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Quasiperiodic lattice

Free fermions  Interacting fermions

Hard-core bosons  Soft-core bosons

Trapped system  Release dynamics?

Insulator  Superfluid
Topological features?

 Can be studied in highly tunable cold-atom systems

Cosine modulation  Two-value case

Many questions:



General motivation

• Well-defined, configurable inhomogeneity + interaction
• New quantum phases?

• Physics on transition line: universal exponents or not?  dynamics

• Correspondence to higher dimensions: topological classification
• 1D quasiperiodic 2D regular lattice with magnetic field

• d (>1)-dimensional quasicrystal 2d (>3)-dimensional system?
• Periodic table of topologically nontrivial phases: realization of e.g. d=4 system



Plan of the talk
Introduction: Interacting cold atoms on quasiperiodic lattices

1. Attractively interacting spin-1/2 fermions
• Pairing enhanced by lattice deformation

• Anomalous exponent after release from trap

 MT and A. M. Garcia-Garcia: PRA 82, 043613 (2010), PRA 85, 031602R (2012)

2. Repulsively interacting spinless bosons
• Topologically non-trivial incommensurate CDW phase

• Equivalence between Harper-type and Fibonacci-type lattices

 Fuyuki Matsuda, MT, and Norio Kawakami: arXiv:1404.6315 (JPSJ to appear)

3. Spin-1/2 fermions with proximity pairing
• Spin-orbit coupling introduces a peculiar self-similar band structure

• Reentrant topological transitions 

 MT and Norio Kawakami: PRB 85, 140508R(2012), PRB 88, 155428 (2013)

Correlation is not the main topic here, so if time allows…



Introduction: quasiperiodic lattices

• Modulation of a tight-binding lattice with an 
incommensurate wavenumber
• Here we focus on site level (diagonal) modulation

• 1D: Different modulating functions have been 
studied
• Harper (or Aubry-Andre): cos 2𝜋𝑔𝑗 + 𝜑

• Fibonacci: + - + + - + + - + - + + - + + - + - + + - …

• more complicated modulations allowing mobility 
edge [see e.g. Ribeiro et al.: PRA 87, 043635 (2013); Wang et 

al.: 1312.0844], etc.

• Historically many theoretical papers
• Mostly non-interacting case until recently

• Recent cold atom experiments
 Interacting bosons and fermions
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Diagonal modulation

Off-diagonal modulation
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Roati et al.(Florence): Nature 453, 895 (2008), …
cf. temporal quasiperiodicity [Gommers et al.: PRL 96, 240604 (2006)]



Realization of quasiperiodic optical lattice for cold atoms

Hopping J Interaction U

Modulation
amplitude 2λ

Laser standing
waves

2λ

J

U

Bichromatic optical lattice

 Modelled by Hubbard model with Harper-type quasiperiodic site energy modulation
Theory (Bosons): X. Deng et al.: PRA 78, 013625 (2008); G. Roux et al.: PRA 78, 023628 (2008); …



Harper model
ε j/

V
Q

Site j

εj = VQ cos(2πgj)  g: some irrational number
(e.g. inverse golden ratio (√5-1)/2)

Tight-binding model with hopping J [P. G. Harper: Proc. Phys. Soc. Sec. A 68, 874 (1955)]

(Also known as the Andre – Aubry model) [Andre & Aubry: Ann. Isr. Phys. Soc. 3, 133 (1980)]

All single-particle levels known to localize at self-dual point VQ = 2J [Kohmoto: PRL 51, 1198 (1983)]

cf. Fibonacci model  (A→ABB, B→A)
All single-particle levels are critical regardless of VQ
[Kohmoto, Kadanoff, and Tang: PRL 50, 1870 (1983); Ostlund et al.: PRL 50, 1873 (1983)]
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Diagonal case:
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Smooth connection between
Harper and Fibonacci types known

β0

β∞

All single-particle levels:



Hopping J Interaction U

Modulation
amplitude 2λ

Optical
lattice

2λ

J

U

Motivation:

cf. Superconductor with disorder
e.g. Boron-doped diamond

Pairing
(Superfluid)

Localization
(insulator)

Dynamics at the
transition 

point?
U(<0)

Modulation λ

Harper’s potential
Aubry-Andrè model

Ratio between wavelengths: 
Golden ratio in this work

1. Attractively interacting spin-1/2 fermions
MT and A. M. Garcia-Garcia: PRA 82, 043613 (2010), PRA 85, 031602R (2012)



Schematic phase diagram
DMRG calculation of

• Inverse participation ratio (how much the fermions are delocalized) 

• Pair structure factor (how slowly the pair correlation decay)

for different system sizes at the constant filling factor

• For strong interaction (|U|≫J), 
pairing decreases as modulation 
amplitude λ is increased, and 
localizes at ~ insulating transition λc

• For weaker interaction (|U|~J), 
pairing has a peak as a function of 
λ, but localizes before λc

|U|/J

λ/J

Modulation-induced insulator
not superfluid

Global superfluidity

Metal without superfluidity

Attraction
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enhanced

Tezuka and Garcia-Garcia: PRA 82, 043613 (2010)

 Trap-release dynamics: diffusion process?
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Dynamics: experiments with bosons
Trap-release experiments: dynamics of the atomic clouds observed

Bosons: E. Lucioni et al. (LENS, Florence): PRL 106, 230403 (2011)

V(x) = V1cos2(k1x) + V2cos2(k2x), k1=2π/(1064.4nm), k2=2π/(859.6nm)
50 thousand 39K atoms, almost spherical trap switched off at t=0

Eint=0

Eint=1.8J
Eint=2.3J

λ=4.9J

Simulation (1D DNLSE)
Larcher et al. PRA 80, 053606

J/h = 180Hz

J/h = 300Hz α=0.5: normal diffusion

λ=5.3(4)J

Subdiffusion (slower than random walk) observed in bichromatic lattice (3D)

α=0.5: normal diffusion

width σ: square root of
the second moment

What happens for interacting 1D fermions in a bichromatic potential?

(Interaction energy / atom)/J
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α

Time(s)



Dependence on strength of attractive interation

Very weakly attractive (|U|≪W=4t):
Modulation governs the conductance

Effect of modulation: relatively strong (|U|<< λ)

At transition point:
Excitation spectrum still fractal;
random walk-like motion (<x2>～t)
expected

2λ

J

U

Hopping not significantly renormalized

λc < 2J but not much smaller

2λ

J

U

Effective hopping ~ J2/U

λc ~ 2J2/U << 2J

Strongly attractive (|U|≫W):
Tightly bound hard-core bosons formed

Effect of modulation: relatively weak (λ<<|U|)

At transition point:
Spectrum should be almost normal
Is the cloud expansion almost ballistic?
(<x2>～t2 ?)

Haussdorf dim. = 1/2
for non-interacting case



Simulation setup
• Optical lattice + Harper-type incommensurate potential

• On-site attractive interaction

• Initially trapped in a box

potential without q.p. potential

(initial condition does not

depend on λ)

• Remove the box potential and switch the 
incommensurate potential on: diffusion exponent?

 Simulation by time-dependent DMRG

x0

This work: 12+12 fermions on 64 sites



Expansion exponent from second moment
 00 /1 ttx 

λ=0.95 < λc

λ=λc

λ=1.06 > λc

√<x2(t)> fit by 

Tezuka and García-García: PRA 85, 031602 (R) (2012)
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α ~ 1.06 (larger than α=1 for U=0)
at transition point
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Value of α at transition increasing as |U| increases:
anomalous exponent! (between random walk and ballistic)

U = -1



Exponents from dynamics and static property

α indeed increases while ν decreases; να = 1 ?

Exponent of localization length (static property)

Tezuka and García-García: PRA 85, 031602(R) (2012)
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Solid line: να = 1

U=-10, -6, -3

U=-2

U=-1
U=0

12+12 fermions, 64160 or 256 sites

J=1

Localization length ξ should diverge as |λ-λc|
-ν

as MIT is approached from insulator side
(ν=1 at U=0; ν=1/2 in mean field limit)

Sensitivity of the ground state energy to boundary cond.
EP(A): ground state energy for periodic (antiperiodic) b.c.

ΔE = |EP-EA| ∝ e-L/ξ

Extract ξ by fitting:
ln ΔE ～ – L / ξ ∝ |λ – λc|

ν

We conjecture from analogy to the
non-interacting cases: να=1
(cf. Hiramoto JPSJ 1990; Hashimoto et al. J. Phys. A 1992;
Kopidakis et al. PRL 2008)

U=-1

U=-3

U=-6

L=13, N=4

Smaller ν



Quick summary (1)

|U| 0 intermediate |U| |U|∞

Hausdorff dimension
of the spectrum dH

dH=0.5 dH~1?

see e.g. Artuso et al.:
PRL 68, 3826 (1992)

Not fractal?

Diffusion <x2(t)> ∝ tα α=1 α~2?

brownian motion ballistic motion?

Localization length
close to transition
ξ ∝ |λ – λc|

-ν

ν=1 ν~1/2?

Modulated 1D system, U < 0, at “metal”-insulator transition

α = 2dH at MIT

Our conjecture: να=1

One parameter scaling

increases as
|U| increases

Anomalous diffusion in modulated, interacting 1D Fermi gas observed;
Interesting relation between the dynamic and static behavior conjectured

(Bichromatic lattice)

decreases as
|U| increases

Tezuka and García-García: PRA 85, 031602(R) (2012)

λc strongly suppressed!  (~t2/|U|)
(MT & AGG: PRA 82, 043613 (2010))



2. Repulsively interacting spinless bosons
Fuyuki Matsuda, MT, and Norio Kawakami: arXiv:1404.6315 (to appear in JPSJ)

Fourier transform1D quasiperiodic system (chiral: Z)

2D integer quantum Hall system (class A: Z)

hopping quasiperiodic potential

Magnetic field

“Topological states and adiabatic pumping in quasicrystals”

Y. E. Kraus et al., PRL 109, 106402 (2012)

• Localization of light in a 1D array of optical waveguides

• Single-particle problem

1D quasiperiodic 2D topological phase
correspondence

 The case of interacting cold atoms?



Topological equivalence

Harper-type Fibonacci-type

β0 β∞

smoothly connects Vj
Harper and Vj

Fibonacci

Equivalence for 0<β<∞, 0<λod<λd<∞ for non-interacting case [Kraus and Zilberberg: PRL 2012]

What happens for interacting bosons? (t=1, λod=0, λd=λ in the following)



Calculating the Chern number for interacting case

Chern number for many-body ground state |Ψ>

• Approximate the quasiperiodic system by periodic systems
2/5, 3/8, 5/11, 8/21, 13/34, …  (3-√5)/2 = 1 – g = 0.381966…

• DMRG + Fukui-Hatsugai-Suzuki method [JPSJ 74, 1674 (2005)]
to obtain the Chern number from a finite set of (θ, φ)

φ: Phase of the quasiperiodic potential
θ: Twisted boundary condition

0 2π

2π

φ

θ

Obtain |Ψ> for four parameter sets at a time to estimate the U(1) link variables
𝑈𝜇 𝑘𝑙 ≡  𝑛 𝑘𝑙 𝑛 𝑘𝑙 +  𝜇 𝑛 𝑘𝑙 𝑛 𝑘𝑙 +  𝜇 ; 𝑘𝑙 = φ, 𝜃

Lattice field strength associated with Berry connection:

 𝐹φ𝜃 𝑘𝑙 ≡ ln 𝑈φ 𝑘𝑙 𝑈𝜃 𝑘𝑙 +  φ 𝑈φ 𝑘𝑙 +  𝜃
−1

𝑈𝜃 𝑘𝑙
−1 ; −𝜋 < 𝑖−1  𝐹φ𝜃 𝑘𝑙 ≤ 𝜋

Then the integer Chern number is obtained as

𝐶 = 2𝜋𝑖 −1  𝑙
 𝐹φ𝜃 𝑘𝑙

Typically 62 – 102 squares



Phase diagram for interacting bosons: Harper type case

Y. E. Kraus et al.: PRL 109, 106402 (2012)

Non-interacting fermions:
bulk gaps appear at fillings n = N/L = b, 1-b, …

Interacting bosons: reduces to
non-interacting fermions as U∞

G. Roux et al.: PRA 78, 023628 (2008)

n = b

2
λ d

/J

This work

BG: Bose glass
SF: Superfluid
ICDW: Incommensurate

charge-density wave

Topological characterization of the ICDW phase?
Fibonacci-type case?

Insulating



Energy gap (Chern number can change only if closed)

Minimum energy gap for all (θ, φ)
Minimum energy gap for a fixed θ

Boundary condition: t0,L-1 = t exp(iθ)

(L,N)=(8,3), b=3/8

(L,N)=(5,2), b=2/5

(L,N)=(8,3), b=3/8

(L,N)=(13,5), b=5/13
λ=1 λ=1

 Energy gap closes only for U << J; topological equivalence for larger U expected

Fuyuki Matsuda, MT, and Norio Kawakami: arXiv:1404.6315 (to appear in JPSJ)



Bulk-edge correspondence?：case of small U

C=1

Change of particle distribution at ground state as number is changed by one

U/J = 1; DMRG

Density change not localized: particles still almost condensed

Fuyuki Matsuda, MT, and Norio Kawakami: arXiv:1404.6315 (to appear in JPSJ)



Bulk-edge correspondence?：case of larger U

Localized structure at the end

Correspondence between non-trivial Chern # and edge modes

C=1

Change of particle distribution at ground state as number is changed by one

U/J = 100; DMRG

Fuyuki Matsuda, MT, and Norio Kawakami: arXiv:1404.6315 (to appear in JPSJ)



Harper type and Fibonacci type

• Harper type (β0)

• Fibonacci type (β∞)
• All single-particle states critical regardless of V/W

• (Fractal wavefunctions)

• Smooth connection between Harper and Fibonacci types known

1D, diagonal (site level) modulation

Modulation strength VQ

/ hopping amplitude tExtended (not localized)

Critical

Localized

20 ∞



Result: Harper-type and Fibonacci-type

FibonacciHarper

b=5/13, (L, N)=(13,5), λ=1, 

U=0.1, 1, 10

Kraus et al.: PRL 109, 116404 (2012)

Gap does not close if U ≳ 4J: no change in Chern number

Fuyuki Matsuda, MT, and Norio Kawakami: arXiv:1404.6315 (to appear in JPSJ)



Phase diagram and topological equivalence

Energy gap minimum

Three phases observed
ICDW: Incommensurate Charge Density Wave
SF: Superfluid (quasi-condensate)
BG: Bose Glass

Superfluid density

ICDW

SF
BG

Topological equivalence: inside the ICDW phase (no gap closing)
 Continuously connected to the non-interacting fermion case

k ΔEg SF density

ICDW ✔ ✘

SF ✘ ✔

BG ✘ ✘

λ=1, b~(3-√5)/2N=13 N=21

Fuyuki Matsuda, MT, and Norio Kawakami: arXiv:1404.6315 (to appear in JPSJ)

𝜌𝑠 =
2𝐿

𝜋
𝐸apbc − 𝐸pbc



Quick summary (2)

• Excitation gap closes at small values of U

• Bulk-edge correspondence for larger U

• Phase diagram with respect to
• Interaction U

• Harper-Fibonacci transformation parameter β

• Incommensurate “charge” density wave
phase: topologically nontrivial and 
equivalent

• Topological classification of 1D interacting boson systems with quasiperiodic
modulation

Fuyuki Matsuda, MT, and Norio Kawakami: arXiv:1404.6315 (to appear in JPSJ)

Harper Fibonacci

ICDW

SF BG



3. Spin-1/2 fermions with proximity pairing

Majorana fermions (MF) expected at
the ends of 1D topological superfluid (TS)

3D Fermi superfluid

Magnetic field BSO

Q. Effect of lattice modulation?

1D S=1/2 fermions 

cf. Semiconductor experiment
Mourik et al. : Science 336, 1003 (2012), …

MT and Norio Kawakami: PRB 85, 140508R(2012), PRB 88, 155428 (2013)



End Majorana fermions of a 1D topological 
superconductor with spin

Bulk Fermi superfluid

1D S=1/2 fermions
(spin-orbit coupling)

k

spin-orbit coupling α

μ

k

+ Zeeman
splitting

Magnetic field

Energy

Review (including 2D, 3D, QHE, …): Alicea: Rep. Prog. Phys. 75, 076501 (2012)

Theory (1D): Lutchyn et al.: PRL 105, 077001 (2010); Oreg et al.: PRL 105, 177002 (2010), …
cf. 2D Tewari et al. (2007); Sato et al. (2008); Fu and Kane (2008); Tanaka et al. (2009); etc.

Effectively single band

Kitaev: Physics-Uspenski 44, 131 (2001)
1D spinless superconductor: can have end Majorana fermions



Experimental realization of spin-orbit coupling in 
degenerate Fermi gases

 Topological states (as in electron systems in solid state physics), e.g. topological 
superfluid with Majorana edge fermions?  Their reaction to quasiperiodic modulation?

6Li: Lawrence W. Chunk et al. (MIT):
PRL 109, 095302 (2012)

40K: Pengjun Wang et al. (Shanxi):
PRL 109, 095301 (2012)



Quasiperiodic modulation

Hamiltonian

Quasiperiodic
potential

Spin-orbit coupling
(Rashba type)

Zeeman

hopping (t = 1)

proximity pairing

εσ,l = VQ cos (κx + φ0); x = l – (L-1)/2

Site l (=0, 1, …, L-1)

(Tight binding model)

VQ: quasiperiodic potential amplitude
Vz: Zeeman energy
2t = 2: band width (hopping=t/2)
α: spin-orbit coupling
Δ: proximity pairing

Single particle states: energy and 〈Sz〉

(VQ, Vz, α) = (0, 0.3, 0.3)

(VQ, Vz, α) = (0, 0.3, 0)

(VQ, Vz, α) = (0.2, 0.3, 0.3)

(VQ, Vz, α) = (0.5, 0.3, 0.3)

Sz

Sz

Sz

Sz

Energy

0.5

-0.5

0

0.5

-0.5

0

0.5

-0.5

0

0.5

-0.5

0

κ = 2π(√5 – 2)

On-site interaction



Single-particle states:
“Double Hofstadter butterfly”

VQ=1

2π

κ

0
Energy

Sz

Dots: single particle states for each value of κ
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Method (1): BdG equation
Hamiltonian: bilinear in (c, c†)

L sites: 2L pairs of eigenvalues (+Ej, -Ej); Majorana mode candidates : E ~ 0


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

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

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
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

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


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
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
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
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






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u

u

E
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u
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H

H

H

H









Bogoliubov-de Gennes equation (with fixed, real Δ)

U=0 case:

(VQ, Vz, α) = (0, 0.2, 0.3) (VQ, Vz, α) = (0.5, 0.2, 0.3)

Effectively single band

κ = 2π(√5 – 2)

Tezuka and Kawakami: PRB 88, 155428 (2013)

Δ=0.1



E = 0 states: without q. p. modulation

μ=-0.12 |E|<10-15

|u↑
(1)|2+ |u↓

(1)|2

|v↑
(1)|2+ |v↓

(1)|2

|u↑
(2)|2+ |u↓

(2)|2

|v↑
(2)|2+ |v↓

(2)|2

☑ Antiparticle = particle
☑ Localized at edges
Majorana modes!

μ=-0.22 |E| = 0.0149

|u↑
(1)|2+ |u↓

(1)|2

|v↑
(1)|2+ |v↓

(1)|2

|u↑
(2)|2+ |u↓

(2)|2

|v↑
(2)|2+ |v↓

(2)|2

μ=-0.17 |E| = 0.000134
|u↑

(1)|2+ |u↓
(1)|2

|v↑
(1)|2+ |v↓

(1)|2

|u↑
(2)|2+ |u↓

(2)|2

|v↑
(2)|2+ |v↓

(2)|2
(VQ, Vz, α) = (0, 0.2, 0.3)

State (1): largest E < 0
State (2): smallest E > 0

State (2)

State (1)

Δ=0.1



μ=-0.28 |E|<10-15

μ=-0.36 |E| = 0.0497

μ=-0.302 |E| = 0.000084

E=0 states: with q. p. modulation

(VQ, Vz, α) = (0.5, 0.2, 0.3)

☑ Antiparticle = particle
☑ Localized at edges
Majorana modes appear 
even under quasiperiodic
modulation!
Dependence on κ?
Effect of correlation?

κ = 2π(√5 – 2)

State (1): largest E < 0
State (2): smallest E > 0

Δ=0.1

Tezuka and Kawakami: PRB 88, 155428 (2013)



For the case with lattice site level inhomogeneity,

Method(2): DMRG
(Density-matrix renormalization group)

Pairing and on-site interaction introduced Many body states

The number of fermions is not preserved;
the parity of the number is.

Ground states:

E=Eeven

E=Eodd

Energy

Majorana fermion operators              :                                   and localized at the ends

(1) ΔE = Eeven-Eodd : |ΔE|≪ 1  (Ground state degeneracy)  corresponds to E~0 in BdG
(2) Reduced density matrices                                                                           : degenerate eigenstates
(3) Majorana mode distribution: localized

L          R

as have been done in [Stoudenmire et al.: PRB 84, 014503 (2011)] (no inhomogeneity).

☑ U=0 case: agrees with BdG results for all parameter ranges studied

Tezuka and Kawakami: Phys. Rev. B 85, 140508(R) (2012)



Multiple regions with degeneracy (ΔE=0)

(VQ, Vz, α) = (0.5, 0.2, 0.3)

ΔE ~ 0

Twofold degeneracy of

density matrix eigenvalues

Localized Majorana modes

Many single-band regions

Chemical potential, Single particle energy

(VQ, Vz, α) = (0.5, 0.5, 0.3)

κ = √5 – 2

 End Majorana fermions

Δ = 0.1

Broader TS regions for stronger Vz

ΔE = Eeven – Eodd

Chemical potential, Single particle energy

Δ=0.1



On-site interaction

Hamiltonian

Quasiperiodic
potential

Spin-orbit coupling
(Rashba type)

Zeeman

hopping (t = 1)

proximity pairing

On-site repulsion

εσ,l = VQ cos (κx + φ0); x = l – (L-1)/2

(Tight binding model)

VQ: quasiperiodic potential amplitude
Vz: Zeeman energy
2t = 2: band width (hopping=t/2)
α: spin-orbit coupling
Δ: proximity pairing

“Enhances magnetism  wider TS region”
[Stoudenmire et al.: PRB 84, 014503 (2011)]

(no inhomogeneity)

Our result for
quasiperiodic modulation

(VQ, Vz, α, Δ) = (0.5, 0.3, 0.3,0.1)

 Topological superconductor phase:
also widened by U > 0; end MFs observed

κ = √5 – 2

Site l (=0, 1, …, L-1)

Chemical potential



Bulk Fermi superfluid

1D Fermi gas

Magnetic field

Quick summary 3: 1D topological superfluid with Majorana end fermions

S=1/2 fermions
Spin-orbit interaction α

Effect of (quasi)periodic site level modulation

U = 0 (BdG OK): Multiple topological
superconductor phases
with end Majorana fermions
(stable against phase jumps)

VQ

M. Tezuka and N. Kawakami: PRB 85, 140508(R) (2012); PRB 88, 155428 (2013)

εσ,l = VQ cos (κx + φ0); x = l – (L-1)/2

“Double Hofstadter butterfly”

U > 0 (DMRG needed): TS phases are broadened
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Summary
Interacting cold atoms on quasiperiodic lattices exhibit various phases:

1. Attractively interacting spin-1/2 fermions
• Pairing enhanced by lattice deformation

• Anomalous exponent after release from trap

 MT and A. M. Garcia-Garcia: PRA 82, 043613 (2010), PRA 85, 031602R (2012)

2. Repulsively interacting spinless bosons
• Topologically non-trivial incommensurate CDW phase

• Equivalence between Harper-type and Fibonacci-type lattices

 Fuyuki Matsuda, MT, and Norio Kawakami: arXiv:1404.6315 (to appear in JPSJ)

3. Spin-1/2 fermions with proximity pairing
• Spin-orbit coupling introduces a peculiar self-similar band structure

• Reentrant topological transitions 

 MT and Norio Kawakami: PRB 85, 140508R(2012), PRB 88, 155428 (2013)


