Goldstone-mode Instability in a Spinor Bose-Einstein Condensate

Department of Applied Physics, U-Tokyo

Yuki KAWAGUCHI

Cold-atomic Systems

Sadler et al., Nature (2006)

Optical lattice triangle, hexagonal, kagome

Bakr et al., Science (2010)

b

Stewart et al., Nature (2008)

Outline

- Introduction: Spinor BEC
 - Spontaneous symmetry breaking and topological excitations
 - Spin-singlet pair condensation
- Bogoliubov analysis
 - Dynamical instability
 - Quantum depletion
- Number conserving Bogoliubov analysis
 - Instability of zero energy mode

Internal Degrees of Freedom

hyperfine spin

- F = S + L + I
 - \boldsymbol{S} : electron spin
 - L : electron orbital
 - I : nuclear spin

Boson

⁸⁷ Rb, ²³ Na, ⁷ Li, ⁴¹ K	F=1, 2
⁸⁵ Rb	F=2, 3
¹³³ Cs	F=3, 4
⁵² Cr	S=3, I=0
¹⁶⁴ Dy	S=2, L=6, I=0
¹⁶⁸ Er	S=1, L=5, I=0

Fermion

⁶ Li	F=1/2,3/2
⁴⁰ K	F=7/2,9/2
¹⁷¹ Yb	S=0, I=1/2
¹⁷³ Yb	S=0, I=5/2

Direct Observation of the Order Parameter

Mean-field state (Hartree)

$$\begin{split} \Psi_{N}(\boldsymbol{r}_{1},\boldsymbol{r}_{2},\cdots,\boldsymbol{r}_{N}) &= \prod_{i=1}^{N} \varphi(\boldsymbol{r}_{i}) \\ \varphi(\boldsymbol{r}) &= \frac{1}{\sqrt{N}} \sum_{m=-F}^{F} \psi_{m}(\boldsymbol{r}) \chi_{m} \\ & \text{macroscopic wave function} \\ &= \text{order parameter} \end{split}$$

Phase-contrast imaging (phase difference between spin components)

Sadler et al., Nature (2006)

Mean-Field Energy Functional : spin-1

$$E[\psi] = \int d\mathbf{r} \sum_{m} \left[-\frac{\hbar^2}{2M} \psi_m^*(\mathbf{r}) \nabla^2 \psi_m(\mathbf{r}) \right]$$

$$+rac{1}{2} \iint d\mathbf{r} d\mathbf{r}' \sum_{mnm'n'} \psi_m^*(\mathbf{r}) \psi_{m'}^*(\mathbf{r}') V_{mnm'n'}(\mathbf{r}-\mathbf{r}') \psi_{n'}(\mathbf{r}') \psi_n(\mathbf{r})$$

where $V_{mm'n'n}(r, r') = \delta(r - r') [c_0 \delta_{mm'} \delta_{nn'} + c_1 F_{mm'} \cdot F_{nn'}]$ $c_0 \gg |c_1|$ spin-independent spin-exchange F: Spin 1 matrix

$$F_x = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad F_y = \frac{1}{\sqrt{2}i} \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}, \quad F_z = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

Symmetry of the Hamiltonian $G = U(1) \times SO(3) = \{e^{i\phi}e^{-iF_z\alpha}e^{-iF_y\beta}e^{-iF_z\gamma}\}$

Ground state
$$|\langle F \rangle| = \begin{cases} n & \text{ferromagnetic (c1<0)} \\ 0 & \text{polar} \end{cases}$$
 (c1>0)

Polar BEC

• Order parameter $\int \psi_1 \psi_1$

$$\begin{pmatrix} \psi_1 \\ \psi_0 \\ \psi_{-1} \end{pmatrix} = \sqrt{n} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

• Symmetry of the Polar state

 $H = U(1)_{\phi} \times (Z_2)_{\phi, \mathbf{F}} = (D_{\infty})_{\phi, \mathbf{F}}$

• Order parameter manifold M = G/Hgeneral order parameter for the polar state

$$\begin{pmatrix} \psi_1 \\ \psi_0 \\ \psi_{-1} \end{pmatrix} = \sqrt{n} \frac{e^{i\theta}}{\sqrt{2}} \begin{pmatrix} -d_x + id_y \\ \sqrt{2}d_z \\ d_x + id_y \end{pmatrix} \begin{array}{c} \theta & : \text{ overall phase} \\ \mathbf{d} & : \text{ nematic vector} \end{array}$$

$$M_{\text{polar}} = \frac{U(1) \times S^2}{\mathbb{Z}_2} \qquad \text{invariant under} \\ \begin{cases} \theta \to \theta + \pi \\ d \to -d \end{cases}$$

e.g. ²³Na BEC

Fractional Vortex

 $\pi_1(M) = \mathbb{Z} \quad \text{classifies vortices in the polar phase} S^1 \to M$

Excitations in Higher Dimensions

Symmetry and Topological Excitations

	spin-1		spin-2			
phase	ferro	polar	ferro	cyclic	uniaxial nematic	biaxial nematic
Symmetry	U(1)		U(1)			
vortex $\pi_1(G/H)$	Z_2	1/2 vortex Z	Z_4	non- Abelian vortex $T^* imes Z$	1/2 vortex Z	non- Abelian vortex $D_4^* \times Z$
monopole/ 2D Skyrmion		2D Skyrmion			2D Skyrmion	
$\pi_2(G/H)$	0	Z	0	0	Z	0
Skyrmion	Skyrmion	knot	Skyrmion	Skyrmion	knot	Skyrmion
$\pi_3(G/H)$	Z	Z	Z	Z	Z	Z

Spin-Singlet Pair Condensation

- strong confinement
 - \longrightarrow motional degrees of freedom is frozen
- three-mode system $\hat{a}_1, \hat{a}_0, \hat{a}_{-1}$

$$\hat{H} = \frac{\tilde{c}_0 + \tilde{c}_1}{2} \sum_{m_1 m_2} \hat{a}^{\dagger}_{m_1} \hat{a}^{\dagger}_{m_2} \hat{a}_{m_2} \hat{a}_{m_1} + \frac{\tilde{c}_1}{2} (2\hat{a}^{\dagger}_1 \hat{a}^{\dagger}_{-1} - \hat{a}^{\dagger}_0 \hat{a}^{\dagger}_0) (2\hat{a}_1 \hat{a}_{-1} - \hat{a}_0 \hat{a}_0)$$

- Starting from the m=0 state $\frac{1}{\sqrt{N!}}(\hat{a}_0^{\dagger})^N |\text{vac}\rangle$ the number of m=1,-1 atoms increases via the term $\hat{a}_1^{\dagger} \hat{a}_{-1}^{\dagger} \hat{a}_0 \hat{a}_0$
- Exact ground state: condensation of spin-singlet pairs $(2\hat{a}_{1}^{\dagger}\hat{a}_{-1}^{\dagger} - \hat{a}_{0}^{\dagger})^{N/2}|vac\rangle$ preserves SO(3) spin rotational symmetry

$$M = G/H = U(1)$$

Law et. al. (PRL 1998), Pu et al. (PRA 1999), Koashi & Ueda (PRL 2000)

Is the spontaneous symmetry breaking really true for a usual condensate in experiments ?

Outline

- Introduction: Spinor BEC
 - Spontaneous symmetry breaking and topological excitations
 - Spin-singlet pair condensation
- Bogoliubov analysis
 - Dynamical instability
 - Quantum depletion
- Number conserving Bogoliubov analysis
 - Instability of zero energy mode

Bogoliubov Theory

• Gross-Pitaevskii equation

$$i\hbar\frac{\partial\psi}{\partial t} = \frac{\delta E}{\delta\psi^*} = \left[-\frac{\hbar^2}{2M}\nabla^2 + V_{\text{ext}}\right]\psi + c_0|\psi|^2\psi$$

• fluctuation around the stationary solution

$$\mu\varphi = \left[-\frac{\hbar^2}{2M}\nabla^2 + V_{\text{ext}}\right]\varphi + c_0|\varphi|^2\varphi$$

$$\psi(\mathbf{r}) = (\varphi + \delta \psi) e^{-i\mu t}, \quad \delta \psi(\mathbf{r}) = \sum_{\lambda} [u_{\lambda}(\mathbf{r}) e^{-i\omega_{\lambda}t} + v_{\lambda}^{*}(\mathbf{r}) e^{i\omega_{\lambda}t}]$$

• eigenvalue equation (Bogoliubov equation)

$$\begin{pmatrix} \mathcal{L} + 2c_0 |\varphi|^2 & c_0 \varphi^2 \\ -c_0 (\varphi^*)^2 & -\mathcal{L} - 2c_0 |\varphi|^2 \end{pmatrix} \begin{pmatrix} u_{\lambda}(\boldsymbol{r}) \\ v_{\lambda}(\boldsymbol{r}) \end{pmatrix} = \hbar \omega_{\lambda} \begin{pmatrix} u_{\lambda}(\boldsymbol{r}) \\ v_{\lambda}(\boldsymbol{r}) \end{pmatrix}$$
$$\mathcal{L} = -\frac{\hbar^2}{2M} \nabla^2 + V_{\text{ext}} - \mu$$
 non-Hermitian matrix

 ω_{λ} can be a complex number fluctuations grow exponentially

ightarrowDynamical Instability

Microscopic Description

• atoms condense into the k=0 state in a uniform system

$$\hat{H} = \sum_{k} \epsilon_{k} \hat{a}_{k}^{\dagger} \hat{a}_{k} + \frac{c_{0}}{2\Omega} \sum_{k_{1},k_{2},k_{3},k_{4}} \hat{a}_{k_{1}}^{\dagger} \hat{a}_{k_{2}}^{\dagger} \hat{a}_{k_{3}} \hat{a}_{k_{4}} \delta_{k_{1}+k_{2},k_{3}+k_{4}}$$
$$\hat{a}_{0} \sim \sqrt{N}, \quad \hat{H} \sim \hat{H}_{\text{Bog}} = E_{0} + \sum_{k \neq 0} \left[(\epsilon_{k} - \mu + 2c_{0}n) \hat{a}_{k}^{\dagger} \hat{a}_{k} + \frac{c_{0}n}{2} (\hat{a}_{k} \hat{a}_{-k} + \hat{a}_{k}^{\dagger} \hat{a}_{-k}^{\dagger}) \right]$$

Bogoliubov transformation ~

$$\begin{pmatrix} \hat{a}_{\boldsymbol{k}} \\ \hat{a}_{-\boldsymbol{k}}^{\dagger} \end{pmatrix} = \begin{pmatrix} u_{\boldsymbol{k}} & v_{-\boldsymbol{k}}^{*} \\ v_{\boldsymbol{k}} & u_{-\boldsymbol{k}}^{*} \end{pmatrix} \begin{pmatrix} \hat{b}_{\boldsymbol{k}} \\ \hat{b}_{-\boldsymbol{k}}^{\dagger} \end{pmatrix}$$

 $|u_k|^2 - |v_k|^2 = 1$ (canonical commutation relation for b-particles)

• H_{Bog} is diagonalized when u,v satisfy the Bogoliubov equation

$$\begin{pmatrix} \epsilon_{\mathbf{k}} + c_0 n & c_0 n \\ -c_0 n & -\epsilon_{\mathbf{k}} - c_0 n \end{pmatrix} \begin{pmatrix} u_{\mathbf{k}} \\ v_{\mathbf{k}} \end{pmatrix} = E_{\mathbf{k}} \begin{pmatrix} u_{\mathbf{k}} \\ v_{\mathbf{k}} \end{pmatrix} \qquad \Longrightarrow \qquad \hat{H}_{\text{Bog}} = E_0 + \sum_{\mathbf{k} \neq \mathbf{0}} E_{\mathbf{k}} \hat{b}_{\mathbf{k}}^{\dagger} \hat{b}_{\mathbf{k}}$$

• Energy spectrum

$$E_{\mathbf{k}} = \sqrt{\epsilon_{\mathbf{k}}(\epsilon_{\mathbf{k}} + c_0 n)}, \quad u_{\mathbf{k}} = \sqrt{\frac{\epsilon_{\mathbf{k}} + c_0 n + E_{\mathbf{k}}}{2E_{\mathbf{k}}}}, \quad v_{\mathbf{k}} = -\sqrt{\frac{\epsilon_{\mathbf{k}} + c_0 n - E_{\mathbf{k}}}{2E_{\mathbf{k}}}}$$

Effects of Quantum Fluctuations

- Quantum depletion
 - Vacuum of Bogoliubov particles $\hat{b}_{k} |vac_{B}\rangle = 0$
 - number of non-condensed atoms

$$N_{\boldsymbol{k}} \equiv \langle \operatorname{vac}_{\mathrm{B}} | \hat{a}_{\boldsymbol{k}}^{\dagger} \hat{a}_{\boldsymbol{k}} | \operatorname{vac}_{\mathrm{B}} \rangle = |v_{\boldsymbol{k}}|^2 = \frac{\epsilon_{\boldsymbol{k}} + c_0 n - E_{\boldsymbol{k}}}{2E_{\boldsymbol{k}}}$$

• total condensate depletion (3D)

$$\frac{N_{\rm qd}}{N} = \frac{\sum_{k \neq 0} N_k}{N} = \frac{8}{3} \sqrt{\frac{na^3}{\pi}}, \ a = \frac{M}{4\pi\hbar^2} c_0$$

 $N_{\mathbf{k}}$

- Dynamical Instability
 - Quasi-particles for complex modes do not satisfy commutation relation

$$[\hat{b}_1, \hat{b}_1^{\dagger}] = [\hat{b}_2, \hat{b}_2^{\dagger}] = 0, \ \ [\hat{b}_1, \hat{b}_2^{\dagger}] = 1$$

• Using the "correct" quasi-particles,

$$\hat{H}_{\text{Bog}} = E_0 + \sum E_{\boldsymbol{k}} \hat{b}_{\boldsymbol{k}}^{\dagger} \hat{b}_{\boldsymbol{k}} + (\text{Im}E)(\hat{\beta}_1^{\dagger} \hat{\beta}_2^{\dagger} + \hat{\beta}_1 \hat{\beta}_2)$$

Bogoliubov Theory for a Spinor BEC

spin-1: internal degrees of freedom m=1,0,-1

$$\begin{split} \hat{H} &= \sum_{\mathbf{k},m} \epsilon_{\mathbf{k}} \hat{a}_{m\mathbf{k}}^{\dagger} \hat{a}_{m\mathbf{k}} \\ &+ \frac{1}{2\Omega} \sum_{\mathbf{k}_{1},\cdots,\mathbf{k}_{4}} \sum_{m_{1},\cdots,m_{4}} C_{m_{4},m_{3}}^{m_{1},m_{2}} \hat{a}_{m_{1}\mathbf{k}_{1}}^{\dagger} \hat{a}_{m_{2}\mathbf{k}_{2}}^{\dagger} \hat{a}_{m_{3}\mathbf{k}_{3}} \hat{a}_{m_{4}\mathbf{k}_{4}} \delta_{\mathbf{k}_{1}+\mathbf{k}_{2},\mathbf{k}_{3}+\mathbf{k}_{4}} \end{split}$$

$$C_{m_4,m_3}^{m_1,m_2} = c_0 \delta_{m_1,m_4} \delta_{m_2,m_3} + c_1(\boldsymbol{F})_{m_1,m_4}(\boldsymbol{F})_{m_2,m_3}$$

Bogoliubov transformation

$$\hat{a}_{m\boldsymbol{k}} = \sum_{n} (U_{mn,\boldsymbol{k}}\hat{b}_{n\boldsymbol{k}} + V_{mn,-\boldsymbol{k}}^{*}\hat{b}_{n,-\boldsymbol{k}}^{\dagger})$$
$$\hat{a}_{m,-\boldsymbol{k}}^{\dagger} = \sum_{n} (V_{mn,\boldsymbol{k}'}\hat{b}_{n\boldsymbol{k}} + U_{mn,-\boldsymbol{k}}^{*}\hat{b}_{n,-\boldsymbol{k}}^{\dagger})$$

invariant under

- U(1) gauge transformation
 SO(3) spin rotation

$$oldsymbol{U}_{oldsymbol{k}} = egin{pmatrix} oldsymbol{u}_{1oldsymbol{k}} & oldsymbol{u}_{0oldsymbol{k}} & oldsymbol{u}_{-1,oldsymbol{k}} \end{pmatrix}
onumber \ oldsymbol{V}_{oldsymbol{k}} = egin{pmatrix} oldsymbol{u}_{1oldsymbol{k}} & oldsymbol{v}_{0oldsymbol{k}} & oldsymbol{v}_{-1,oldsymbol{k}} \end{pmatrix}$$

Bogoliubov equation (6×6 matrix equation)

$$\begin{pmatrix} \boldsymbol{M}_{\boldsymbol{k}} & \boldsymbol{N}_{\boldsymbol{k}} \\ -\boldsymbol{N}_{-\boldsymbol{k}}^{*} & -\boldsymbol{M}_{-\boldsymbol{k}}^{*} \end{pmatrix} \begin{pmatrix} \boldsymbol{u}_{m\boldsymbol{k}} \\ \boldsymbol{v}_{m\boldsymbol{k}} \end{pmatrix} = E_{m\boldsymbol{k}} \begin{pmatrix} \boldsymbol{u}_{m\boldsymbol{k}} \\ \boldsymbol{v}_{m\boldsymbol{k}} \end{pmatrix}$$

Excitation Spectrum

•
$$\hat{H}_{Bog} = E_0 + \sum_{(\boldsymbol{k},m)\neq(\boldsymbol{0},0)} E_{m\boldsymbol{k}} \hat{b}^{\dagger}_{m\boldsymbol{k}} \hat{b}_{m\boldsymbol{k}} \longrightarrow \text{condensate is stable?}$$

• Quantum Depletion

$$N_{\boldsymbol{k}}^{\mathrm{ph}} = \frac{\epsilon_{\boldsymbol{k}} + c_0 n - E_{\boldsymbol{k}}^{\mathrm{ph}}}{2E_{\boldsymbol{k}}^{\mathrm{ph}}} \qquad N_{\boldsymbol{k}}^{\mathrm{mag}} = \frac{\epsilon_{\boldsymbol{k}} + c_1 n - E_{\boldsymbol{k}}^{\mathrm{mag}}}{2E_{\boldsymbol{k}}^{\mathrm{mag}}}$$

diverges at k=0

Macroscopic occupation in the $m=\pm 1$ & k=0 states?

What's wrong?

Condensate in the m=0 state is unstable. Goldstone magnon seems to cause this instability.

Number-conserving Bogoliubov theory can deal with this problem.

Number-conserving Bogoliubov Theory

• Mean-field theory (Hartree):

All atoms are condensed in the same single-particle state

$$\Psi_N(\boldsymbol{r}_1, \boldsymbol{r}_2, \cdots, \boldsymbol{r}_N) = \prod_{i=1}^N \varphi_1(\boldsymbol{r}_i) \qquad |\Psi\rangle = \frac{1}{\sqrt{N!}} (\hat{a}_{00}^{\dagger})^N |\text{vac}\rangle$$

• All pairs of atoms are condensed in the same two-particle state Two-body correlation is taken into account.

$$\Psi_N(oldsymbol{r}_1,oldsymbol{r}_2,\cdots,oldsymbol{r}_N) = \mathcal{S}\prod_{i < j}^N arphi_2(oldsymbol{r}_i,oldsymbol{r}_j)$$

• Ansatz

$$\begin{split} |\Psi(t)\rangle &= \frac{\mathcal{N}(t)}{\sqrt{N!}} \bigg[(\hat{a}_{00}^{\dagger})^2 - \sum_{\boldsymbol{k}\neq\boldsymbol{0}} \Lambda_{\boldsymbol{k}}(t) \hat{a}_{0\boldsymbol{k}}^{\dagger} \hat{a}_{0,-\boldsymbol{k}}^{\dagger} - \sum_{\boldsymbol{k}} \Lambda_{\boldsymbol{k}}'(t) \hat{a}_{1\boldsymbol{k}}^{\dagger} \hat{a}_{-1,-\boldsymbol{k}}^{\dagger} \bigg]^{N/2} |\text{vac}\rangle \\ &= \frac{\mathcal{N}(t)}{\sqrt{N!}} \bigg[(\hat{\alpha}_{00}^{\dagger})^2 - \sum_{m=\pm 1} \lambda_{m\boldsymbol{0}}(t) (\hat{\alpha}_{m\boldsymbol{0}}^{\dagger})^2 - \sum_{m,\boldsymbol{k}\neq\boldsymbol{0}} \lambda_{m\boldsymbol{k}}(t) \hat{\alpha}_{m\boldsymbol{k}}^{\dagger} \hat{\alpha}_{m,-\boldsymbol{k}}^{\dagger} \bigg]^{N/2} |\text{vac}\rangle \end{split}$$

$$\hat{\alpha}_{\pm 1,\boldsymbol{k}} \equiv \frac{\hat{a}_{1\boldsymbol{k}} \pm \hat{a}_{-1\boldsymbol{k}}}{\sqrt{2}}, \quad \hat{\alpha}_{0\boldsymbol{k}} \equiv \hat{a}_{0\boldsymbol{k}} \qquad \qquad |\lambda_{m\boldsymbol{k}}| < 1 \ (N_{m\boldsymbol{k}} \ll N)$$

ISSP international workshop NHSCP 2014

Leggett, RMP (2001)

Equation of Motion

• Functional action

$$S[\{\lambda_{m\boldsymbol{k}},\lambda_{m\boldsymbol{k}}^{*}\}] = \int dt \left\langle \Psi(t) \right| \hat{H} - i\hbar \frac{d}{dt} \left| \Psi(t) \right\rangle$$

• Equation of motion for λ_{mk}

$$\mathcal{N}^{2} = \prod_{m'=\pm 1} \sqrt{1 - |\lambda_{m'0}|^{2}} \prod_{m, k>0} (1 - |\lambda_{mk}|^{2}) + O(1/N)$$
$$N_{mk} = \langle \hat{\alpha}_{mk}^{\dagger} \hat{\alpha}_{mk} \rangle = \frac{|\lambda_{mk}|^{2}}{1 - |\lambda_{mk}|^{2}} + O(1/N)$$
$$\langle \hat{\alpha}_{00}^{\dagger} \hat{\alpha}_{00} \hat{\alpha}_{mk}^{\dagger} \hat{\alpha}_{mk} \rangle = N \left[\frac{|\lambda_{mk}|^{2}}{1 - |\lambda_{mk}|^{2}} + O(1/N) \right]$$
$$\langle \hat{\alpha}_{mk}^{\dagger} \hat{\alpha}_{m, -k}^{\dagger} \hat{\alpha}_{00} \hat{\alpha}_{00} \rangle = -N \left[\frac{\lambda_{mk}^{*}}{1 - |\lambda_{mk}|^{2}} + O(1/N) \right]$$

Dynamics: Quantum Fluctuation

• Starting from $\lambda_{mk} = 0$

$$\lambda_{m\mathbf{k}}(t) = \frac{B_m \sin(E_{m\mathbf{k}}t/\hbar)}{(\epsilon_{\mathbf{k}} + A_{m\mathbf{k}}) \sin(E_{m\mathbf{k}}t/\hbar) - iE_{m\mathbf{k}} \cos(E_{m\mathbf{k}}t/\hbar)}$$
$$E_{m\mathbf{k}} = \sqrt{(\epsilon_{\mathbf{k}} + A_m + B_m)(\epsilon_{\mathbf{k}} + A_m - B_m)}$$

$$A_{0} = c_{0}n, B_{0} = c_{0}n$$

$$A_{\pm 1} = c_{1}n, B_{\pm 1} = \pm c_{1}n$$

$$E_{0k} = E_{k}^{\text{ph}} = \sqrt{\epsilon_{k}(\epsilon_{k} + c_{0}n)}$$

$$E_{\pm 1,k} = E_{k}^{\text{mag}} = \sqrt{\epsilon_{k}(\epsilon_{k} + c_{1}n)}$$

$$M_{mk}(t) \equiv \frac{|\lambda_{mk}|^{2}}{1 - |\lambda_{mk}|^{2}} = \left|\frac{B_{m}}{E_{mk}}\sin\left(\frac{E_{mk}t}{\hbar}\right)\right|^{2}$$

$$E_{\pm 1,0} = 0$$

$$M_{\pm 1,0}(t) = \left(\frac{t}{\tau_{0}}\right)^{2} \quad \tau_{0} = \frac{\hbar}{B_{m}} = \frac{\hbar}{c_{1}n}$$

$$E_{0k} = E_{k}^{\text{ph}} = \sqrt{\epsilon_{k}(\epsilon_{k} + c_{0}n)}$$

$$E_{\pm 1,k} = E_{k}^{\text{mag}} = \sqrt{\epsilon_{k}(\epsilon_{k} + c_{1}n)}$$

$$E_{\pm 1,k} = E_{k}^{\text{mag}} = \sqrt{\epsilon_{k}(\epsilon_{1} + c_{1}n)}$$

$$E_{\pm 1,k} = E_{k}^{\text{mag}} = \sqrt{\epsilon_{k}(\epsilon_{1} + c_{1}n)}$$

algebraic growth ISSP international workshop NHSCP 2014

Quantum Depletion

• Stationary solution for the equation of motion

$$\lambda_{m\mathbf{k}} = \frac{\epsilon_{\mathbf{k}} + A_m - E_{m\mathbf{k}}}{B_m}$$
$$N_{m\mathbf{k}} = \frac{|\lambda_{m\mathbf{k}}|^2}{1 - |\lambda_{m\mathbf{k}}|^2} = \frac{\epsilon_{\mathbf{k}} + A_m - E_{m\mathbf{k}}}{2E_{m\mathbf{k}}}$$

 reproduces the quantum depletion obtained in the conventional Bogoliubov theory

$$N_{\mathbf{k}}^{\mathrm{ph}} = \frac{\epsilon_{\mathbf{k}} + c_0 n - E_{\mathbf{k}}^{\mathrm{ph}}}{2E_{\mathbf{k}}^{\mathrm{ph}}}$$
$$N_{\mathbf{k}}^{\mathrm{mag}} = \frac{\epsilon_{\mathbf{k}} + c_1 n - E_{\mathbf{k}}^{\mathrm{mag}}}{2E_{\mathbf{k}}^{\mathrm{mag}}}$$

Fraction in the m=±1 & k=0 states diverges
 macroscopic number of atoms exist in these states

Dynamics: Thermal Fluctuation

• start from

$$\lambda_{m\boldsymbol{k}}(0) = e^{i\theta} \sqrt{\frac{N_{\text{ex}}}{N_{\text{ex}} + 1}} \qquad N_{m\boldsymbol{k}}(0) = N_{\text{ex}}$$

• take an average over θ (thermal fluctuation)

$$\bar{N}_{m\boldsymbol{k}}(t) = \frac{1}{2\pi} \int_0^{2\pi} d\theta N_{m\boldsymbol{k}}(t) = N_{\text{ex}} + (2N_{\text{ex}} + 1) \left| \frac{B_m}{E_{m\boldsymbol{k}}} \sin\left(\frac{E_{m\boldsymbol{k}}t}{\hbar}\right) \right|^2$$

0.3 N_{ex}=0 zero-energy mode N-cons. Bogoliubov $\bar{N}_{m\boldsymbol{k}}(t) = N_{\text{ex}} + \left(\frac{t}{\tau_0/\sqrt{2N_{\text{ex}}+1}}\right)^2$ 0.2 exact 3-mode dynamics N_1/N grow faster 0.1 (Bosonic stimulation) 0 Growth of the Goldstone magnon 0.2 0.1 0.3 0.4 0.5 0 can be observed. t/τ_0

Possible Experimental Scheme

- N=10° of Na atoms in a trap with frequency 300 Hz \Rightarrow $au_0 = 1.7~{
 m s}$
- If N_{ex}=5, $\tau_0 \Rightarrow \tau_0/\sqrt{2N_{\rm ex}+1} = 0.52 \ {
 m s}$ short enough to be observed

Possible experimental scheme

Prepare m=0 condensate at q>>0

$$E_{0\mathbf{k}} = E_{\mathbf{k}}^{\text{ph}} = \sqrt{\epsilon_{\mathbf{k}}(\epsilon_{\mathbf{k}} + c_0 n)}$$
$$E_{\pm 1,\mathbf{k}} = E_{\mathbf{k}}^{\text{mag}} = \sqrt{(\epsilon_{\mathbf{k}} + q)(\epsilon_{\mathbf{k}} + q + c_1 n)}$$

quadratic Zeeman effect $\hat{H}_Z = q \sum m^2 \hat{a}_{m\mathbf{k}}^{\dagger} \hat{a}_{m\mathbf{k}}$ m k

• Thermally excited atoms in the m= ± 1 , k=0 states

$$N_{\pm 1,0} = \frac{1}{\exp(\sqrt{q(q+c_1n)}/k_{\rm B}T) + 1}$$

 N_{ex} is tunable by changing the initial q $\propto\,B^2$

- Quench $q \rightarrow 0$
- The growth speed of the Goldstone magnon depends on the initial q

Conclusion & Future Prospect

- Goldstone magnon in a spinor BEC causes instability so as to recover the symmetry of the Hamiltonian.
- This is a general feature of Goldstone modes in a multicomponent system as long as the conservation low prohibits the Goldstone mode to grow.
- Thermal fluctuation accelerates the growth dynamics due to bosonic stimulation.
- Does the spin-singlet-pair condensation occur in a large system?
- Stability of the pair condensation against nonzero k fluctuations should be addressed.