;k] is the corresponding creation [annihila-
tion] operator. The second term,
 

Ĥel !
Z
d3 ~r

!
# @2

2m
 ̂y$ ~r%

"
@
@~r
# ie
c@

~A$ ~r%
#

2
 ̂$~r%

"U!y# û$x%; z" ̂y$ ~r% ̂$ ~r%
$
; (3)

describes the SWNT electrons, confined in the transverse
direction by a potential U$y; z% that depends on the deflec-
tion u$x% of the tube (in the y direction). The operator  ̂y$~r%
[ ̂$~r%] creates [annihilates] an electron at ~r ! $x; y; z%;
f ̂y$ ~r%;  ̂$~r0%g ! !$ ~r# ~r0% and ~A$~r% ! $#Hy; 0; 0%.

The bending of the tube is modeled by the third term in
the Hamiltonian (1) as

 Ĥ mech !
Z L=2

#L=2
dx
!

1

2"
#̂2$x% " EI

2

"
@2û$x%
@x2

#
2
$
: (4)

Here #̂$x% is the momentum density operator conjugate
with the deflection field operator û$x%, i.e. &û$x%; #̂$x0%' !
i@!$x# x0%, " is the linear mass density of the SWNT, I is
its area moment of inertia and E is the Young’s modulus.
The tube is doubly clamped, which gives the boundary
conditions u$x% ! 0 and u0$x% ! 0 for jxj ( L=2.

The tunneling Hamiltonian, Ĥtunn ! T̂l " T̂r, where

 T̂ l=r !
X

k

Z
d~rT l=r$ ~r; k% ̂y$ ~r%âl=r;k " H:c:; (5)

and T l=r$ ~r; k% are overlap integrals, describes how electron
tunneling couples the SWNT and the two leads.

In order to proceed it is convenient to make the unitary
transformation eiŜĤe#iŜ, with
 

Ŝ ! #i
Z
d3 ~r

!
û$x% ̂y$~r% @ ̂$~r%

@y

" i eH@c
"Z x

0
dx0û$x0%

#
 ̂y$ ~r% ̂$~r%

$
:

Here the first term produces a coordinate transformation to
the nanotube reference frame, while the second generates a
gauge transformation that eliminates the vector potential
from the Hamiltonian Ĥel. Furthermore, since the trans-
verse electron motion in the SWNT is strongly quantized it
may be decoupled from the longitudinal motion by letting
 ̂$ ~r% ! !$y; z% ̂$x%. Here !$y; z% ! !$~rt% is the wave
function corresponding to a transverse quantized energy
level Et. As a result the terms Ĥel, Ĥmech and T̂l=r in the
Hamiltonian (1) simplify to
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T̂l=r ! exp
%
i
eH
@c

Z )L=2

0
dxû$x%

&

*
X

k

Z
dxTl=r$x;k% ̂y$x%âl=r;k"H:c;

(6)

where Tl=r$x; k% !
R
d~rtT l=r$ ~r; k%j!$ ~rt%j2 and [5] "t!

Et"$e2H2=2mc2%RRd~rty2j!$~rt%j2.
By analogy one may think of the elementary excitations

created by  ̂y$x% in the transformed Hamiltonian (6) as
polarons. It is important that due to the quantum vibrations
of the nanotube the wave function of this polaronic state is
extended in the direction perpendicular to the tube axis.

Y
u(x)

x
y

L
+H

FIG. 2 (color online). Nanoelectromechanical system pro-
posed to show the coherent coupling between quantum electron
transport and quantum flexural vibrations discussed in the text.
Electrons tunneling through a doubly clamped SWNT excite
quantized vibrations of the SWNT in the presence of a magnetic
field, H. The resulting effective multiconnectivity of the system
leads to a negative magnetoconductance (see text).
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直列２ドット (ε1,φ)

2013年 9月 23日

直列２ドットに対して retardedグリーン関数を導出し、散乱行列を求め、Brouwer の公式*1を適用する。
ハミルトニアンは、

H = Hlead +HQD +HT (1)

Hlead =
∑

kα

εkαc
†
kαckα (2)

HQD =
2∑

i=1

εid
†
idi + (t12e

iφd†1d2 + h.c.) (3)

HT =
∑

k

[VkLc
†
kLd1 + h.c.] +

∑

k

[VkRc
†
kRd2 + h.c.] (4)

ただし、トンネル振幅 t12、VkL、VkR は物理的な整合性から負の実数にとることにする。
ドットのグリーン関数は、以下の (22 =)4種類がある。（n,m = 1, 2）

Gr
nm(t, t

′
) = − i

!θ(t− t
′
) < {dn(t), d†m(t

′
)} > (5)

n,m = 1, 2

それぞれ運動方程式をたてると、

!
i

∂

∂t
Gr

1n(t, t
′
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′
)

∂t
< {d1(t), d†n(t
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∂t
, d†n(t

′
)} >

= −δ1nδ(t− t
′
)− !θ(t− t

′
) < { i! [H(t), d1(t)]}, d†n(t

′
) > (6)

ここで、Heisenberg 表示を用いて、

[H(t), d1(t)] = [
∑
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εkαc
†
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†
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†
1(t)ckL(t)] +

∑
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[VkRc
†
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†
2(t)ckR(t)], d1(t)]

= −ε1d1(t)− t12e
iφd2(t)−

∑

k

VkLckL(t) (7)

ここで、

[ab, c] = a{b, c}− {a, c}b (8)
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直列２ドット

2013年 9月 16日

直列２ドットに対して retardedグリーン関数を導出し、散乱行列を求め、Brouwer の公式*1を適用する。
ハミルトニアンは、

H = Hlead +HQD +HT (1)

Hlead =
∑
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εkαc
†
kαckα (2)

HQD =
2∑

i=1

εid
†
idi + (t12d
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1d2 + h.c.) (3)

HT =
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[VkLc
†
kLd1 + h.c.] +

∑

k

[VkRc
†
kRd2 + h.c.] (4)

ただし、トンネル振幅 t12、VkL、VkR は物理的な整合性から負の実数にとることにする。
ドットのグリーン関数は、以下の (22 =)4種類がある。（n,m = 1, 2）

Gr
nm(t, t

′
) = − i

!θ(t− t
′
) < {dn(t), d†m(t

′
)} > (5)

n,m = 1, 2

それぞれ運動方程式をたてると、

!
i

∂

∂t
Gr

1n(t, t
′
) = −∂θ(t− t

′
)

∂t
< {d1(t), d†n(t

′
)} > −θ(t− t

′
) < {∂d1(t)

∂t
, d†n(t

′
)} >

= −δ1nδ(t− t
′
)− !θ(t− t

′
) < { i! [H(t), d1(t)]}, d†n(t

′
) > (6)

ここで、Heisenberg 表示を用いて、

[H(t), d1(t)] = [
∑

kα

εkαc
†
kα(t)ckα(t) +

∑

i

εid
†
i (t)di(t) + t12d

†
1(t)d2(t) + t12d

†
2(t)d1(t)

+
∑

k

[VkLc
†
kL(t)d1(t) + VkLd

†
1(t)ckL(t)] +

∑

k

[VkRc
†
kR(t)d2(t) + VkRd

†
2(t)ckR(t)], d1(t)]

= −ε1d1(t)− t12d2(t)−
∑

k

VkLckL(t) (7)

ここで、

[ab, c] = a{b, c}− {a, c}b (8)
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３ドットリング (ε1,Φ)

2013年 9月 16日

３ドットリングに対して retardedグリーン関数を導出し、散乱行列を求め、Brouwerの公式*1を適用する。
このノートは Brouwerの公式を用いてポンプ電流を求めるためのもので、パラメーターは時間変化させず
に扱う。
ドット１が左のリードに、ドット２が右のリードに結合しており、ドット１、２を直接結ぶアームとドット
３を介した接続が並列になってリングを成しているとする。
そして、このリングに磁束 Φが貫いているとする。
とりあえず、ドット１とドット２を直接結ぶアームの振幅 t12 に磁束 Φを持たせるとする。Φ0 = h

e は単位
磁束量子である。φ ≡ 2π Φ

Φ0
とおく。

ハミルトニアンは、

H = Hlead +HQD +HT (1)

Hlead =
∑

kα

εkαc
†
kαckα (2)

HQD =
3∑

i=1

εid
†
idi + (t12e

iφd†1d2 + h.c.) (3)

+(t23d
†
2d3 + h.c.) + (t31d

†
3d1 + h.c.) (4)

HT =
∑

k

[VkLc
†
kLd1 + h.c.] +

∑

k

[VkRc
†
kRd2 + h.c.] (5)

と書ける。
ただし、トンネル振幅 t12、t23、t31、VkL、VkR は物理的な整合性から負の実数にとることにする。
ドットのグリーン関数は、以下の (32 =)9種類がある。（n,m = 1, 2, 3）

Gr
nm(t, t

′
) = − i

!θ(t− t
′
) < {dn(t), d†m(t

′
)} > (6)

それぞれ運動方程式をたてると、まず、

!
i

∂

∂t
Gr

1n(t, t
′
) = −∂θ(t− t

′
)

∂t
< {d1(t), d†n(t

′
)} > −θ(t− t

′
) < {∂d1(t)

∂t
, d†n(t

′
)} >

= −δ1nδ(t− t
′
)− θ(t− t

′
) < { i! [H(t), d1(t)]}, d†n(t

′
) > (7)

は、ここで、Heisenberg 表示を用いて、

[H(t), d1(t)] = [
∑

kα

εkαc
†
kα(t)ckα(t) +

∑

i

εid
†
i (t)di(t) + t12e

iφd†1(t)d2(t) + t12e
−iφd†2(t)d1(t)
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直列２ドット

2013年 9月 16日

直列２ドットに対して retardedグリーン関数を導出し、散乱行列を求め、Brouwer の公式*1を適用する。
ハミルトニアンは、

H = Hlead +HQD +HT (1)

Hlead =
∑

kα

εkαc
†
kαckα (2)

HQD =
2∑

i=1

εid
†
idi + (t12d

†
1d2 + h.c.) (3)

HT =
∑

k

[VkLc
†
kLd1 + h.c.] +

∑

k

[VkRc
†
kRd2 + h.c.] (4)

ただし、トンネル振幅 t12、VkL、VkR は物理的な整合性から負の実数にとることにする。
ドットのグリーン関数は、以下の (22 =)4種類がある。（n,m = 1, 2）

Gr
nm(t, t

′
) = − i

!θ(t− t
′
) < {dn(t), d†m(t

′
)} > (5)

n,m = 1, 2

それぞれ運動方程式をたてると、

!
i

∂

∂t
Gr

1n(t, t
′
) = −∂θ(t− t

′
)

∂t
< {d1(t), d†n(t

′
)} > −θ(t− t

′
) < {∂d1(t)

∂t
, d†n(t

′
)} >

= −δ1nδ(t− t
′
)− !θ(t− t

′
) < { i! [H(t), d1(t)]}, d†n(t

′
) > (6)

ここで、Heisenberg 表示を用いて、

[H(t), d1(t)] = [
∑

kα

εkαc
†
kα(t)ckα(t) +

∑

i

εid
†
i (t)di(t) + t12d

†
1(t)d2(t) + t12d

†
2(t)d1(t)

+
∑

k

[VkLc
†
kL(t)d1(t) + VkLd

†
1(t)ckL(t)] +

∑

k

[VkRc
†
kR(t)d2(t) + VkRd

†
2(t)ckR(t)], d1(t)]

= −ε1d1(t)− t12d2(t)−
∑

k

VkLckL(t) (7)

ここで、

[ab, c] = a{b, c}− {a, c}b (8)
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Nanoampere charge pump by single-electron ratchet using silicon
nanowire metal-oxide-semiconductor field-effect transistor

Akira Fujiwara,a! Katsuhiko Nishiguchi, and Yukinori Ono
NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi,
Kanagawa 243-0198, Japan

!Received 16 November 2007; accepted 3 January 2008; published online 28 January 2008"

Nanoampere single-electron pumping is presented at 20 K using a single-electron ratchet
comprising silicon nanowire metal-oxide-semiconductor field-effect transistors. The ratchet features
an asymmetric potential with a pocket that captures single electrons from the source and ejects them
to the drain. Directional single-electron transfer is achieved by applying one ac signal with the
frequency up to 2.3 GHz. We find anomalous shapes of current steps which can be ascribed to
nonadiabatic electron capture. © 2008 American Institute of Physics. #DOI: 10.1063/1.2837544$

Clocked transfer of single electrons is attracting much
interest for the application to current standards in metrology1

and integrated single-electron !SE" circuits.2 While the origi-
nal proposal and demonstration of SE pumps3 and turnstiles4

were made using multiple metal islands separated by fixed
tunnel junctions of metal oxide, the use of gate-induced elec-
trostatic tunable barriers in semiconductors has a clear ad-
vantage for higher-frequency operation. The RC time can be
reduced since the R is likely to be tuned independently; R
and C are resistance and capacitance of the tunnel barrier,
respectively. Turnstiles using two barriers modulated by two
phase-shifted ac signals were reported using GaAs !15 MHz"
!Ref. 5" and Si !100 MHz".6 Recently, gigahertz operation
using GaAs has been reported based on the similar method.7

However, the current level is still limited to a subnanoam-
pere regime and the higher-frequency operation with a larger
current is desired since a nanoampere level is necessary for
the so-called metrological triangle experiment using a cryo-
genic current comparator.8

We report here a nanoampere SE pump operated with a
simple scheme using only one ac signal applied to one gate
in Si nanowire metal-oxide-semiconductor field-effect tran-
sistors !MOSFETs". We name the proposed device a SE
ratchet since it utilizes the asymmetry potential to capture
electrons from the source and eject them to the drain, thereby
causing directional SE transport without any source-drain
bias. It is shown that the nonadiabatic process plays a sig-
nificant role in the electron capture. Ratchets9 are known to
generate a directional motion in particles when their spatial
asymmetry is combined with an oscillating external field or a
nonequilibrium process. Such behavior has attracted much
interest in regard to the underlying physics and Brownian
motor in a biological system.

The device comprises two-gate-array Si nanowire
MOSFETs fabricated on a silicon-on-insulator wafer. Figures
1!a" and 1!b" show the schematic top view and cross-
sectional view of the device, respectively. The 30 nm wide
Si-wire channel and fine poly-Si gates with the gate length
!LG" of 40 nm and the gap !S" of 100 nm are fabricated by
electron beam lithography. A double-layer gate structure is
employed. The wide upper poly-Si gate !UG" is used as an
implantation mask during the formation of n-type source and

drain regions. The thicknesses of the Si wire !tSi", the gate
oxide under the fine gates !tox1", the oxide under UG !tox2",
and the buried oxide !tbox" are approximately 20, 30, 80, and
400 nm, respectively. Figures 1!c" and 1!d" show a top-view
scanning-electron-microscope image before the UG forma-
tion and a schematic diagram of the ratchet potential, respec-
tively. An ac pulse voltage !VG1" with a frequency !f" is
applied to the central gate !G1" thereby forming an oscillat-
ing barrier in the Si wire. In order to introduce asymmetry,
we applied a constant negative voltage !VG2" to the drain-
side gate !G2" and in so doing formed a fixed barrier on the
drain side. The third gate on the left was not used to form a
barrier and its voltage was constant at 2 V. In the gap region
between G1 and G2, a potential pocket is dynamically
formed so that it can capture electrons from the source and
eject them to the drain. Cross capacitance between G1 and
the pocket is essential for the electron ejection. The average
number of transferred electrons per cycle !n" is controlled by
the upper gate voltage !VUG". It is expected that the SE box is
formed as the barrier at G1 is raised and thereby a quantized

a"Electronic mail: afuji@will.brl.ntt.co.jp.

FIG. 1. !a" Schematic top view of the device. !b" Schematic cross section
along the line A-A!. !c" Scanning-electron-microscope image of the device
before the upper gate formation. Repetitive pulse voltage denoted by VG1 is
applied to the central gate and the constant negative voltage !VG2" is applied
to the right gate. The left-gate voltage is fixed at 2 V. !d" Schematic diagram
of the operation of the SE ratchet.
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If,

T [H0,S(s1)...H0,S(sn)] = H0,S(s1)...H0,S(sn)

then,

Texp(...) → exp(...)

ex) constant (indep. of time)
but, it is not realized in this case.

1 Model Hamiltonan
We consider the general case “time-dependent”.

The Hamiltonian of the system is follows,

H = Hlead +HQD +HT

= H0 +HT

Hlead =
∑

kα

εkαc
†
kαckα,

HQD = ε(t)d†d

HT =
∑

kα

[Vkαc
†
kαd+H.c.]

1.1 The lead part Hlead:

Hlead,S(t) ≡
∑

kα

ϵkα(t)c
†
kαckα, (18)

where the index α shows the R (right) or L (left) contacts. The energy of the
wave number k in the contact α is

ϵkα = ϵ0kα +∆kα(t), (19)

where ϵ0kα is time independent and ∆kα(t) designates external fluctuation of the
bias. First, we define “less” Green’s function of isolated contact α

g<kα(t, t
′
) ≡ i < c†kα,I(t

′
)ckα,I(t) >0, (20)

where < ... >0 means the avaregae of H0. The time-dependence of contact
creation / anihilation operators can be derived following,

We introduce interaction picture ckα,I(t) = e
i
!
´ t
s dt1H0(t)ckα,Se−

i
!
´ t
s dt1H0(t) =

U(t)†ckα,SU(t), thinking equation of motion

6

∆依存性
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まず、時間依存する電流

JL(t) = −
2e

! ΓL

∫ t

−∞
dt1

∫ ∞

−∞

dε

2π
Im{e−iε(t1−t)[G<(t, t1) + fL(ε)G

r(t, t1)]} (1)

を時間平均した電流

IL = −2e

! ΓL
ω

2π

∫ 2π
ω

0
dt

∫ t

−∞
dt1

∫ ∞

−∞

dε

2π
Im{e−iε(t1−t)[G<(t, t1) + fL(ε)G

r(t, t1)]}

IL(t) = < JL(t) >

=
ω

2π

∫ 2π
ω

0
dtJL(t)

= IL1 + IL2 (2)

という風に G< と Gr に依存する部分の２つに分ける。ここで、

IL1 = −2e

! ΓL
ω

2π

∫ 2π
ω

0
dt

∫ t

−∞
dt1

∫ ∞

−∞

dε

2π
Im{e−iε(t1−t)G<(t, t1)} (3)

IL2 = −2e

! ΓL
ω

2π

∫ 2π
ω

0
dt

∫ t

−∞
dt1

∫ ∞

−∞

dε

2π
Im{e−iε(t1−t)fL(ε)G

<(t, t1)} (4)

である。
いま、∂2IL(∆)

∂∆2 |∆=0 を求めるが、

TL =
∂2IL(∆)

∂∆2
|∆=0 (5)

= TL1 + TL2

ここで、

TL1 =
∂2IL1(∆)

∂∆2
|∆=0 (6)

TL2 =
∂2IL2(∆)

∂∆2
|∆=0 (7)

とする。
ドットの retardedグリーン関数 Gr(t, t1)の定義は、

Gr(t, t1) = −iθ(t− t1) < {d(t), d(t1)†} > (8)

1
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In*two*terminals*case,*pumped*charge*is�
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√
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ΓR ≡ 2πρ|VR|2

VL

VR

H = Hlead +HQD +HT

Hlead =
∑
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∑

k
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+
∑

k
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Gr
d(t, t
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) = − i

!θ(t− t
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) < {d(t), d†(t
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)} >

Q = e

∫ X1a
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π
Im
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ŜŜ† = I

|r|2 + |t|2 = 1

rt
′∗ + tr

′∗ = 0

(
bL,k

bR,k

)

SLL/RR = 1− iΓL/RG
r

SLR/RL = 1− i
√
ΓLΓRG

r

ΓL ≡ 2πρ|VL|2

ΓR ≡ 2πρ|VR|2

1

VL

VR

H = Hlead +HQD +HT
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†
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HQD = εdd
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k

[VkLc
†
kLd+ VkLd

†ckL] +
∑

k

[VkRc
†
kRd+ VkRd

†ckR]
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Gr
d(t, t

′
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!θ(t− t
′
) < {d(t), d†(t

′
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Fourier*transform*(******************)*
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φ ≡ 2π
Φ

Φ0

ε1

ε2

0

ε1

φ

−1

1

t23 = t31 = 0

Gr =

(
ε− ε1 + i

2ΓL t
t ε− ε2 + i

2ΓR

)−1

=
1

(ε− ε1 + i
2ΓL)(ε− ε2 + i

2ΓR)− t2

(
ε− ε2 + i

2ΓR −t
−t ε− ε1 + i

2ΓL

)

t→ −∞ ∝ − 1

t2
(−t)

(
− ε−ε2+

i
2ΓR

t 1

1 − ε−ε1+
i
2ΓL

t

)

=
1

t

(
− ε−ε2+

i
2ΓR

t 1

1 − ε−ε1+
i
2ΓL

t

)

I = ef

I = 2ef

t− t
′
→ ε

ε→ εF
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Φ
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2ΓL t
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(
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(−t)
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i
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t 1
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i
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t
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i
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i
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ε3

t23

t31

t12e
2πiΦ(t)

Φ0

Φ(t) = B(t)× S(t)

Φ(t)

= B(t)× S(t)

Φ0 =
h

e

0 ≤ ε1 ≤ 1, 0 ≤ ε2 ≤ 1

−1 ≤ ε1 ≤ 0,−1 ≤ ε2 ≤ 0

ΓLL = ΓRR = 1

t12 ≡ t

εF = 0

t12 = t23 = t31 ≡ t

Φ0 =
h

e

ε2 = ε3 = 0.1
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直列２ドット

2013年 9月 16日

直列２ドットに対して retardedグリーン関数を導出し、散乱行列を求め、Brouwer の公式*1を適用する。
ハミルトニアンは、

H = Hlead +HQD +HT (1)

Hlead =
∑

kα

εkαc
†
kαckα (2)

HQD =
2∑

i=1

εid
†
idi + (t12d

†
1d2 + h.c.) (3)

HT =
∑

k

[VkLc
†
kLd1 + h.c.] +

∑

k

[VkRc
†
kRd2 + h.c.] (4)

ただし、トンネル振幅 t12、VkL、VkR は物理的な整合性から負の実数にとることにする。
ドットのグリーン関数は、以下の (22 =)4種類がある。（n,m = 1, 2）

Gr
nm(t, t

′
) = − i

!θ(t− t
′
) < {dn(t), d†m(t

′
)} > (5)

n,m = 1, 2

それぞれ運動方程式をたてると、

!
i

∂

∂t
Gr

1n(t, t
′
) = −∂θ(t− t

′
)

∂t
< {d1(t), d†n(t

′
)} > −θ(t− t

′
) < {∂d1(t)

∂t
, d†n(t

′
)} >

= −δ1nδ(t− t
′
)− !θ(t− t

′
) < { i! [H(t), d1(t)]}, d†n(t

′
) > (6)

ここで、Heisenberg 表示を用いて、

[H(t), d1(t)] = [
∑

kα

εkαc
†
kα(t)ckα(t) +

∑

i

εid
†
i (t)di(t) + t12d

†
1(t)d2(t) + t12d

†
2(t)d1(t)

+
∑

k

[VkLc
†
kL(t)d1(t) + VkLd

†
1(t)ckL(t)] +

∑

k

[VkRc
†
kR(t)d2(t) + VkRd

†
2(t)ckR(t)], d1(t)]

= −ε1d1(t)− t12d2(t)−
∑

k

VkLckL(t) (7)

ここで、

[ab, c] = a{b, c}− {a, c}b (8)

*1 P.W.Brouwer, PRB 58 16 (1998)

1

Hamiltonian*

below a threshold value, electrons are pumped from source
to drain, i.e., ISD!0, as shown in Fig. 2!a". A finite bias
voltage, VSD= +50 "V, was applied opposite to the pumping
direction to prove the pumping regime. The results for dif-
ferent experimental conditions are offset in V2 for clarity,
plotting the current versus #V2, which is the change in V2.
Four clear plateaus are observed in case !i" as #V2 is varied
from −5 to −50 mV. The ratio ISD /ef switches between in-
teger values to within the noise level of the measurement
setup. We conclude that in this configuration, up to four elec-
trons are robustly transferred in one cycle, depending on the
value of V2.

The tolerance in channel width was investigated by re-
peating the above measurements in device B having a litho-
graphic channel width of about 700 nm. The corresponding
pumped current is shown by the colored curves in Fig. 2!a".
The transition regions between the plateaus are wider than in
device A, but do not significantly change as the frequency is
increased by almost an order of magnitude. The following
examples are shown for frequencies in curves: !ii" 0.1 GHz,
!iii" 0.47 GHz, and !iv" 0.8 GHz. The current values at fixed
V1 and V2, corresponding to the first plateau, are plotted in
Fig. 2!b" and show the expected linear dependence on f .
Quantization was robust for the measured range of Prf=
−26 to –23 dBm, while the range of V1 for which quantized
pumping was observed increases with applied rf power Prf.

For a quantitative theoretical analysis of the quantization
mechanism, we consider a simple quantum model of nonin-
teracting electrons confined in a one-dimensional wire and
subjected to a time-dependent double-barrier potential, as
plotted in the insets of Fig. 2,

U!x,t" = U1!t"e−!x + x0"2/w2
+ U2e−!x − x0"2/w2

, !1"

with a harmonically oscillating left barrier, U1!t"=U1
dc

−U1
ac cos!2$ft". The boundary conditions are defined by a

Fermi distribution of electrons coming from the left, fF!"
+eVSD", and from the right, fF!"", where " is the electro-
chemical potential of electrons in the drain. Standard para-
bolic dispersion is taken for the wire assuming bulk GaAs
effective electron mass of m*=0.067me.

Full statistics of the stationary state in this model, includ-

ing the dc current and the Fano factor, can, in principle, be
obtained by solving the corresponding Floquet scattering
problem.13,22 However, the high number of excited side
bands in the vicinity of the adiabatic limit renders such a
calculation impractical. In order to proceed with the calcula-
tion, we restrict the parameters such that at all times there
exists at least one quasibound state in the potential well
formed between the barriers.

The instantaneous energy level %0!t" and its broadenings
due to tunneling coupling to the left &L!t" and to the right
&R!t" for the lowest of these states are obtained numerically
by solving the frozen-time scattering problem and approxi-
mating the corresponding resonance with a Breit–Wigner
formula.

The other quasibound states can be ignored if the gap
from the lowest state, #%#%1−%0, is sufficiently large, such
that #%'"−%0, hf , kBT. It has been shown in Ref. 16 that
exact results for adiabatic !f →0" pumping via a single reso-
nance can be accurately approximated for &(kBT by solving
a simple rate equation for the level occupation probability
P!t",

V
SD

V
1

P
RF

V
2

500nm

~
Gate 1

Gate 2

p
u
m

p
e
d

p
u
m

p
e
d

e
le

c
tr

o
n
s

e
l e

c
tr

o
n
s S

D

I
SD

FIG. 1. !Color online" Picture of a typical device !left" with
TiAu finger gates over the etched channel. In the scanning electron
microscopy picture !right", bias and gate voltages are indicated,
showing the gate colored in red as being modulated. The source !S"
and drain !D" reservoirs are indicated. The hatched regions are de-
pleted of the two-dimensional electron gas. A quasibound state is
formed between gates 1 and 2, as indicated by the white ellipse. The
direction of the pumped electrons is indicated by the white arrow on
the left. The lowest gate is not in use in this experiment.
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FIG. 2. !Color online" !a" Pumped current ISD normalized by ef
is shown versus the variation of the dc voltage applied to gate 2,
#V2. Experimental conditions are listed in the table. The corre-
sponding results are offset in V2 for clarity. Snapshots of the time-
dependent potential U during loading and unloading of a single
electron are shown in the insets. Calculated U and the wave func-
tion of the relevant transport state ) correspond to the calculation
presented in Fig. 3. !b" ISD generated by device B when operated at
different frequencies.
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Q =
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ΓLLΓRRt212
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2ΓLL)(εF − ε2 + i
2ΓRR)− t212|4

×[(εF − ε1)(εF − ε2)2 − t212(εF − ε2) +
1

4
Γ2
RR(εF − ε1)]
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π

[(εF − ε1){(εF − ε2)2 + 1
4Γ

2
RR}− t212(εF − ε2)]

|(εF − ε1 + i
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2ΓRR)− t212|4

となる。
これを直列２ドットの結果
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{ΓRR(εF − ε1) + ΓLL(εF − ε2)}
|(εF − ε1 − i

2ΓLL)(εF − ε2 − i
2ΓRR)− t212|4
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2ΓLL)(εF − ε2 − i
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e

π

Γ2
LRt

2
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|(εF − ε1 + i
2ΓLL)(εF − ε2 + i

2ΓRR)− t212|4
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Q
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=
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π

ΓLLΓRRt212
|(εF − ε1 + i

2ΓLL)(εF − ε2 + i
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1

4
Γ2
RR(εF − ε1)]
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Mono-parametric quantum charge pumping:
Interplay between spatial interference and photon-assisted tunneling

Luis E. F. Foa Torres*
International Center for Theoretical Physics, Strada Costiera 11, 34014 Trieste, Italy
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We analyze quantum charge pumping in an open ring with a dot embedded in one of its arms. We show that
cyclic driving of the dot levels by a single parameter leads to a pumped current when a static magnetic flux is
simultaneously applied to the ring. Based on the computation of the Floquet-Green’s functions, we show that
for low driving frequencies !0, the interplay between the spatial interference through the ring plus photon-
assisted tunneling gives an average direct current, which is proportional to !0

2. The direction of the pumped
current can be reversed by changing the applied magnetic field.

DOI: 10.1103/PhysRevB.72.245339 PACS number!s": 73.23."b, 72.10."d, 73.40.Ei, 05.60.Gg

I. INTRODUCTION

A direct current !dc" is usually associated to a dissipative
flow of the electrons in response to an applied bias voltage.
However, in systems of mesoscopic scale a dc current can be
generated even at zero bias. This captivating quantum coher-
ent effect is called quantum charge pumping1–3 and it is of
considerable interest both theoretically1–8 and
experimentally.9,10 A device capable of providing such effect
is called a quantum pump and typically involves the cyclic
change of two device-control parameters with a frequency
!0. The operational regime of the pump can be characterized
according to the relative magnitude between !0 and the in-
verse of the time taken for an electron to traverse the sample,
1 /#T. When !0$1/#T the pump is in the so-called adiabatic
regime, whereas the opposite case, !0%1/#T, the pump is in
the nonadiabatic regime.

For adiabatic pumping, Brouwer3 gave an appealing ap-
proach that is based on a scattering matrix formulation to
low-frequency ac transport due to Büttiker et al.11 In this
formulation, the pumped current, which flows in response to
a the cyclic variation of a set #Xj$ of device-control param-
eters, is expressed in terms of the scattering matrix S!#Xj$" of
the system. One of the outcomes of this parametric pumping
theory, which is valid in the low-frequency regime !!0
$1/#T" and up to first order in frequency, is that the charge
pumped during a cycle is proportional to the area enclosed
by the path in the scattering matrix parameter space. Thus, to
have a nonvanishing pumped charge, at least two time-
dependent parameters that oscillate with a frequency !0 and
with a nonvanishing phase difference & between them are
needed.

In this context, a natural question that arises is whether a
pumped current can be obtained using a single time-
dependent parameter. In most of the works considered up to
now, at least two parameters are used to obtain pumping. A
typical configuration that has been extensively studied theo-
retically and experimentally10 consists of a dot connected to
two leads with two out-of-phase time-dependent gate volt-
ages that produce cyclic changes in its shape %see Fig. 1!a"&.
In contrast, pumps based on a single parameter variation
have attracted much less attention. This is partly due to the

fact that no pumping can be obtained from them in the low-
frequency regime up to first order in !0. Hence, obtaining a
nontrivial result requires going beyond the adiabatic limit
described by the standard parametric pumping theory3 as in
Refs. 5, 12, and 13. In spite of giving a current, which, at low
frequencies, is a priori weaker than the one obtained using a
two-parameter variation, they can give comparable pumped
currents at intermediate and high frequencies.14 Besides, the
understanding of such “mono-parametric pumps” constitutes
a necessary step in the comprehension of driven systems.

Previous theoretical studies in this direction include the
works by Kravtsov and Yudson16 and Aronov and
Kravtsov,17 where pumping in a ring !not connected to leads"
threaded by a time-dependent flux was studied. In Ref. 18,
Wang et al. considered the case in which the height of one of
the barriers of a double-barrier system connected to external
leads is modulated periodically. This modulation dynami-
cally breaks the inversion symmetry of the system producing
a pumped current. Other theoretical works aiming at the fre-

FIG. 1. !a" Schematic representation of a typical quantum pump
consisting in an open dot driven by two out-of-phase time-
dependent gate voltages. !b" Scheme of the system considered in
this work, a ring connected to two leads. The ring, which is
threaded by a magnetic flux, contains a dot embeded in one of its
arms. Charge pumping is obtained by driving the dot levels through
a time-periodic potential.
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Photon>assisted*tunneling�

Using*nonequilibrium*Green’s*func5on*method,*we*evaluated*

5me>averaged*current*under*the*general*5me>dependent*energy*of*QD.*

∆依存性 ２次（一般の時間依存の場合）

2013年 11月 26日

このノートは、非平衡グリーン関数の方法により、１パラメーターで量子ポンプが起こるかどうかを調べる
ためのものである。以前のノートでドットの時間依存が

∆(s) = ∆cos(ωs+ φ) (1)

のときは、得られた電流の表式はランダウアー型（エネルギー積分の被積分関数の overallにフェルミ分布
関数の差がかかっている）になり、絶対零度・零バイアスでは電流は０になった。（∆ の一次の係数は 0 に
なった。）
今回は、一般の時間依存の場合

ε(t) =

∆(t) = ∆
∞∑

n=−∞
[∆ne

inωt] (2)

ただし、∆(s)は実数であるから、

∆∗
n = ∆−n (3)

また、ドットのエネルギー準位の時間変化分であるので

∆0 = 0 (4)

を満たす。
この場合（このような場合は時間に対して一般的に激しく時間非対称な場合: racketのような状況を含む。）
で電流の表式を調べる。
まず、時間依存する電流

JL(t) = −
2e

! ΓL

∫ t

−∞
dt1

∫ ∞

−∞

dε

2π
Im{e−iε(t1−t)[G<(t, t1) + fL(ε)G

r(t, t1)]} (5)

を時間平均した電流

IL(t) ≡ JL(t)

=
ω

2π

∫ 2π
ω

0
dtJL(t)

= IL1 + IL2 (6)

1
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Flux*dependence*of*the*pumped*charge*is**

decided*only*for*start*and*end*values*of*flux.*

(i.e.*global&property)*�

Flux*is*special*!��

These*behaviors*might*be*explained*
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Plan of the talk

• Quantum adiabatic pumps, Brouwer’s formula 

• Series quantum dots, triple quantum dot ring 

• Full counting statistics with quantum master 
equation 

• Non-adiabatic pump 

• Conclusions
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Quantum adiabatic pump

5

Electrons move coherently in a mesoscopic system. 
!
Effect of quantum mechanical phase coherence in the 
pumping processes?

Quantum adiabatic pump is an electron transport at (net) 
zero bias voltage by changing various system dynamic 
parameters adiabatically, periodically in time.
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Brouwer’s formula

6

Pumped charge per cycle (at T=0) 
Q↵ = T0I↵

For two control parameters, with Stoke’s theorem, we have

Q↵ = � e

⇡

Z

A
dX1dX2={

@S†
0(EF , X1, X2)

@X1

@S0(EF , X1, X2)

@X2
}↵↵

M. Buttiker et al., Z.Phys. B 94, 133 (1994).  
P. W. Brouwer, Phys. Rev. B 58, R10135 (1998).

= � e

2⇡

Z T0

0
dt ={@S0(EF , t)

@t
S†
0(EF , t)}↵↵

S0(E, t) ⌘ S0(E, {X⌫(t)})
Instantaneous scattering matrix

T0 =
2⇡

!

We assume a set of dynamical parameters Xν(t) which 
change slowly and periodically with period 
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Simple example: series two QDs

7

Q

−e ≡ q = −
ˆ X1b

X1a

ˆ X2b

X2a

dX1dX2 Π (X1, X2)

1

SLL/RR(εF ) = 1− iΓL/RG
r
d(εF )

SLR/RL(εF ) = −i
√
ΓLΓRG

r
d(εF )

εF

ΓL ≡ 2πρ|VL|2

ΓR ≡ 2πρ|VR|2

VL

VR

H = Hlead +HQD +HT

Hlead =
∑

kα

εkαc
†
kαckα

HQD = εdd
†d

HT =
∑

k

[VkLc
†
kLd+ VkLd

†ckL]

+
∑

k

[VkRc
†
kRd+ VkRd

†ckR]

\

Gr
d(t, t

′
) = − i

!θ(t− t
′
) < {d(t), d†(t

′
)} >

Q = e

∫ X1a

X1b

∫ X2a

X2b

dX1dX2Π(X1, X2)

Π(X1, X2) =
1

π
Im

[
∂S∗

LL

∂X1

∂SLL

∂X2
+
∂S∗

LR

∂X1

∂SLR

∂X2

]

X1

X2

X1 = ε1, X2 = ε2

X1 = ε1, X2 = φ

2

Kernel:

Q

−e ≡ q = −
ˆ X1b

X1a

ˆ X2b

X2a

dX1dX2 Π (X1, X2)

X1 = ε1, X2 = ε2

x1 =
ε− ε1
ΓL

x2 =
ε− ε2
ΓR

s12 =
t12√
ΓLΓR

Π̃ (x1, x2) = −
|s12|2

2π

x1 + x2∣∣∣
(
x1 +

i
2

) (
x2 +

i
2

)
− |s12|2

∣∣∣
4

0 ≤ x1, x2 ≤ ∞

1

When we choose first quadrant as surface integral region,�

Q

−e ≡ q = −
ˆ X1b

X1a

ˆ X2b

X2a

dX1dX2 Π (X1, X2)

X1 = ε1, X2 = ε2

x1 =
ε− ε1
ΓL

x2 =
ε− ε2
ΓR

s12 =
t12√
ΓLΓR

Π̃ (x1, x2) = −
|s12|2

2π

x1 + x2∣∣∣
(
x1 +

i
2

) (
x2 +

i
2

)
− |s12|2

∣∣∣
4

0 ≤ x1, x2 ≤ ∞

q =
1

1 + 1
4|s12|2

|s12|→∞

q = 1

1

for |t12| ! 1
x⌫ ⌘ (EF � "⌫)/�⌫



NPSMP seminar, 2015.6.3

Scattering matrix

8

J. E. Avron et al., Phys. Rev. B 62, R10618 (2000).

S0 = ei�
✓

cos(✓)ei↵ i sin(✓)e�i�

i sin(✓)ei� cos(✓)e�i↵

◆

↵ ! ↵+ 2kF dLMoving the scatterer

General form of the scattering matrix in two terminal system

� ! �� e

~

Z
dxA(x)Applying a vector potential

Pump by modulating phase        ? �
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Time-dependent tunnel phase

9

X1 = ε1, X2 = ϕ12

Π̃ (x1,ϕ12) =
|s12|2

π

x1

∣∣x2 +
i
2

∣∣2 − |s12|2 x2∣∣∣
(
x1 +

i
2

) (
x2 +

i
2

)
− |s12|2

∣∣∣
4

xa ≤ x ≤ xb,φ12a ≤ φ12 ≤ φ12b

q = δϕ12
|s12|2

2π
(
x2
2 +

1
4

)
(

1

x2
b + α2

− 1

x2
a + α2

)

xa/b = x1a/b − βx2

x = x1 − βx2

α =
1

2
(1 + β)

β =
|s12|2

x2
2 +

1
4

δϕ12 = ϕ12b − ϕ12a

xa =∞, xb = 0

qmax = δφ12
2 |s12|2

π

x2
2 +

1
4(

x2
2 +

1
4 + |s12|2

)2

|s12| <
1

2

x2 = 0

qmax,ext = δφ12
|s12|

2π
(

1
4 + |s12|2

)2

|s12| >
1

2

x2 = ±
√
|s12|2 −

1

4

qmax,ext =
δφ12
2π

qmax =
δϕ12

2π

q ∝ δϕ12

2

R. I. Shekhter, et al.,  
PRL 97, 156801 (2006)�

be precisely defined and ‘‘quantum alternative’’ paths for
the electrons through the screen appear. Figures 1(c) and
1(d) show two examples of such a ‘‘quantum geometry’’,
giving rise to electron paths through the hole that are
multiply connected. Such an intimate, coherent nanoelec-
tromechanical coupling between electronic and mechani-
cal degrees of freedom leads to characteristic quantum
interference among the electron paths and, in particular,
to an Aharonov-Bohm-type of effect in the presence of an
external magnetic field.

Because of their low mass and unique mechanical
and electronic properties, single-wall carbon nanotubes
(SWNTs) offer perhaps the best possibility for studying
quantum nanoelectromechanical phenomena [3,4].
Figure 2 shows a sketch of the system we have in mind
to achieve coherent coupling between quantum electronic
transport and quantum flexural vibrations of a nanotube: a
free-hanging SWNT, doubly clamped to two metallic leads
and subject to a transverse magnetic field, H. This system
is described by the Hamiltonian,

 Ĥ ! Ĥleads " Ĥel " Ĥmech " Ĥtunn; (1)

where the first term,

 Ĥ leads !
X

k

"l;kâ
y
l;kâl;k "

X

k

"r;kâ
y
r;kâr;k; (2)

models electrons in states k in the left (l) and right (r) leads
and âyl=r;k [âl=r;k] is the corresponding creation [annihila-
tion] operator. The second term,
 

Ĥel !
Z
d3 ~r

!
# @2

2m
 ̂y$ ~r%

"
@
@~r
# ie
c@

~A$ ~r%
#

2
 ̂$~r%

"U!y# û$x%; z" ̂y$ ~r% ̂$ ~r%
$
; (3)

describes the SWNT electrons, confined in the transverse
direction by a potential U$y; z% that depends on the deflec-
tion u$x% of the tube (in the y direction). The operator  ̂y$~r%
[ ̂$~r%] creates [annihilates] an electron at ~r ! $x; y; z%;
f ̂y$ ~r%;  ̂$~r0%g ! !$ ~r# ~r0% and ~A$~r% ! $#Hy; 0; 0%.

The bending of the tube is modeled by the third term in
the Hamiltonian (1) as

 Ĥ mech !
Z L=2

#L=2
dx
!

1

2"
#̂2$x% " EI

2

"
@2û$x%
@x2

#
2
$
: (4)

Here #̂$x% is the momentum density operator conjugate
with the deflection field operator û$x%, i.e. &û$x%; #̂$x0%' !
i@!$x# x0%, " is the linear mass density of the SWNT, I is
its area moment of inertia and E is the Young’s modulus.
The tube is doubly clamped, which gives the boundary
conditions u$x% ! 0 and u0$x% ! 0 for jxj ( L=2.

The tunneling Hamiltonian, Ĥtunn ! T̂l " T̂r, where

 T̂ l=r !
X

k

Z
d~rT l=r$ ~r; k% ̂y$ ~r%âl=r;k " H:c:; (5)

and T l=r$ ~r; k% are overlap integrals, describes how electron
tunneling couples the SWNT and the two leads.

In order to proceed it is convenient to make the unitary
transformation eiŜĤe#iŜ, with
 

Ŝ ! #i
Z
d3 ~r

!
û$x% ̂y$~r% @ ̂$~r%

@y

" i eH@c
"Z x

0
dx0û$x0%

#
 ̂y$ ~r% ̂$~r%

$
:

Here the first term produces a coordinate transformation to
the nanotube reference frame, while the second generates a
gauge transformation that eliminates the vector potential
from the Hamiltonian Ĥel. Furthermore, since the trans-
verse electron motion in the SWNT is strongly quantized it
may be decoupled from the longitudinal motion by letting
 ̂$ ~r% ! !$y; z% ̂$x%. Here !$y; z% ! !$~rt% is the wave
function corresponding to a transverse quantized energy
level Et. As a result the terms Ĥel, Ĥmech and T̂l=r in the
Hamiltonian (1) simplify to
 

Ĥel !
Z
dx ̂y$x%

"
# @2

2m
@2

@x2""t
#
 ̂$x%;

Ĥmech !
Z L=2

#L=2
dx
!

1

2"

"
#̂$x%# eH

c

Z x

0
dx0 ̂y$x% ̂$x%

#
2

"EI
2

"
@2û$x%
@x2

#
2
$
;

T̂l=r ! exp
%
i
eH
@c

Z )L=2

0
dxû$x%

&

*
X

k

Z
dxTl=r$x;k% ̂y$x%âl=r;k"H:c;

(6)

where Tl=r$x; k% !
R
d~rtT l=r$ ~r; k%j!$ ~rt%j2 and [5] "t!

Et"$e2H2=2mc2%RRd~rty2j!$~rt%j2.
By analogy one may think of the elementary excitations

created by  ̂y$x% in the transformed Hamiltonian (6) as
polarons. It is important that due to the quantum vibrations
of the nanotube the wave function of this polaronic state is
extended in the direction perpendicular to the tube axis.
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FIG. 2 (color online). Nanoelectromechanical system pro-
posed to show the coherent coupling between quantum electron
transport and quantum flexural vibrations discussed in the text.
Electrons tunneling through a doubly clamped SWNT excite
quantized vibrations of the SWNT in the presence of a magnetic
field, H. The resulting effective multiconnectivity of the system
leads to a negative magnetoconductance (see text).
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FIG. 6: Kernel Π (x3,φ)の等高線プロット。横軸は γ で規格化
されたドット 3のエネルギー x3、縦軸は位相 φAB、各パラメー
ターは |s12| = |s23| = |s31| = 1とおいた。左はドット 1, 2のエ
ネルギーが両方正 (x1 = x2 = 1)の場合、右図はドット 1, 2の
エネルギーが反対符号の場合 (x1 = −x2 = 1)

FIG. 7: ポンプ電荷のプロット。Figure 5 の Kernel をコント
ロールパラメーターであるドット 3のエネルギー x3 と磁束 φに
より面積分している。トンネル結合は |s12| = |s23| = |s31| = 1
とおいた。上図はドット 1, 2のエネルギーが両方負 (x1 = x2 =
−1)の場合、下図はドット 1, 2のエネルギーが反対符号の場合
(x1 = −x2 = 1)である。ポンプ電荷の最大値を見積もりたいた
め、最大値付近で、周期的な位相差を横軸にとり、ドット 3のエ
ネルギーの積分範囲をピークのみを拾う場合（青）と、周辺まで
含めた場合（赤）に分けてプロットした。

の有効電荷を階段関数的に、反対符号のときは同じ大き
さの正負の有効電荷を交互にかせぐことがわかる。Figure
6は、Kernelの等高線プロットである Figure 5をコント
ロールパラメーターであるドット 3 のエネルギーと位相
により面積分した結果である。ポンプ電荷の最大値を見積
もりたいため、最大値付近で、周期的な位相差を横軸にと
り、ドット 3のエネルギーの積分範囲をピークのみを拾う
場合と、周辺まで含めた場合でプロットした。図 7は位相
方向が 2π周期である。ポンプ電荷も周期的に増える。
ドット 1,2のエネルギーの符号が同じとき（x1 = x2）に

その大きさを変えた場合（他のパラメーター |s12| = |s23| =
|s31| = 1）や、トンネル結合（こちらは Kernelに常に２
乗で出てくるので符号が異なる場合は考えない）の大きさ
を変えた場合（他のパラメーター x1 = x2 = 1）にKernel
のピークを見積もったところ、ピーク値は振動し、下限値

（0.4）が存在することがわかった。
ドット 1, 2 のエネルギーの符号が異なるとき（x1 =

−x2）、ドット 1, 2のエネルギーを絶対値を同じ大きさに
して、大きさを変えて Kernelのピークを見積もったとこ
ろ（他のパラメーター |s12| = |s23| = |s31| = 1にしたと
き）、ピークはその絶対値の大きさに対して単調増加する
が、下限値（0.4）が存在することがわかった。

V. 結論

本論文において、1. 直列 2ドットと 2. 3ドットリング
のポンプ電荷に対する具体的な表式を得た。

1. 直列 2ドットについては、(a) コントロールパラメー
ターを (ε1, ε2)に選んだ際のポンプ電荷の最大値を評価し、
それが e(素電荷)であることがわかった。
また、(b) コントロールパラメーターを (ε1,φ12)に選ん

だ際には Kernelが φ12 に依存せず、これに伴いポンプ電
荷の最大値は位相差 δφ12に線形に比例し上 (下)限が存在
しないことがわかった。さらに、ドット間トンネル結合の
極限値においては、それが十分弱いときはKernelは各ドッ
トに付随する量に分解でき、時間的な位相差により電流が
誘起されるという解釈ができた。

2. 3ドットリングについても、コントロールパラメー
ターを (ε3,φ)に選んだ際のポンプ電荷の最大値を評価し、
それが位相差 δφの取る範囲に関してドット 1,2のエネル
ギーが、同符号のときは階段関数的に、反対符号のときは
矩形の繰り返し上に有効電荷をかせぐことがわかった。
電流標準という観点からこの結果を見ると、1-(b)と 2

の結果はともに位相を大きく振るという面で大きな電荷を
得られるという利点がある。一方で実験的な位相制御とい
う面でのロバスト性に関しては 2の結果は有効電荷を非連
続的にかせぐので、より安定であるということができる。

Appendix A: 直列 2ドットのKernelとポンプ電荷

直列 2ドットの Kernel Π (X1, X2)を考える。

Gr (Gr)−1 = 1, (A1)

X で微分すると、

∂Gr

∂X
= −GrfXGr. (A2)

を得る。Kernelには (1, 1)成分と (1, 2)成分が必要であ
る。ここで fX ≡ ∂ (Gr)−1 /∂X を定義した。
これより、2つのコントロールパラメーターを、X1 =

ε1, X2 = ε2 と選ぶと、Kernel Π (ε1, ε2)は、

• X = ε1 のとき

fε1 =

(
−1 0
0 0

)
, (A3)
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されたドット 3のエネルギー x3、縦軸は位相 φAB、各パラメー
ターは |s12| = |s23| = |s31| = 1とおいた。左はドット 1, 2のエ
ネルギーが両方正 (x1 = x2 = 1)の場合、右図はドット 1, 2の
エネルギーが反対符号の場合 (x1 = −x2 = 1)
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ターを (ε3,φ)に選んだ際のポンプ電荷の最大値を評価し、
それが位相差 δφの取る範囲に関してドット 1,2のエネル
ギーが、同符号のときは階段関数的に、反対符号のときは
矩形の繰り返し上に有効電荷をかせぐことがわかった。
電流標準という観点からこの結果を見ると、1-(b)と 2

の結果はともに位相を大きく振るという面で大きな電荷を
得られるという利点がある。一方で実験的な位相制御とい
う面でのロバスト性に関しては 2の結果は有効電荷を非連
続的にかせぐので、より安定であるということができる。

Appendix A: 直列 2ドットのKernelとポンプ電荷

直列 2ドットの Kernel Π (X1, X2)を考える。

Gr (Gr)−1 = 1, (A1)

X で微分すると、

∂Gr

∂X
= −GrfXGr. (A2)

を得る。Kernelには (1, 1)成分と (1, 2)成分が必要であ
る。ここで fX ≡ ∂ (Gr)−1 /∂X を定義した。
これより、2つのコントロールパラメーターを、X1 =

ε1, X2 = ε2 と選ぶと、Kernel Π (ε1, ε2)は、

• X = ε1 のとき

fε1 =

(
−1 0
0 0

)
, (A3)

5

Pumped charge shows quantized behavior

�'

M. Taguchi, et al., arXiv:1504.00059
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The effect of interaction
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Brouwer’s formula is only applicable to non-interacting system.

Interaction can be treated in
• Green’s function approach 
  J. Splettstoesser, et al., Phys. Rev. Lett. 95, 246803 (2005). 
  
• The real-time diagrammatic approach 

H. L. Calvo, et al., Phys. Rev. B 86, 245308 (2012).  
!

• Full-counting statistics with quantum master equation 
T. Yuge, et al., Phys. Rev. B 86, 235308 (2012).

These approaches are shown to be equivalent for the 
second-order treatment of the tunnel-coupling to the leads.
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Full counting statistics
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H(t) = H0(t) +H1(t)

d

dt
⇢(t) = �i[H(t), ⇢(t)]

Hamiltonian with treating tunnel-couplings as a perturbation

H1(t)

Total system density matrix obeys

Projection measurements of an observable O in leads at t=0 and τ:

two outputs, o(τ) and o(0) and these difference Δo=o(τ)-o(0).
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Density matrix
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Generating function of the probability density function

� :counting field of O

M. Esposito, et al., Rev. Mod. Phys. 81, 1665 (2009).

= Tr

tot

[⇢(�, t = ⌧)]

The density matrix modified by full-counting statistics 
evolves with

d

dt
⇢(�, t) = �i[H�(t)⇢(�, t)� ⇢(�, t)H��(t)]

where

H�(t) ⌘ ei�O/2H(t)e�i�O/2

Z

⌧

(�) ⌘
Z

d�oP

⌧

(�o)ei��o

P⌧ (�o)
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Full counting statistics quantum master 
equation (FCS-QME)
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Reduced density matrix:

The left- and right- eigenvectors

K̂(�,↵t)|⇢�n(↵)ii = ��
n(↵)|⇢�nii

hh`�n(↵)|K̂(�,↵t) = ��
n(↵)hh`�n(↵)|

Ortho-normalization hh`�m(↵)|⇢�n(↵)ii = �mn

⇢S(�, t) ⌘ TrB⇢(�, t)

↵t :a set of control parameters at time t

Master equation by Born-Markov approximation (in Liuville space)

d

dt
|⇢S(�, t)ii = K̂(�,↵t)|⇢S(�, t)ii

K̂(�,↵t) :Liouvillian modified by χ
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Statistical average

17

Formal solution of the GQME:

Generating function is now obtained by

Z⌧ (�) = TrS [⇢S(�, t = ⌧)] ⌘ hh1|⇢S(�, ⌧)ii

|⇢S(�, ⌧)ii = Texp[

Z t

0
ds ˆK(�,↵s)]|⇢S(�, 0)ii

Average of a physical quantity:
Xµ(↵) ⌘ @X(�,↵)

@(i�µ)

����
�=0h�oµit =

@

@(i�µ)
hh1|⇢S(�, t)ii|�=0

=

Z t

0
duhh1|K̂µ(↵u)|⇢S(u)ii ⌘

Z t

0
duIµ(u)
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Steady state
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Probability should be conserved for 

Tr⇢S(t) ⌘ hh1|⇢S(t)ii = 1

0 =
d

dt
hh1|⇢S(t)ii = hh1|K̂(0,↵t)|⇢S(t)ii

hh1|K̂(0,↵t) = 0

� = 0

{hh`�0 (↵), |⇢
�
0 (↵)ii} ! {hh`00(↵), |⇢00(↵)ii}

We define the n=0 eigenfunction with an eigenvalue of largest real part 

� ! 0

hh`00(↵)| = hh1|

Steady state condition: K̂(↵)|⇢00(↵)ii = 0

�0
0(↵) = 0
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Pseudo inverse
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Quantum master equation is obtained when χ=0:
d

dt
|⇢S(t)ii = K̂(↵)|⇢S(t)ii

Separate adiabatic and non-adiabatic parts

=
1X

n=1

(R(↵t)
d

dt
)n|⇢0(↵t)ii

|⇢a(t)ii = R(↵t)
d

dt
(|⇢00(↵t)ii+ |⇢a(t)ii

|⇢S(t)ii = |⇢00(↵t)ii+ |⇢a(t)ii

d

dt
|⇢S(t)ii = K̂(↵)|⇢a(t)ii

Pseudo inverse operator:

|⇢a(t)ii = R(↵)
d

dt
|⇢S(t)ii

R(↵)K̂(↵) = 1� |⇢00iihh1|



NPSMP seminar, 2015.6.3

Hierarchy of adiabatic currents
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current operator
Iµ(t) ⌘ hh1|K̂µ(↵t)|⇢S(t)ii

⌘ hh1|Wµ(↵)

Adiabatic limit: Instantaneous steady current:

ISteady(↵t) = �µ
0 (↵) = hh1|Wµ(↵)|⇢0(↵)ii

|⇢S(t)ii =
��⇢00(↵t)

↵
i+

1X

n=1

(R(↵t)
d

dt
)n |⇢0(↵t)ii

By putting adiabatic expansion of the density matrix:

I(t) = hh1|Wµ(↵)|⇢S(t)ii = ISteady(↵t) +
1X

n=1

Ia(n)(t)

hh1|K̂µ(↵) = �µ
0 (↵)hh1|� hh`µ0 (↵)|K̂(↵)
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Berry-Sinitsyn-Nemenman vector
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First non-adiabatic correction:

Changing the integration variable to α:

Berry-Sinitsyn-Nemenman (BSN) vector:

Z ⌧

0
dtIa(1)(t) = �

I

C
d↵nhh`µ0 (↵)|

@

@an
|⇢0(↵)ii

An(↵) ⌘ �hh`µ0 (↵)|
@

@↵n
|⇢0(↵)ii

Ia(1)(t) = hh1|Wµ(↵t)R(↵t)
d

dt
|⇢0(↵t)ii

= �hh`µ0 (↵t)|
d

dt
|⇢0(↵t)ii

We used the identity:

hh1|Wµ(↵)R(↵) = �hh`µ0 (↵)|+ Cµ(↵)hh1|
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By modulating magnetic field 
in the reservoir and tunnel 
coupling strength

pumped charge

pumped spin
h�(Nb" +Nb#)i

h�(Nb" �Nb#)i

BSN curvature

22

Fmn(↵) ⌘
@An(↵)

@↵m
� @Am(↵)

@↵n

Average (pumped curve) - geometric contribution

h�oiBSN
⌧ = �

Z

S
d↵

m ^ d↵

n 1

2
Fmn(↵)
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Dynamic/thermodynamic
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Dynamic parameters (at zero bias)

Tunnel coupling, level energy, etc
Z ⌧

0
dtISteady(↵t) = 0

Thermodynamic parameters

Chemical potentials, temperatures of leads

In general,
Z ⌧

0
dtISteady(↵t) 6= 0

S. Nakajima et al., arXiv:1501.06181.
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Conclusions
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• Average physical values, resulting from a slow 
modulation of the system parameters, are discussed. 

!
• In non-interacting system, Brouwer’s formula is useful, 

which is applied to the system with a time dependent 
tunneling-phase. 
!

• In quantum and interacting system, we introduced full-
counting statistics with quantum master equation and 
applied it to the charge/spin transport through quantum 
dots.
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