Topological Kondo Insulator SmB₆

J. Phys. Soc. Jpn. 80 123720, (2011).

Tetsuya Takimoto Department of Physics, Hanyang University

Collaborator: Ki-Hoon Lee (POSTECH)

Content

1. Introduction of SmB₆

in-gap state

- 2. Topological insulator
- 3. Model Hamiltonian of SmB₆ relevant orbitals
- **4. Topological index <= parity eigenvalue** topological index (1:111) for SmB₆
- 5. Necessary and sufficient conditions for TKI
- 6. Surface state
- 7. Recent experimental data
- 8. Summary

Kondo effect

Kondo lattice (strong correlation):

Due to the coherence of Kondo states, heavy fermion are formed in the Kondo lattice

Heavy fermion system and Kondo insulator

Another picture from weak correlation (Anderson lattice)

Introduction

SmB₆: Kondo insulator PHYSICAL REVIEW LETTERS PRL 104, 106408 (2010) **Topological Kondo Insulators** Δ_{gap} =15 meV Maxim Dzero,¹ Kai Sun,¹ Victor Galitski,¹ and Piers Coleman² B ¹Joint Quantum Institute and Department of Physics, University of Maryland, College Park, Maryland 20742, USA ²Center for Materials Theory, Rutgers University, Piscataway, New Jersey 08854, USA point group : O_h (Received 22 December 2009; published 12 March 2010) periodic Anderson model (s+f) Sm f: jz=-1/2 and +1/2 (Γ_8 of O_h) in-gap state below 5K $\hat{H} = \sum_{\mathbf{k},\alpha} \xi_{\mathbf{k}} c_{\mathbf{k}\alpha}^{\dagger} c_{\mathbf{k}\alpha} + \sum_{j\alpha} [V c_{j\alpha}^{\dagger} f_{j\alpha} + \text{H.c.}]$ (a) 1 bar **10[°]** 24 kbar $+\sum_{i\alpha} \left[\varepsilon_f^{(0)} n_{f,j\alpha} + \frac{U_f}{2} n_{f,j\alpha} n_{f,j\bar{\alpha}} \right]$ **10**⁻¹ 33 kbar ρ (Ω-cm) 10⁻² weak strong 42 kbar strong topological topological topological insulator insulator insulator 10⁻³ 53 kbar 10⁻⁴ ky ky kγ 60 kbar $I_{WTI}^{x,y,z} = -1$ 66 kbar $I_{STI} = -1$ $I_{STI} = -1$ 100 10 2t-2t**-6**t **6**t T(K)

Cooley et al. PRL 74 1629 (1995)

SmB6

12 MARCH 2010

Topological Insulator

ref.

two copies of integer quantum Hall system

- time reversal invariant
- large spin-orbit coupling
- metallic edge (surface) state

two-dimensional case (Kane & Mele PRL 95)

circumferential electric field E can be induced by a threading flux

 $k \longrightarrow k+2\pi/L$

trivial insulator ($v_0=0$) no effect gapped around E_F

topological insulator ($v_0=1$) spin Hall

particle-hole excitation around E_F on the edge spin-direction is different between particle and hole

Hasan & Kane RMP 82 Qi & Zhang RMP

Topological number in noninteracting system

Bulk-edge correspondence

relevant orbitals

dominant electronic states

 $(4f)^{5}(5d)^{1}$ and $(4f)^{6}$

band structure calculation

Yanase and Harima: Prog. Theor. Phys. Suppl. **108** 19, (1992). Antonov et al. : PRB **66** 165209, (2002).

4f and 5d electrons are from Sm.

Sm³⁺: (4f)⁵

angular momentum: J=5/2 CEF ground state: Γ_8

one hole in Γ₈ states
 in j-j coupling scheme

tight-binding

+h.c..

effective model

5d-electron term (NN+NNN) $H_c = \sum \sum \sum \varepsilon^d_{\xi\xi'}(\mathbf{k}) c^{\dagger}_{\mathbf{k}\xi\sigma} c_{\mathbf{k}\xi'\sigma}$ k $\mathcal{E}\mathcal{E}' \sigma$ $\hat{\varepsilon}^d(\mathbf{k}) = d_0^d(\mathbf{k})\hat{\tau}_0 + d_1^d(\mathbf{k})\hat{\tau}_z + d_2^d(\mathbf{k})\hat{\tau}_x$ ξ : orbital in e_g 5d Stan.n. hopping 5d 5d 5d σ : real spin hybridization term (NN+NNN) H_{hyb} The seed of singularity for \mathcal{A} $= \sum_{\mathbf{k}} \sum_{\xi,\gamma} \left[\begin{array}{cc} c^{\dagger}_{\mathbf{k}\xi\uparrow} & c^{\dagger}_{\mathbf{k}\xi\downarrow} \end{array} \right] \mathrm{i} \mathbf{V}_{\xi\gamma}(\mathbf{k}) \cdot \hat{\sigma} \left[\begin{array}{cc} f_{\mathbf{k}\gamma+} \\ f_{\mathbf{k}\gamma-} \end{array} \right]$

 $\hat{V}^{\alpha}(\mathbf{k}) = V_{0}^{\alpha}(\mathbf{k})\hat{\tau}_{0} + V_{1}^{\alpha}(\mathbf{k})\hat{\tau}_{z} + V_{2}^{\alpha}(\mathbf{k})\hat{\tau}_{x}$

4f-electron term (NN+NNN)

$$H_f^0 = \sum_{\mathbf{k}} \sum_{\gamma,\gamma'} \sum_{\tau,\tau'} \varepsilon_{\gamma\tau,\gamma'\tau'}^f(\mathbf{k}) f_{\mathbf{k}\gamma\tau}^{\dagger} f_{\mathbf{k}\gamma'\tau'}$$
$$\hat{\varepsilon}^f(\mathbf{k}) = d_0^f(\mathbf{k}) \hat{\tau}_0 \hat{\sigma}_0 + \sum_{n=1}^5 d_n^f(\mathbf{k}) \Gamma^n$$

$$\Gamma^{1,2,3,4,5} = (\hat{\tau}_z \hat{\sigma}_0, \hat{\tau}_x \hat{\sigma}_0, \hat{\tau}_y \hat{\sigma}_x, \hat{\tau}_y \hat{\sigma}_y, \hat{\tau}_y \hat{\sigma}_z)$$

 γ : orbital in Γ_8 τ : pseudo spin in a Kramers doublet

renormalization of interaction term

interactions between 4f

>

interactions between 5d

interactions between 4f and 5d

localization character of 4f-electron

renormalization of interactions between 4f

Gutzwiller projection

slave boson

$$f_{\mathbf{k}\gamma\tau} \rightarrow \sqrt{z_{\mathbf{k}\gamma}}\tilde{f}_{\mathbf{k}\gamma\tau}$$

$$\varepsilon^{f}_{\gamma\tau,\gamma'\tau'}(\mathbf{k}) \longrightarrow z \,\varepsilon^{f}_{\gamma\tau,\gamma'\tau'}(\mathbf{k})$$
$$\mathbf{V}_{\xi\gamma}(\mathbf{k}) \longrightarrow \sqrt{z} \mathbf{V}_{\xi\gamma}(\mathbf{k})$$

map into effective Hamiltonian

z : renormalization factor in Fermi liquid theory

electronic structure

topological index

 $(v_0: v_1, v_2, v_3)$

 $v_0=0$ WTI $(-1)^{\nu_0} = \prod \delta_m$ $v_0=1$ STI m $(-1)^{\nu_k} =$ $\delta_{m=(n_1,n_2,n_3)}$ $n_k = 1; n_{i \neq k} = 0, 1$ $\delta_m = \prod_{E_m < \varepsilon_F} \delta_{n,m}$

 $\delta_{n.m}$: parity eigenvalue of n-th two-fold degenerate band at \mathbf{k}_{m}^{*}

Fu and Kane: PRB 74 195312 (2006) PRB 76 045302 (2007)

time reversal invariant point

our model (1: 1,1,1)

parity operator

 $\hat{P} = \hat{s}_z \hat{\tau}_0 \hat{\sigma}_0$

 \hat{s}_{α} : 2X2 matrix between d- and felectronic states

 $\left[\hat{H}(\mathbf{k}_m^*), \hat{P}\right] = 0$

hybridization term is formed by s_x and s_y

$$\hat{P}\hat{s}_{x,y}\hat{P}^{-1} = -\hat{s}_{x,y}$$

hybridization term is irrelevant at \mathbf{k}^* for $\delta_{n,m}$ $E^d_+(\mathbf{k}^*_m)$ with even parity $E^f_+(\mathbf{k}^*_m)$ with odd parity $E^{d}_{-}(\mathbf{k}_{m}^{*}) > E^{f}_{+}(\mathbf{k}_{m}^{*}) \text{ is the highest energy}$ $E^{d}_{-}(\mathbf{k}_{m}^{*}) > E^{f}_{+}(\mathbf{k}_{m}^{*}) > E^{f}_{-}(\mathbf{k}_{m}^{*}) \qquad \delta_{m} = +1$ $\delta_m = -1$ $E^{f}_{\perp}(\mathbf{k}_{m}^{*}) > E^{f}_{\perp}(\mathbf{k}_{m}^{*}) > E^{d}_{\perp}(\mathbf{k}_{m}^{*})$

Necessary and sufficient conditions for TKI

$$\Pi_{hyb} = \sum_{\mathbf{k}} \sum_{\xi,\gamma} \left[c^{\dagger}_{\mathbf{k}\xi\uparrow} c^{\dagger}_{\mathbf{k}\xi\downarrow} \right] \mathbf{i} \mathbf{V}_{\xi\gamma}(\mathbf{k}) \cdot \hat{\sigma} \left[f_{\mathbf{k}\gamma+} \atop f_{\mathbf{k}\gamma-} \right] \qquad \frac{n \quad V_n^x(\mathbf{k}) \quad V_n^y(\mathbf{k}) \quad V_n^z(\mathbf{k})}{0 \quad 4V_{df}S_x \quad -4V_{df}S_y \quad 4V_{df}S_z} \\
+h.c., \qquad 1 \quad 2V_{df}S_x \quad -2V_{df}S_y \quad -4V_{df}S_z$$

 $\hat{V}^{\alpha}(\mathbf{k}) = V_0^{\alpha}(\mathbf{k})\hat{\tau}_0 + V_1^{\alpha}(\mathbf{k})\hat{\tau}_z + V_2^{\alpha}(\mathbf{k})\hat{\tau}_x$

 \boldsymbol{U}

$$\mathbf{V}_{\xi\gamma}(\mathbf{k})\cdot\hat{\sigma}$$
 ~ k'. σ at k=k*+k' (|k'|<< π)

k'-linear: different parities σ : large spin-orbit coupling

The seed of singularity for A at k*

- 0

 $2 - 2\sqrt{3}V_{df}S_x - 2\sqrt{3}V_{df}S_y$

Necessary condition for TKI

hybridization gap between d- and f-bands around **k**=**k***

Nontrivial topological

Determined by Hamiltonian without H_{hvb}

Sufficient condition for TKI

Spectral function of (001)-surface

001 Surface Dispersion

 $10^{-1.5}$

Recent ARPES measurement for (001) surface

NMR in SmB₆

$$\frac{1}{T_1} = \frac{\hbar k_B T}{\omega_n} \sum_{q} A^2 F(q) \chi_{q,\omega_n}''$$

- insulator behavior down to ~20K
- contribution from the in-gap state below 20K
- magnetic field suppresses the in-gap state

The magnetic field breaks TRS.

Temperature (K)

The metallic surface states of TI is protected by TRS. The surface states should be gapped by the magnetic field

in-gap state~surface state of topological insulator

Why the value of $1/T_1T$ is so large at the low temperature limit?

Summary

We study the possibility of the topological insulator for SmB_6 , calculating the topological index and spectral function of [001] surface, based on a realistic model.

The topological index is (1: 1,1,1).

In the spectral function, surface states appear with odd number of Dirac cones.

Based on the calculation, SmB_6 is a topological Kondo insulator.

Recent ARPES measurements show Fermi surfaces surrounding the Dirac points consistent with theoretical suggestions.

next step

experiment: measurements of Dirac points, spin texture theory: clarification of electron correlation in the surface states