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Plan of the talk

• What is “Higgs” in superconductors? ー Brief introduction.

• Very recent THz laser Experiment: 
    Observation of “Anderson pseudospin resonance” with Higgs mode in a 
    superconductor. [ Matsunaga, Tsuji, et al., Science (2014) ]

• Theory: 
    Analytically solve BCS equation of motion. [ Tsuji, Aoki, arXiv:1404.2711 ]
   Discuss effects of electron-electron scattering (nonequilibrium DMFT)
   and impurity scattering (Abrikosov-Gor’kov theory).
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Superconductivity

• Ginzburg-Landau functional:

• Gauge invariant:

• Mexican hat potential → Spontaneous symmetry breaking
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Higgs & Nambu-Goldstone

observed in the pump-probe delay dependence of the trans-
mitted probe THz electric field (E field). The oscillation
frequency is in excellent agreement with the theoretical
predictions.

The output from a regenerative amplified Ti:sapphire
laser system with 800-nm center wavelength, 1-mJ pulse
energy, 90-fs pulse duration, and 1-kHz repetition rate was
divided into three beams: for the generation of the pump
and probe THz pulses and for the gate pulse for the electro-
optic (EO) sampling of the transmitted probe THz pulse.
The intense pump THz pulse was generated by the tilted-
pulse-front method with a LiNbO3 crystal [27], and the
detail of our experimental configuration was described in
Ref. [35]. The pump pulse width defined by FWHM of the
envelope curve of the E-field amplitude was !pump !
1:5 ps. The probe THz pulse was generated by the optical
rectification in a ZnTe crystal. As schematically shown in
Fig. 1(b), a wire grid polarizer (WGP) inserted in the

optical path of the pump THz pulse (Epump k x) reflects
the probe THz pulse (Eprobe k y) so that the pump and

probe THz pulses are collinearly irradiated to the sample.
Another WGP was placed after the sample to block the
pump THz pulse and to transmit the probe THz pulse only.
The waveform of the probe E field was detected by the
EO sampling in a ZnTe crystal. By scanning both the
delay time of the gate pulse to the probe THz pulse, tgate,
and the delay time of the probe to the pump THz pulse, tpp,
we recorded the probe THz E field Eprobeðtgate; tppÞ in the

two-dimensional time domains of tgate and tpp [36]. The

details in our two-dimensional THz time-domain spectros-
copy system were described in the previous paper [26].
The Nb1-xTixN films were fabricated on fused quartz

(FQ) or MgO substrates using the dc reactive sputtering
method [37]. We used three different samples: (sample A)
x ¼ 0:2 and film thickness d ¼ 12 nm on a 1 mm-thick
FQ, (sample B) x ¼ 0:2 and d ¼ 30 nm on a 0.5 mm-thick
FQ, and (sample C) x ¼ 0 and d ¼ 24 nm on a 0.5 mm-
thick MgO. Figure 1(c) shows the temperature dependence
of the real-part optical conductivity spectra "1ð!Þ of
sample C without the THz pump. The solid curves are
calculated by the Mattis-Bardeen model with arbitrary
electron mean-free path [38,39] to evaluate the gap energy
at each temperature. The temperature dependence of the
gap energy is shown in Fig. 1(d). The BCS gap energies
at 4 K are evaluated as 2!0 ¼ 0:72, 1.1, and 1.3 THz, for
samples A, B, and C, respectively, which gives the ratio
!pump=!! as 0:57ðAÞ, 0:81ðBÞ, and 0:98ðCÞ.
Figure 1(e) shows the time-domain waveform of the

probe THz pulse, EprobeðtgateÞ, transmitted after sample A

below Tc ¼ 8:5 K without the THz pump. As indicated by
the vertical line in Fig. 1(e), the probe E field at tgate ¼
2:1 psð% t0Þ sensitively indicates the growth of the super-
conducting state. In fact, as shown by Fig. 1(f), the value
Eprobe at tgate ¼ t0 shows one-to-one correspondence with

the BCS gap energy 2! obtained from Fig. 1(d). Therefore,
in order to detect the temporal evolution of the order
parameter !ðtppÞ after the pump, we monitored the probe
E field at this fixed gate delay time, Eprobeðtgate ¼ t0; tppÞ.
Note that, this correspondence between the gap energy 2!
and Eprobeðtgate ¼ t0; tppÞ in the equilibrium condition with-

out the pump does not necessarily hold in the nonequilib-
rium case. Therefore, we numerically confirmed that
Eprobeðtgate ¼ t0; tppÞ indeed reflects the transient behavior

of the order parameter changing in a time scale of !!. The
details are given in the Supplemental Material [40].
Figure 2(a) shows the temporal evolution of the change

of the probeE field, #Eprobe, at tgate ¼ t0 as a function of tpp
in sample Awith !pump=!! ¼ 0:57 for various pump inten-

sities. After a fast rise within 2 ps which we will discuss
later, an oscillatory behavior is clearly identified. As the
pump intensity increases, the oscillation amplitude
increases and the frequency decreases, and the oscillation
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FIG. 1 (color online). (a) A schematic picture of the phase and
amplitude modes represented by the arrows in azimuthal and
radial directions, respectively, on the effective potential in the
plane of complex order parameter ". (b) Schematic configura-
tion of the TPTP spectroscopy. WGP: a wire grid polarizer.
(c) Temperature dependence of the real-part optical conductivity
spectra in sample C without the pump. The solid curves are
calculated by the Mattis-Bardeen model. (d) Temperature de-
pendences of the BCS gap energies for samples A, B, and C.
(e) The waveforms of the probe THz E field Eprobe as a function

of the gate delay time tgate at various temperatures without the

pump. (f) The temperature dependence of the BCS gap 2! in
equilibrium and Eprobe at the fixed delay time of tgate¼2:1psð¼
t0Þ indicated by the vertical line in (e) for sample A.
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• Without coupling to gauge fields:

• Elementary excitation:
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observed in the pump-probe delay dependence of the trans-
mitted probe THz electric field (E field). The oscillation
frequency is in excellent agreement with the theoretical
predictions.

The output from a regenerative amplified Ti:sapphire
laser system with 800-nm center wavelength, 1-mJ pulse
energy, 90-fs pulse duration, and 1-kHz repetition rate was
divided into three beams: for the generation of the pump
and probe THz pulses and for the gate pulse for the electro-
optic (EO) sampling of the transmitted probe THz pulse.
The intense pump THz pulse was generated by the tilted-
pulse-front method with a LiNbO3 crystal [27], and the
detail of our experimental configuration was described in
Ref. [35]. The pump pulse width defined by FWHM of the
envelope curve of the E-field amplitude was !pump !
1:5 ps. The probe THz pulse was generated by the optical
rectification in a ZnTe crystal. As schematically shown in
Fig. 1(b), a wire grid polarizer (WGP) inserted in the

optical path of the pump THz pulse (Epump k x) reflects
the probe THz pulse (Eprobe k y) so that the pump and

probe THz pulses are collinearly irradiated to the sample.
Another WGP was placed after the sample to block the
pump THz pulse and to transmit the probe THz pulse only.
The waveform of the probe E field was detected by the
EO sampling in a ZnTe crystal. By scanning both the
delay time of the gate pulse to the probe THz pulse, tgate,
and the delay time of the probe to the pump THz pulse, tpp,
we recorded the probe THz E field Eprobeðtgate; tppÞ in the

two-dimensional time domains of tgate and tpp [36]. The

details in our two-dimensional THz time-domain spectros-
copy system were described in the previous paper [26].
The Nb1-xTixN films were fabricated on fused quartz

(FQ) or MgO substrates using the dc reactive sputtering
method [37]. We used three different samples: (sample A)
x ¼ 0:2 and film thickness d ¼ 12 nm on a 1 mm-thick
FQ, (sample B) x ¼ 0:2 and d ¼ 30 nm on a 0.5 mm-thick
FQ, and (sample C) x ¼ 0 and d ¼ 24 nm on a 0.5 mm-
thick MgO. Figure 1(c) shows the temperature dependence
of the real-part optical conductivity spectra "1ð!Þ of
sample C without the THz pump. The solid curves are
calculated by the Mattis-Bardeen model with arbitrary
electron mean-free path [38,39] to evaluate the gap energy
at each temperature. The temperature dependence of the
gap energy is shown in Fig. 1(d). The BCS gap energies
at 4 K are evaluated as 2!0 ¼ 0:72, 1.1, and 1.3 THz, for
samples A, B, and C, respectively, which gives the ratio
!pump=!! as 0:57ðAÞ, 0:81ðBÞ, and 0:98ðCÞ.
Figure 1(e) shows the time-domain waveform of the

probe THz pulse, EprobeðtgateÞ, transmitted after sample A

below Tc ¼ 8:5 K without the THz pump. As indicated by
the vertical line in Fig. 1(e), the probe E field at tgate ¼
2:1 psð% t0Þ sensitively indicates the growth of the super-
conducting state. In fact, as shown by Fig. 1(f), the value
Eprobe at tgate ¼ t0 shows one-to-one correspondence with

the BCS gap energy 2! obtained from Fig. 1(d). Therefore,
in order to detect the temporal evolution of the order
parameter !ðtppÞ after the pump, we monitored the probe
E field at this fixed gate delay time, Eprobeðtgate ¼ t0; tppÞ.
Note that, this correspondence between the gap energy 2!
and Eprobeðtgate ¼ t0; tppÞ in the equilibrium condition with-

out the pump does not necessarily hold in the nonequilib-
rium case. Therefore, we numerically confirmed that
Eprobeðtgate ¼ t0; tppÞ indeed reflects the transient behavior

of the order parameter changing in a time scale of !!. The
details are given in the Supplemental Material [40].
Figure 2(a) shows the temporal evolution of the change

of the probeE field, #Eprobe, at tgate ¼ t0 as a function of tpp
in sample Awith !pump=!! ¼ 0:57 for various pump inten-

sities. After a fast rise within 2 ps which we will discuss
later, an oscillatory behavior is clearly identified. As the
pump intensity increases, the oscillation amplitude
increases and the frequency decreases, and the oscillation
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FIG. 1 (color online). (a) A schematic picture of the phase and
amplitude modes represented by the arrows in azimuthal and
radial directions, respectively, on the effective potential in the
plane of complex order parameter ". (b) Schematic configura-
tion of the TPTP spectroscopy. WGP: a wire grid polarizer.
(c) Temperature dependence of the real-part optical conductivity
spectra in sample C without the pump. The solid curves are
calculated by the Mattis-Bardeen model. (d) Temperature de-
pendences of the BCS gap energies for samples A, B, and C.
(e) The waveforms of the probe THz E field Eprobe as a function

of the gate delay time tgate at various temperatures without the

pump. (f) The temperature dependence of the BCS gap 2! in
equilibrium and Eprobe at the fixed delay time of tgate¼2:1psð¼
t0Þ indicated by the vertical line in (e) for sample A.
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• Elementary excitation:

• Effective free energy:

• Gauge transf. to eliminate the unphysical



Here, at last!

The Nobel Prize in Physics 2013 was awarded jointly to François Englert and 
Peter W. Higgs "for the theoretical discovery of a mechanism that contributes to 
our understanding of the origin of mass of subatomic particles, and which 
recently was confirmed through the discovery of the predicted fundamental 
particle, by the ATLAS and CMS experiments at CERN's Large Hadron Collider"



• When            , it reduces to the gap equation.
   → The existence of the Higgs mode at             in all (s-wave BCS) 
       superconductors.
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Higgs mode

• The system is invariant under a gauge transf.:

• This leads to a continuity equation, which is satisfied when one requires

AMPLITUDE COLLECTIVE MODES IN SUPERCONDUCTORS AND. . . 4885
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FIG. 2. Quasiparticle self-energy X with the BCS ap-

proximation.

B. Collective modes

I T.he phase (Bogo-liubou) Anderson mode

b, ~r~h(r~c soa+ rs2i an) . (2.11)

More generally, the results should be invariant to
the gauge transformation

ia(r, t)r3 g
—ia(,r, t)~3 (2.21)

that leads to (2.11) for a(r, t)=const. Satisfying
gauge invariance ensures that in response to a
longitudinal-electromagnetic perturba'tion, the con-
tinuity equation

In Eq. (2.6} the phase of the gap parameter has
been arbitrarily chosen in the ~~ direction in v.

space. In fact, identical results for all physical
properties should be obtained by choosing the phase
to lie anywhere in the r &-r2 plane, i.e., for

2l 6%2qp1(k+q, k)=r3+
qo —a q

(2.19)

where a =—,U~, with U~ the Fermi velocity. This
shows that associated with a charge-density pertur-
bation (neglecting the Coulomb interactions) the
phase of the superconductor propagates as a collec-
tive mode with dispersion relation

where A is the vector potential of an external field.
An approximation which satisfies the Ward identity
(and hence the continuity equation) is the integral
equation

I'(k+q, k)= y(k+q, k)
+i I r3G(k'+q)1 (k'+q, k')

d4k'+G(k )r3 vkk'
(2n )

(2.18)

This is shown in Fig. 3 and is simply the sum of
ladder diagrams generated by the residual interac-
tion H~.
The electromagnetic field couples to the electron-

ic charge density 4 r3% Takin. g y =r3, Eq. (2.18)
has the solution

(0 r34—}+7'P —0' =0yp
Bt Pl

(2.13) qo=aq . (2.20}

or

g qqJp ——0 (2.14)

is satisfied. Here J& is the expectation value of the
four-current operator:

J„(q)=g q't yt (P+qp')q't +e (2.15)

This is as it should be since the variation of the
phase of the gap reads to a supercurrent. The
dispersion relation for the phase collective mode
can be easily obtained from Eq. (2.18) by looking
for solutions of the homogeneous equation with
y=0, and I =P(qo, q)rq.
The relation between the continuity equation and

the integral equation for the vertex can be seen from
the fact that if we put

(p=0}
yp(p+q p)= '

1—(p;~ —,q;) (p, =i=1,2, 3) .
m

(2.16) y =Go (P +q}r3—r3Go (p)
—1 —1

= +quyp(P+SP) ~ (2.21)

The BCS theory makes a specific choice of phase,
and therefore does not satisfy the continuity equa-
tion in response to a longitudinal-field perturbation,
whereas the full Hamiltonian IIo+H~ does. To ob-
tain the correct linear response, one must consider
the modification of the vertex y to the same order'
as the modification of the propagator. The relation
between the modified vertex I and the propagator
is given by the Ward identity

where y& is the bare charge-current operator [Eq.
(2.16}] and Go is the propagator in the absence of
superconductivity, then (2.18) has the exact solution

BX~a+ aA„
(2.17) FIG. 3. Renormalization of the vertex I by the resi-

dual interaction Hl.

Littlewood, Varma (1981,1982).

� = 2�
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Raman Scattering by Superconducting-Gap Excitations and Their Coupling
to Charge-Density %Vaves

R. Sooryakumar and M. V. Klein
Department of 2%ysics and Materials Research Laboratory, University of Illinois at Urbana C-hampaign,

Uybana, glinois 61801
(Received 24 March 1980)

2H-Nbse~ undergoes a charge-density —wave (CDW) distortion at 33 K which induces
A and E Raman-active phonon modes. These are joined in the superconducting state at
2 K by new A and E Raman modes close in energy to the BCS gap 24. Magnetic fields
suppress the intensity of the new modes and enhance that of the CDW-induced modes, thus
providing evidence of coupling between the superconducting-gap excitations and the CD%.

PACS numbers: 78.30.Er, 74.30.6n, 74.70.Lp
Structural phase transitions involving charge-

density waves (CDW) in layered transition-metal
dichalcogenides have been studied extensively in
the last several years. ' Neutron diffraction stud-
ies' on 2tI-NbSe, show a transition from a nor-
mal lattice to one with a three-wave-vector in-
commensurate CDW at the onset temperature T„
of 33 K. The CDW is only a few percent out of
commensurability and the neutron data show that
it remains incommensurate down to 5 K. From
the modulus measurements of Barmatz, Testardi,
and DiSalvo' it is concluded that incommensura-
bility persists at least to 1.3 K. 2H-NbSe, is a
highly anisotropic type-II superconductor below
7.2 K.' The upper critical fields at 2 K may be
estimated from published data' and are found to
be 1Q5 and 42 ko for fields parallel and perpen-
dicular to the layers, respectively. Magnetore-
sistance studies on 2H-NbSe, have been carried
out by Morris, Coleman, and Bhandari. '
Figure 1 shows four pairs of Raman spectra

[(a)-(d)J from two different samples of 2H-NbSe„
M and B, at two different temperatures, 9 K (low-
er curves in each pair) and 2 K (upper curves)
for A and E Raman symmetries. The character-
istic CDW-induced amplitude modes (C) are near
40 cm-'. ' On cooling below 33 K, they first ap-
pear, then harden, and get stronger. ' The main
purpose of this paper is to report that when the
sample is immersed in superfluid helium at 2 K
two new Raman-active modes are seen at 18 cm '
(A) and at 15 cm ' (E), close in energy to the
BCS gap at 24. These are labeled G in Fig. 1. It
is also noted from this figure that the position of
these new peaks (G) is sample independent while
the position and strength of the CDW modes (C)
are sample dependent. This may be explained by
the work of Huntley' and Long, Bowen, and Lew-
is,' where it was shown that crystal growth tech-
niques have a small effect on superconductivity
whereas Hall-coefficient studies" indicate that

defects and impurities inhibit the formation of
CDW's.
From Figs. 1(c) and 1(d), where all curves

have the proper relative intensities, we find that
the CDW modes lose intensity when the new "gap"
modes appear. This direct coupling bebveen
modes C and 6 is shown more dramatically in
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FIG. l. Raman spectrum of samples M and B. The
lower curve of each pair [{a)-{d)] is at 9 K and the
upper at 2 K. Raman symmetries I,polarizations] are
E l{xy)l and A t(xx) —{&y)]. C labels CDW modes;
G, gap excitations; and I, the interlayer mode char-
acteristic of the 2H polytype. Incident laser beam at
5145 A and 30 mW power was spread into a line 40-50
p, m wide. Light was incident at the pseudo Brewster
angle; the scattered light collected along the c axis.
Resolution was 3 cm '. Curves (a) and (b) were drawn
by hand while (c) and {d) represent a five-point smoothed
plot through original data points. The upper curves in
the E spectra have been moved up by 20 counts/sec
while the 4 curves in (b) and (c) by 40 counts/sec The.
9- and 2-K data for sample M in (a) and (b) are each
from the same run. The same is true for sample B,
with the addition that (c) and (d) have been normalized
with respect to the intensity of the A «phonon at about
230 cm ' (Ref. 7).
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with respect to the intensity of the A «phonon at about
230 cm ' (Ref. 7).
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is heavily damped in the strong excitation limit. At each
excitation level, !Eprobe asymptotically reaches to a con-
stant value accompanied by the damped oscillation.
Besides the oscillation, !Eprobe shows a slow increase at
tpp > 2 ps to the constant value, indicating the gradual
decrease of the gap energy. Such a slow decrease of the
gap energy after the pump pulse irradiation has also been
observed in the previous near-visible optical pump experi-
ments, where the excess photon energy of the pump pulse
gives rise to the generation of phonons which in turn
causes the pair breaking in a slower time scale [25,26].
Meanwhile, a recent calculation using the nonequilibrium
dynamical mean-field theory [23] has also showed that
such a slow thermalization dynamics can occur as a unique
character of a nonequilibrium state, even without taking
into account the interaction with the phonon system. In the
present experiment, whereas the central photon energy of
the pump THz pulse is resonant to the gap energy, the high-
frequency components of the pump THz pulse larger than
the gap energy bring the excess energy to the QP system.
Therefore, the slow increase in Fig. 2(a) can be attributed
to the thermalization process of the excess energy.

As shown by the solid curves in Fig. 2(a), the oscillating
part of !EprobeðtppÞ is fitted by the following equation

!EprobeðtppÞ ¼ C1 þ C2tpp þ a
cosð2"ftpp þ ’Þ

ðtpp % t0Þb ; (1)

where C1, C2, a, b, ’, f, and t0 are parameters. The first
term indicates the nonoscillating part of the gap energy.

The second term is introduced to reproduce the gradual
decrease of the gap energy, which is attributed to the
thermalization process as described above. The third term
describes the order parameter oscillation with the power-
law decay as theoretically predicted [14,16,17]. Figure 2(b)
shows the oscillation frequency f obtained from the fits at
various pump intensities. Here we also plot the values of
2! at tpp ¼ 8 ps where the oscillation is damped, which
indicates the asymptotic value 2!1 of the gap energy after
the pump. Because of the slow change of the order
parameter in this temporal region, we evaluated 2!1
from the observed !Eprobeðtpp ¼ 8 psÞ by using the corre-

spondence in Fig. 1(f). The decrease of 2!1 as a function
of the pump intensity represented in Fig. 2(b) is reasonable
because the increase of the excited QP density causes the
gap reduction. The fitted values f and their pump-intensity
dependence are in excellent agreement with 2!1, which is
a characteristic feature of the order parameter oscillation
predicted in the theoretical studies [16,17]. Therefore, this
result strongly suggests that the oscillatory signal arises
from the collective Higgs amplitude mode anticipated in
the nonadiabatic excitation condition. Note that the oscil-
latory signal is observed in the cross-linear polarization
configuration of the TPTP experiments, which also indi-
cates its origin as the Higgs mode of isotropic s-wave SCs.
It is intriguing that the polarization dependent TPTP
experiments would elucidate the nature of symmetry of
such collective modes.
Figure 2(c) shows the fitted parameter b, the power-law

index for decay of the oscillation, as a function of the
pump intensity. The theoretical studies have shown that
within the linear approximation the oscillation decays with
b ¼ 0:5 for the weak-coupling BCS case due to the mixing
of the collective mode and QP states [14–16], and with
b ¼ 1:5 for the strong-coupling case [21]. Our result shows
that b changes from about 1 to 3 depending on the pump
intensity. Such a rapid decay depending on the excitation
intensity could be considered as a signature of the over-
damped oscillation of the order parameter [16,17].
The dynamics after the THz pulse excitation was also

investigated in the frequency domain. Figure 3(a) shows
the temporal evolution of the real-part optical conductivity
spectra #1ð!Þ as a function of tpp, obtained from the

TPTP spectroscopy in the two-dimensional time domains.
The optical conductivity spectrum #1ð!; tppÞ at each delay
time tpp was calculated from the waveform of the trans-

mitted probe E field. Figure 3(b) shows the #1ð!Þ spectra
at each tpp indicated by the white dotted lines in Fig. 3(a).
For comparison, Fig. 3(b) also shows the #1ð!Þ spectra
before the pump (tpp ¼ %2 ps) as the black dotted curves.
The temporal oscillation of the conductivity spectrum is
clearly seen, suggesting the oscillation of the gap energy.
However, the oscillation of the onset of the gap is not clear,
which might be obscured by the smooth onset of the
conductivity gap as observed even without the pump in
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FIG. 2 (color online). (a) The open circles show the temporal
evolution of the change of the probe E field, !Eprobe, at tgate ¼ t0
as a function of tpp in sample A at 4 K. The solid curves show

the fitted results with Eq. (1). (b) The oscillation frequency f
obtained from the fits and the asymptotic gap energy 2!1 as a
function of the pump intensity. (c) The power-law decay index b
as a function of the pump intensity.
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observed in the pump-probe delay dependence of the trans-
mitted probe THz electric field (E field). The oscillation
frequency is in excellent agreement with the theoretical
predictions.

The output from a regenerative amplified Ti:sapphire
laser system with 800-nm center wavelength, 1-mJ pulse
energy, 90-fs pulse duration, and 1-kHz repetition rate was
divided into three beams: for the generation of the pump
and probe THz pulses and for the gate pulse for the electro-
optic (EO) sampling of the transmitted probe THz pulse.
The intense pump THz pulse was generated by the tilted-
pulse-front method with a LiNbO3 crystal [27], and the
detail of our experimental configuration was described in
Ref. [35]. The pump pulse width defined by FWHM of the
envelope curve of the E-field amplitude was !pump !
1:5 ps. The probe THz pulse was generated by the optical
rectification in a ZnTe crystal. As schematically shown in
Fig. 1(b), a wire grid polarizer (WGP) inserted in the

optical path of the pump THz pulse (Epump k x) reflects
the probe THz pulse (Eprobe k y) so that the pump and

probe THz pulses are collinearly irradiated to the sample.
Another WGP was placed after the sample to block the
pump THz pulse and to transmit the probe THz pulse only.
The waveform of the probe E field was detected by the
EO sampling in a ZnTe crystal. By scanning both the
delay time of the gate pulse to the probe THz pulse, tgate,
and the delay time of the probe to the pump THz pulse, tpp,
we recorded the probe THz E field Eprobeðtgate; tppÞ in the

two-dimensional time domains of tgate and tpp [36]. The

details in our two-dimensional THz time-domain spectros-
copy system were described in the previous paper [26].
The Nb1-xTixN films were fabricated on fused quartz

(FQ) or MgO substrates using the dc reactive sputtering
method [37]. We used three different samples: (sample A)
x ¼ 0:2 and film thickness d ¼ 12 nm on a 1 mm-thick
FQ, (sample B) x ¼ 0:2 and d ¼ 30 nm on a 0.5 mm-thick
FQ, and (sample C) x ¼ 0 and d ¼ 24 nm on a 0.5 mm-
thick MgO. Figure 1(c) shows the temperature dependence
of the real-part optical conductivity spectra "1ð!Þ of
sample C without the THz pump. The solid curves are
calculated by the Mattis-Bardeen model with arbitrary
electron mean-free path [38,39] to evaluate the gap energy
at each temperature. The temperature dependence of the
gap energy is shown in Fig. 1(d). The BCS gap energies
at 4 K are evaluated as 2!0 ¼ 0:72, 1.1, and 1.3 THz, for
samples A, B, and C, respectively, which gives the ratio
!pump=!! as 0:57ðAÞ, 0:81ðBÞ, and 0:98ðCÞ.
Figure 1(e) shows the time-domain waveform of the

probe THz pulse, EprobeðtgateÞ, transmitted after sample A

below Tc ¼ 8:5 K without the THz pump. As indicated by
the vertical line in Fig. 1(e), the probe E field at tgate ¼
2:1 psð% t0Þ sensitively indicates the growth of the super-
conducting state. In fact, as shown by Fig. 1(f), the value
Eprobe at tgate ¼ t0 shows one-to-one correspondence with

the BCS gap energy 2! obtained from Fig. 1(d). Therefore,
in order to detect the temporal evolution of the order
parameter !ðtppÞ after the pump, we monitored the probe
E field at this fixed gate delay time, Eprobeðtgate ¼ t0; tppÞ.
Note that, this correspondence between the gap energy 2!
and Eprobeðtgate ¼ t0; tppÞ in the equilibrium condition with-

out the pump does not necessarily hold in the nonequilib-
rium case. Therefore, we numerically confirmed that
Eprobeðtgate ¼ t0; tppÞ indeed reflects the transient behavior

of the order parameter changing in a time scale of !!. The
details are given in the Supplemental Material [40].
Figure 2(a) shows the temporal evolution of the change

of the probeE field, #Eprobe, at tgate ¼ t0 as a function of tpp
in sample Awith !pump=!! ¼ 0:57 for various pump inten-

sities. After a fast rise within 2 ps which we will discuss
later, an oscillatory behavior is clearly identified. As the
pump intensity increases, the oscillation amplitude
increases and the frequency decreases, and the oscillation
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FIG. 1 (color online). (a) A schematic picture of the phase and
amplitude modes represented by the arrows in azimuthal and
radial directions, respectively, on the effective potential in the
plane of complex order parameter ". (b) Schematic configura-
tion of the TPTP spectroscopy. WGP: a wire grid polarizer.
(c) Temperature dependence of the real-part optical conductivity
spectra in sample C without the pump. The solid curves are
calculated by the Mattis-Bardeen model. (d) Temperature de-
pendences of the BCS gap energies for samples A, B, and C.
(e) The waveforms of the probe THz E field Eprobe as a function

of the gate delay time tgate at various temperatures without the

pump. (f) The temperature dependence of the BCS gap 2! in
equilibrium and Eprobe at the fixed delay time of tgate¼2:1psð¼
t0Þ indicated by the vertical line in (e) for sample A.
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Higgs Amplitude Mode in the BCS Superconductors Nb1-xTixN Induced
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Ryusuke Matsunaga,1 Yuki I. Hamada,1 Kazumasa Makise,2 Yoshinori Uzawa,3

Hirotaka Terai,2 Zhen Wang,2 and Ryo Shimano1

1Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan
2National Institute of Information and Communications Technology, 588-2 Iwaoka, Nishi-ku, Kobe 651-2492, Japan

3National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan
(Received 2 May 2013; published 29 July 2013)

Ultrafast responses of BCS superconductor Nb1-xTixN films in a nonadiabatic excitation regime were

investigated by using terahertz (THz) pump-THz probe spectroscopy. After an instantaneous excitation

with the monocycle THz pump pulse, a transient oscillation emerges in the electromagnetic response

in the BCS gap energy region. The oscillation frequency coincides with the asymptotic value of the BCS

gap energy, indicating the appearance of the theoretically anticipated collective amplitude mode of the

order parameter, namely the Higgs amplitude mode. Our result opens a new pathway to the ultrafast

manipulation of the superconducting order parameter by optical means.

DOI: 10.1103/PhysRevLett.111.057002 PACS numbers: 74.40.Gh, 74.25.Gz, 78.47.J!

With spontaneous breaking of continuous symmetry,
two types of collective excitations associated with the
order parameter emerge. One is the gapless phase mode
called as the Nambu-Goldstone mode, and the other is the
gapped amplitude mode also referred to as the Higgs mode
from the analogy to the Higgs boson in particle physics
[1,2], as schematically shown in Fig. 1(a). Recently, the
Higgs amplitude mode has been observed in strongly
interacting superfluid phases of bosonic ultracold atoms
in optical lattices by means of Bragg spectroscopy [3] and
lattice modulation [4]. The studies of the Higgs mode
realized on tabletop experiments would provide substantial
platforms for exploring the nature of symmetry-broken
states in quantum many-body physics. In condensed matter
systems, the amplitude mode has been widely observed in
charged density wave (CDW) systems by Raman or pump-
probe spectroscopy [5–8] and in an antiferromagnet by
neutron spectroscopy [9]. However, the observation of the
amplitude mode in fermionic condensates has been limited
to the specific cases of superconducting CDW compound
NbSe2 [10,11] andp-wave superfluid

3He [12,13]. Then, we
can pose a question as to whether the Higgs mode in a pure
metallic BCS superconductor (SC), which does not couple
to the radiation field, can be observed experimentally.

The amplitude mode in the BCS order parameter has
been anticipated to appear in a response to a fast perturba-
tion in nonadiabatic regime [14–23]. Depending on the
perturbation strength, the nonequilibrium dynamics would
exhibit a persistent oscillation, a transient oscillation
obeying a power-law decay, or a quantum quench of the
order parameter which cannot be described by the time-
dependent Ginzburg-Landau theory or the Boltzmann
equation [16,17]. A sudden switching of the pairing inter-
action by using Feshbach resonance in ultracold atoms [24]
is one promising way to realize such a nonequilibrium

state, while it still remains experimentally challenging.
An alternative way to induce the transient oscillation of
the order parameter has been proposed in conventional
metallic BCS SCs [19]. When a BCS ground state is non-
adiabatically excited by a short laser pulse, the coherence
between different quasiparticle (QP) states leads to the
oscillation of the order parameter. Such a nonadiabatic
excitation for BCS superconductivity requires a short
pump pulse with the duration !pump small enough com-
pared to the response time of the BCS state characterized
by the BCS gap ! as !! ¼ "=!!1. Here a near-visible
femtosecond optical pulse is not applicable, because the
huge excess energies of photoexcited hot electrons in the
order of electronvolts are transferred to the generation
of large amounts of high-frequency phonons (@!> 2!),
which in turn induce the Cooper pair breaking. This pro-
cess destroys the nonadiabatic excitation condition even
if one uses the laser pulse much shorter than !! [25,26].
Therefore, to ensure the nonadiabatic excitation, it is nec-
essary to use a short pump pulse with its photon energy
resonant to the BCS gap which is typically located in
terahertz (THz) frequency range [19]. With the recent
development of THz technology, such an intense and
monocyclelike THz pulse has become available [27], mak-
ing it possible to investigate the THz nonlinear response
in a variety of materials [28–32]. In an s-wave SC of NbN
film, the ultrafast pair breaking and the following QP
dynamics have been investigated by the intense THz
pump-THz probe (TPTP) spectroscopy [26]. Nonlinear
THz transmission experiments in NbN have also been
reported recently [33,34].
In this Letter, we investigated the coherent transient

dynamics of superconducting Nb1-xTixN films after the
THz pulse excitation in the nonadiabatic excitation regime.
The time-domain oscillation of the order parameter was
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Dynamics of superconductors

• Time-dependent Ginzburg-Landau equation

• Microscopically justified
   - near the critical point (Ginzburg condition: |T-Tc|<TG)
   - when (time scale of order parameter) >> (quasiparticle relaxation time)
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Dynamics of superconductors

: ac electric field



Anderson pseudospin

normal state BCS state
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k · � · �k Anderson, Phys. Rev. 112, 1900 (1958)

• Particle-hole symmetric by construction.

• Linear response vanishes.
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Tsuji, Aoki, arXiv:1404.2711
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Light-pseudospin coupling

• Let x be the polarization direction of the electric field.

• When all the directions are equivalent, one can symmetrize
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• Consider an isotropic system [                 ]

• Expand      near the Fermi surface:
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• For the ideal parabolic band                   ,
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• The      term has a contribution of order               .

• The first term (potential shift) can be gauged out.

• The      term is the leading.
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Anderson pseudospin precession
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• Let us first take Δ to be time independent (no self-consistency for Δ).
→ Usual spin resonance problem.
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For U quench, see Yuzbashyan, Dzero (2006); 
Barankov, Levitov (2006).
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Anderson pseudospin resonance

2

where τ = (τx, τy, τz) are the Pauli matrices. It satis-
fies the usual commutation relations for angular momentum,
[σi

k,σ
j
k] = iεi jkσk

k. With this, the pairing Hamiltonian is writ-
ten as

Hpair = 2
∑

k

bk · σk, (5)

which can be seen as a spin system under the effective mag-
netic field,

bk =
(
−∆′,−∆′′, ϵk−eA(t) + ϵk+eA(t)

2

)
. (6)

Note that bk is an even function of A(t) provided that the
system is parity symmetric (ϵ−k = ϵk), so that the linear re-
sponse vanishes, and the leading effect of the electric field
is in the second order O(A(t)2). The self-consistency condi-
tion (3) reads ∆ = U

∑
k(σx

k + iσy
k) in the pseudospin nota-

tion. The time evolution is determined by the BdG equation,
i∂tΨk(t) = HBdG(t)Ψk(t), or equivalently, by Bloch equation
that describes Anderson’s pseudospin precession,

∂tσk = i[Hpair,σk] = 2bk × σk. (7)

We solve Eq. (7) up to the leading second order in A(t) rig-
orously. To this end, we linearize Eq. (7) by separating time-
independent and time-dependent parts, σk(t) = σk(0)+δσk(t)
and ∆(t) = ∆+ δ∆(t). We assume that the initial state is super-
conducting at zero temperature. Without loss of generality, the
initial ∆ is taken to be real positive. Thus the initial condition
is σx

k(0) = ∆/ωk and σz
k(0) = −ϵk/ωk with ωk = 2

√
ϵ2k + ∆

2.
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FIG. 1: (color online). The integral contour (solid closed curve) that
we take in the complex plane to evaluate the Bromwich integral (13).
The cross marks and wavy lines represent the poles and the branch
cut, respectively.
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FIG. 2: The universal functions for the amplitude A = A (2Ω/2∆)
and the phase shift ϕ = ϕ(2Ω/2∆) of the 2Ω oscillation of the super-
conducting order parameter δ∆(t)/α1e2A2∆.

The linearized equations of motion are

∂tδσ
x
k(t) = −2ϵkδσ

y
k(t), (8)

∂tδσ
y
k(t) = 2ϵk δσx

k(t) + 2∆ δσz
k(t)

+
1
ωk

(
∆e2

∑

i j

∂ki∂k jϵkAi(t)Aj(t) − 2ϵkδ∆(t)
)
, (9)

∂tδσ
z
k(t) = −2∆ δσy

k(t). (10)

Note that ∂t(∆δσx
k − ϵkδσz

k) = 0. From this as well as the
initial condition (δσk(0) = 0), it turns out that the relation
∆δσx

k = ϵkδσ
z
k holds for all the time, which helps to reduce

the number of the equations.
We solve these equations by Laplace transformation,

L[δ∆(t)](s) =: δ∆(s), etc. Let us suppose that the elec-
tric field is polarized to one direction, say x. Then we have∑

i j ∂ki∂k jϵkAiAj = ∂2
kx
ϵkA2. When all the directions are

equivalent, we can symmetrize it as ∂2
kx
ϵk → d−1∇2

kϵk with
d the spatial dimension. If the band structure is isotropic, i.e.,
ϵk = ϵ(|k|), we expand ϵk around the Fermi wavenumber kF ,
ϵk =

∑∞
n=1 cn(|k| − kF)n. With this, we can define a series

expansion, d−1∇2
kϵk = α0 + α1ϵk + α2ϵ2k + · · · [where α0 =

c2d−1 + c1(1 − d−1)k−1
F ,α1 = 6c3d−1 + (1 − d−1)(2c2k−1

F −
c1k−2

F ), . . . ]. Since the odd-order terms of ϵk in the momen-
tum integral vanish, the α1 term gives the leading contribu-
tion near the Fermi surface. For anisotropic band structures,
the same expansion is still sometimes possible. For instance,
the d dimensional cubic lattice (ϵk = −2

∑
i cos ki − µ) has

2

where τ = (τx, τy, τz) are the Pauli matrices. It satis-
fies the usual commutation relations for angular momentum,
[σi

k,σ
j
k] = iεi jkσk

k. With this, the pairing Hamiltonian is writ-
ten as

Hpair = 2
∑

k

bk · σk, (5)

which can be seen as a spin system under the effective mag-
netic field,

bk =
(
−∆′,−∆′′, ϵk−eA(t) + ϵk+eA(t)

2

)
. (6)

Note that bk is an even function of A(t) provided that the
system is parity symmetric (ϵ−k = ϵk), so that the linear re-
sponse vanishes, and the leading effect of the electric field
is in the second order O(A(t)2). The self-consistency condi-
tion (3) reads ∆ = U

∑
k(σx

k + iσy
k) in the pseudospin nota-

tion. The time evolution is determined by the BdG equation,
i∂tΨk(t) = HBdG(t)Ψk(t), or equivalently, by Bloch equation
that describes Anderson’s pseudospin precession,

∂tσk = i[Hpair,σk] = 2bk × σk. (7)

We solve Eq. (7) up to the leading second order in A(t) rig-
orously. To this end, we linearize Eq. (7) by separating time-
independent and time-dependent parts, σk(t) = σk(0)+δσk(t)
and ∆(t) = ∆+ δ∆(t). We assume that the initial state is super-
conducting at zero temperature. Without loss of generality, the
initial ∆ is taken to be real positive. Thus the initial condition
is σx

k(0) = ∆/ωk and σz
k(0) = −ϵk/ωk with ωk = 2

√
ϵ2k + ∆
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FIG. 1: (color online). The integral contour (solid closed curve) that
we take in the complex plane to evaluate the Bromwich integral (13).
The cross marks and wavy lines represent the poles and the branch
cut, respectively.
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FIG. 2: The universal functions for the amplitude A = A (2Ω/2∆)
and the phase shift ϕ = ϕ(2Ω/2∆) of the 2Ω oscillation of the super-
conducting order parameter δ∆(t)/α1e2A2∆.

The linearized equations of motion are

∂tδσ
x
k(t) = −2ϵkδσ

y
k(t), (8)

∂tδσ
y
k(t) = 2ϵk δσx

k(t) + 2∆ δσz
k(t)

+
1
ωk

(
∆e2

∑

i j

∂ki∂k jϵkAi(t)Aj(t) − 2ϵkδ∆(t)
)
, (9)

∂tδσ
z
k(t) = −2∆ δσy

k(t). (10)

Note that ∂t(∆δσx
k − ϵkδσz

k) = 0. From this as well as the
initial condition (δσk(0) = 0), it turns out that the relation
∆δσx

k = ϵkδσ
z
k holds for all the time, which helps to reduce

the number of the equations.
We solve these equations by Laplace transformation,

L[δ∆(t)](s) =: δ∆(s), etc. Let us suppose that the elec-
tric field is polarized to one direction, say x. Then we have∑

i j ∂ki∂k jϵkAiAj = ∂2
kx
ϵkA2. When all the directions are

equivalent, we can symmetrize it as ∂2
kx
ϵk → d−1∇2

kϵk with
d the spatial dimension. If the band structure is isotropic, i.e.,
ϵk = ϵ(|k|), we expand ϵk around the Fermi wavenumber kF ,
ϵk =

∑∞
n=1 cn(|k| − kF)n. With this, we can define a series

expansion, d−1∇2
kϵk = α0 + α1ϵk + α2ϵ2k + · · · [where α0 =

c2d−1 + c1(1 − d−1)k−1
F ,α1 = 6c3d−1 + (1 − d−1)(2c2k−1

F −
c1k−2

F ), . . . ]. Since the odd-order terms of ϵk in the momen-
tum integral vanish, the α1 term gives the leading contribu-
tion near the Fermi surface. For anisotropic band structures,
the same expansion is still sometimes possible. For instance,
the d dimensional cubic lattice (ϵk = −2

∑
i cos ki − µ) has

• 2Ω oscillation of the order parameter:
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Coulomb scattering
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FIG. 3: (color online). Temporal evolution of the superconducting
order parameter calculated by the nonequilibrium DMFT for the at-
tractive Hubbard model at half filling driven by the ac field with
U = 3.5, A = 0.15, and Ω = 2π/25. Each curve corresponds to dif-
ferent temperatures (β−1) for the initial states. The sinusoidal curve
represents E(t)2 ∝ cos2 Ωt. Dashed lines are guide for eye.

relation effects. Thus let us go over to the static mean field
by considering the attractive Hubbard model driven by the ac
field,

HHubbard =
∑

kσ

ϵk−eA(t)c
†
kσckσ − U

∑

i

c†i↑ci↑c†i↓ci↓, (16)

where i labels the lattice sites. We take, as an example, a
simple dispersion ϵk = −2 cos k with the bandwidth W = 4
and α1 = −1. We calculate the time evolution by means
of the nonequilibrium dynamical mean-field theory (DMFT)
[16, 17], which is extended here to the Nambu formalism for
treating superconductors. For an impurity solver, we employ
the third-order perturbation theory [18], which is supposed to
be reliable in the region U < W. The system is set at half fill-
ing with U = 3.5, which belongs to a strong coupling regime
(2∆T=0/Tc ≈ 5.0 well above the BCS value).

The time evolution of the local superconducting order pa-
rameter, Φ(t) = ⟨c†↑c†↓⟩, for various initial temperatures (β−1)
is shown in Fig. 3. With increased total energy due to the
continuous excitation, the overall value of the order parameter
gradually decreases. On top of that, the coherent oscillation of
the order parameter with frequency 2Ω is generated (compare
it to E(t)2, displayed in Fig. 3). The oscillation is particularly
enhanced around β = 6.5, and becomes invisible for β = 9.0.
The phase-shift anomaly is not clearly observed in this inter-
action regime. We evaluate the energy gap 2∆ in equilibrium
from the single-particle spectral function A(ω), which is cal-
culated by Fourier transformation of the real-time simulation.
If we measure the amplitude of the 2Ω oscillation of the order
parameter, δΦ, at the third cycle, we can clearly see in the in-
set of Fig. 4 that a resonance peak indeed emerges at 2Ω = 2∆

fit
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FIG. 4: (color online). Temporal evolution of the order parameter
Φ(t) after a quench U → U − δU at t = 0 with U = 3.5 and δU =
0.01 in the attractive Hubbard model at β = 6.4. Thick (red) curve is
a fit (see text). Inset: The amplitude of the 2Ω oscillating component
of the order parameter δΦ for the attractive Hubbard model driven by
an ac field with U = 3.5, Ω = 2π/25, and various ∆. The bar shows
the width estimated from the lifetime of the Higgs mode.

(the error bars are due to inaccuracy in measuring ∆). The
peak position corresponds to β ≈ 6.4. The result indicates
that APR indeed exists beyond the static mean-field level.

However, we notice a deviation from the BCS result, i.e.,
the resonance has a finite width (the inset of Fig. 4). There are
several factors that determine the resonance width. Besides
extrinsic experimental factors such as the limited measure-
ment time scale or energy dissipation to external environment
(which is absent in our calculations), one intrinsic factor is the
finite lifetime τ of the Higgs amplitude mode, which can de-
cay into individual excitations [note that Higgs does not decay
into the Nambu-Goldstone (NG) mode in charged supercon-
ductors, since the energy of NG mode is lifted to the plasma
frequency, at least away from the critical regime near T = Tc].
If the Higgs mode decays exponentially, the poles s = ±2i∆
acquire a real part on the complex plane (Fig. 1), and are thus
prevented from meeting the branching points ±2iΩ, result-
ing in broadening of the resonance peak. We can numeri-
cally evaluate the decay rate by generating the Higgs mode at
β = 6.4 with a small perturbation (here we use an interaction
quench [19]), where Φ(t) is fitted with Φ0e−t/τ cos(2∆t+θ) on
top of a linear drift (Fig. 4). A rapid oscillation in the curve
comes from a band-edge effect, and is irrelevant to the Higgs
mode. From the derived τ, we estimate the resonance width
as indicated by the bar in the inset of Fig. 4, which roughly
coincides with the peak width of APR with the background
subtracted (Fig. 4).

To summarize, we theoretically propose a phenomenon that
may be called Anderson pseudospin resonance (APR) for a su-
perconductor driven by an ac electric field, which is confirmed
by solving the equation of motion analytically within the BCS
approximation, and by solving the attractive Hubbard model
via the nonequilibrium DMFT. APR provides not only a new
pathway of controlling the pseudospins but also a viewpoint
in the study of a superconductor in that it offers information
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FIG. 3: (color online). Temporal evolution of the superconducting
order parameter calculated by the nonequilibrium DMFT for the at-
tractive Hubbard model at half filling driven by the ac field with
U = 3.5, A = 0.15, and Ω = 2π/25. Each curve corresponds to dif-
ferent temperatures (β−1) for the initial states. The sinusoidal curve
represents E(t)2 ∝ cos2 Ωt. Dashed lines are guide for eye.

relation effects. Thus let us go over to the static mean field
by considering the attractive Hubbard model driven by the ac
field,

HHubbard =
∑

kσ

ϵk−eA(t)c
†
kσckσ − U

∑

i

c†i↑ci↑c†i↓ci↓, (16)

where i labels the lattice sites. We take, as an example, a
simple dispersion ϵk = −2 cos k with the bandwidth W = 4
and α1 = −1. We calculate the time evolution by means
of the nonequilibrium dynamical mean-field theory (DMFT)
[16, 17], which is extended here to the Nambu formalism for
treating superconductors. For an impurity solver, we employ
the third-order perturbation theory [18], which is supposed to
be reliable in the region U < W. The system is set at half fill-
ing with U = 3.5, which belongs to a strong coupling regime
(2∆T=0/Tc ≈ 5.0 well above the BCS value).

The time evolution of the local superconducting order pa-
rameter, Φ(t) = ⟨c†↑c†↓⟩, for various initial temperatures (β−1)
is shown in Fig. 3. With increased total energy due to the
continuous excitation, the overall value of the order parameter
gradually decreases. On top of that, the coherent oscillation of
the order parameter with frequency 2Ω is generated (compare
it to E(t)2, displayed in Fig. 3). The oscillation is particularly
enhanced around β = 6.5, and becomes invisible for β = 9.0.
The phase-shift anomaly is not clearly observed in this inter-
action regime. We evaluate the energy gap 2∆ in equilibrium
from the single-particle spectral function A(ω), which is cal-
culated by Fourier transformation of the real-time simulation.
If we measure the amplitude of the 2Ω oscillation of the order
parameter, δΦ, at the third cycle, we can clearly see in the in-
set of Fig. 4 that a resonance peak indeed emerges at 2Ω = 2∆
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FIG. 4: (color online). Temporal evolution of the order parameter
Φ(t) after a quench U → U − δU at t = 0 with U = 3.5 and δU =
0.01 in the attractive Hubbard model at β = 6.4. Thick (red) curve is
a fit (see text). Inset: The amplitude of the 2Ω oscillating component
of the order parameter δΦ for the attractive Hubbard model driven by
an ac field with U = 3.5, Ω = 2π/25, and various ∆. The bar shows
the width estimated from the lifetime of the Higgs mode.

(the error bars are due to inaccuracy in measuring ∆). The
peak position corresponds to β ≈ 6.4. The result indicates
that APR indeed exists beyond the static mean-field level.

However, we notice a deviation from the BCS result, i.e.,
the resonance has a finite width (the inset of Fig. 4). There are
several factors that determine the resonance width. Besides
extrinsic experimental factors such as the limited measure-
ment time scale or energy dissipation to external environment
(which is absent in our calculations), one intrinsic factor is the
finite lifetime τ of the Higgs amplitude mode, which can de-
cay into individual excitations [note that Higgs does not decay
into the Nambu-Goldstone (NG) mode in charged supercon-
ductors, since the energy of NG mode is lifted to the plasma
frequency, at least away from the critical regime near T = Tc].
If the Higgs mode decays exponentially, the poles s = ±2i∆
acquire a real part on the complex plane (Fig. 1), and are thus
prevented from meeting the branching points ±2iΩ, result-
ing in broadening of the resonance peak. We can numeri-
cally evaluate the decay rate by generating the Higgs mode at
β = 6.4 with a small perturbation (here we use an interaction
quench [19]), where Φ(t) is fitted with Φ0e−t/τ cos(2∆t+θ) on
top of a linear drift (Fig. 4). A rapid oscillation in the curve
comes from a band-edge effect, and is irrelevant to the Higgs
mode. From the derived τ, we estimate the resonance width
as indicated by the bar in the inset of Fig. 4, which roughly
coincides with the peak width of APR with the background
subtracted (Fig. 4).

To summarize, we theoretically propose a phenomenon that
may be called Anderson pseudospin resonance (APR) for a su-
perconductor driven by an ac electric field, which is confirmed
by solving the equation of motion analytically within the BCS
approximation, and by solving the attractive Hubbard model
via the nonequilibrium DMFT. APR provides not only a new
pathway of controlling the pseudospins but also a viewpoint
in the study of a superconductor in that it offers information

U=3.5, A=0.15, Ω=2π/25

U=3.5, Ω=2π/25

• Nonequilibrium DMFT calculation [ Aoki, Tsuji et al., Rev. Mod. Phys. (2014) ]
   of the attractive Hubbard model.
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• Non-magnetic impurities → 2Δ does not change (Anderson’s theorem)

• Calculation based on Abrikosov-Gor’kov theory (λ→0, T=0):
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Future directions

• Can one further pursue an analogy between pseudospin and spin?
   ー e.g. NMR, ESR, spintronics, ... 

• Can one control xy pseudomagnetic fields in addition to z?

• Nonlinear pseudospin dynamics beyond perturbative regime (A2, A4, ...)

• What is the dominant pseudospin relaxation process?
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