Continuous-time Quantum Monte Carlo (CTQMC) approach for quantum impurity problems in Tomonaga-Luttinger liquids

Kazumasa Hattori^{1,2} and Achim Rosch¹ Institute for Theoretical Physics, University of Cologne, Germany² Institute for Solid State Physics, University of Tokyo, Japan

Acknowledges:

M. Garst and J. Kleinen @ Koeln T. Kato @ ISSP

Financial support from

Outline of this talk

Introduction

- Bosonization (for beginners)
- CTQMC for fermonic systems

CTQMC for Tomonaga-Luttinger liquid (TLL)

- * Kane-Fisher's backscattering problem in a quantum wire
- * XXZ Kondo problem in a herical liquid

Summary

 even a single impurity in 1d has significant impact Kane&Fisher (1992)

 even a single impurity in 1d has significant impact Kane&Fisher (1992)

Cutting the wire @T=0

 even a single impurity in 1d has significant impact Kane&Fisher (1992)

- Cutting the wire @T=0
- * most of the theoretical language is based on bosonization

 even a single impurity in 1d has significant impact Kane&Fisher (1992)

- Cutting the wire @T=0
- most of the theoretical language is based on bosonization
- Some numerical simulations have been done by Path-integral Monte Carlo Moon et al (1993), Leung et al (1995), Hamamoto et al (2008)

 Even a single impurity in 1d has significant impact Kane&Fisher (1992)

- Cutting the wire @T=0
- most of the theoretical language is based on bosonization
- Some numerical simulations have been done by Path-integral Monte Carlo Moon et al (1993), Leung et al (1995), Hamamoto et al (2008)
- We try to construct algorithm of modern Continuous-time MC for quantum wires in a bosonization formulation

see, a review: Gull et al (2011)

- CTQMC for impurity problems: Rubtsov (2005), Werner (2006), Otsuki (2007)
- · Applied to strongly correlated electron systems combined with DMFT
- No negative sign problem [Werner (2006), Otsuki (2007)] for simple models
- · Bosonic versions are also developed by Anders (2010), Otsuki (2012)

CTQMC: Infinite series of diagrams are summed efficiently

•

$$Z/Z_{0} = \left\langle T_{\tau} \exp\left[-\int_{0}^{\beta} d\tau H_{1}(\tau)\right]\right\rangle_{0} \qquad \begin{vmatrix} H_{1} & H_{1} & H_{1} & H_{1} & H_{1} & H_{1} \\ 0 & \tau_{1}^{s} & \tau_{1}^{e} & \tau_{2}^{s} & \tau_{2}^{e} & \tau_{3}^{s} & \tau_{3}^{e} \end{vmatrix} \\ = III \\ III \\ \langle A \rangle_{0} = \frac{\operatorname{Tr}(e^{-\beta H_{0}}A)}{Z_{0}} \qquad + | \qquad III \\ = III \\ + | \qquad III \\ = IIII \\ = IIIII \\ = IIII$$

Werner et al.(2006)

Our purpose here is to develop a "bosonization" version of CTQMC in 1d TLL

•

Our purpose here is to develop a "bosonization" version of CTQMC in 1d TLL

Interaction in the bulk part is "exactly" treated by bosonization

Bosonization — 1d spineless fermion system [-L/2,L/2]

$$\psi_{L,R}(x) = \frac{1}{\sqrt{a}} F_{L,R} e^{-i\phi_{L,R}(x)}$$

a : cutoff F_L , F_R : Klein factor

•

Our purpose here is to develop a "bosonization" version of CTQMC in 1d TLL

- Interaction in the bulk part is "exactly" treated by bosonization
- It can be proven analytically there is no negative signs (low T: welcome!)

We will show that the CTQMC works very well in several models, as examples

Bosonization — 1d spineless fermion system [-L/2,L/2]

$$\Psi_{L,R}(x) = \frac{1}{\sqrt{a}} F_{L,R} e^{-i\phi_{L,R}(x)}$$

a : cutoff F_L , F_R : Klein factor

•

Bosonization

Here, we just start letting you know our notations for bosonization, since one can easily be confused in almost all textbook of bosonization, when one studies it at first! (even experts sometimes make mistakes...)

Ann. Phys. (Leipzig) 7 (1998) 4, 225-306

Bosonization for beginners — refermionization for experts

Jan von Delft and Herbert Schoeller

"we hope that experts too might find useful our explicit treatment of certain subtleties that can often be swept under the rug, but are crucial for some applications, such as the calculation of $\rho_{dos}(\omega)$ – these include the proper treatment of the so-called Klein factors"

Klein factors

Bosonization (*a la* Shankar)

Shankar RMP (1994)

$$H = \frac{1}{2} \int_{-\infty}^{\infty} dx \Big[(\partial_x \phi_{\text{Sha}}(t,x))^2 + \Pi_{\text{Sha}}^2(t,x) \Big] \qquad \begin{aligned} \Pi_{\text{Sha}}(t,x) &\equiv \partial_t \phi_{\text{Sha}}(t,x) \\ [\phi_{\text{Sha}}(t,x), \Pi_{\text{Sha}}(t,x')] &= i\delta(x-x') \\ \psi_{\pm \text{Sha}}(t,x) &= (2\pi a)^{-1/2} e^{\pm i\sqrt{4\pi}\phi_{\pm \text{Sha}}(t,x)} \\ \text{with } \phi_{\pm \text{Sha}}(t,x) &\equiv \lim_{x_0 \to -\infty} \frac{1}{2} \Big[\phi_{\text{Sha}}(t,x) \mp \int_{x_0}^x dx' \Pi_{\text{Sha}}(t,x') \Big] \end{aligned}$$

Anticommutation relations are reproduced without Klein factors.

When one consider, e.g., one-particle fermion Green's function, the bosonization formula without Klein factors makes no sense.

Constructive bosonization:

$$\begin{split} \psi_{L,R}(x) &= \frac{1}{\sqrt{a}} F_{L,R} e^{-i\phi_{L,R}(x)} & \{F_{\rho}, F_{\rho'}^{\dagger}\} = 2\delta_{\rho\rho'} & F_{\rho}F_{\rho}^{\dagger} = 1\\ \{F_{\rho}, F_{\rho'}\} = 0, \text{ for } \rho \neq \rho'\\ \text{Note also } F_{\rho}F_{\rho} \neq 1 & \phi_{L} \text{ and } \phi_{R} \text{ are independent} \end{split}$$

Preparation: 1D TLL

Hamiltonian with interaction U:

$$H_{0} = H_{L}^{0} + H_{R}^{0} + H_{U} = \frac{v}{4} \int_{-L/2}^{L/2} \frac{dx}{2\pi} : \left[\frac{1}{g} \left(\partial_{x} \phi_{-}(x) \right)^{2} + g \left(\partial_{x} \phi_{+}(x) \right)^{2} \right] :$$

$$\phi_{\pm}(x) = \phi_{L}(x) \pm \phi_{R}(x) \quad v = \frac{v_{F}}{g} \qquad g = \frac{1}{\sqrt{1 + 2U/v_{F}}} : \text{TL parameter}$$

We can define two left-moving bosons:

$$\Phi_{\pm}(x) = \frac{1}{2\sqrt{2}} \left\{ \left(\frac{1}{\sqrt{g}} + \sqrt{g} \right) \left[\phi_L(x) \mp \phi_R(-x) \right] \pm \left(\frac{1}{\sqrt{g}} - \sqrt{g} \right) \left[\phi_L(-x) \mp \phi_R(x) \right] \right\}$$

Now, Hamiltonian consists of two independent left-moving bosons

$$H_0 = \frac{v}{2} \int_{-L/2}^{L/2} \frac{dx}{2\pi} : \left[\left(\partial_x \Phi_+(x) \right)^2 + \left(\partial_x \Phi_-(x) \right)^2 \right] :$$

Multi-point correlator

One important formula is a multi-point correlator expression:

$$\begin{aligned} a^{-\sum_{i}\lambda_{i}^{2}/2}\langle T_{\tau}e^{i\lambda_{1}\phi(\tau_{1})}e^{i\lambda_{2}\phi(\tau_{2})}\cdots e^{i\lambda_{N}\phi(\tau_{N})}\rangle &= \left(\frac{2\pi}{L}\right)^{\frac{1}{2}\left(\sum_{i=1}^{N}\lambda_{i}\right)^{2}}\prod_{i< j}\left(\frac{\beta}{\pi}\sin\left[\pi T(|\tau_{i}-\tau_{j}|\pm a/\nu)\right]\right)^{\lambda_{i}\lambda_{j}}\\ &= \prod_{i< j}\left(\frac{\beta}{\pi}\sin\left[\pi T(|\tau_{i}-\tau_{j}|\pm a/\nu)\right]\right)^{\lambda_{i}\lambda_{j}}\end{aligned}$$

For thermodynamic limit, neutral condition emerges: $\sum_{i=1}^{N} \lambda_i = 0$

This expression serves as "Wick's theorem" and will be extensively used in our CTQMC

local boson field: $\phi(\tau) = \phi(x = 0, \tau)$

sign for cutoff is chosen as

$$+a/v$$
 for $\tau_i - \tau_j \sim 0$
 $-a/v$ for $\tau_i - \tau_j \sim \beta$

Fermionic CTQMC

Let us consider Kane-Fisher model for g=1 i.e., non-interacting wire

 $H = H_0 + (\lambda_B \psi_L^{\dagger}(0) \psi_R(0) + \text{h.c.})$

A general term in perturbation series of Z is

$$\begin{aligned} \frac{Z}{Z_0} &= \lambda_B^{2k} \int_{\tau_1 > \tau_2 > \cdots > \tau_{2k}} \left\langle T_\tau \psi_L^{\dagger}(\tau_1) \psi_R(\tau_1) \cdots \psi_R^{\dagger}(\tau_{2k}) \psi_R(\tau_{2k}) \right\rangle \\ \text{snap shot} &\to \lambda_B^{2k} \left\langle \psi_L^{\dagger}(\tau_1) \psi_L(\tau_2) \psi_L(\tau_3) \cdots \right\rangle \left\langle \psi_R(\tau_1) \psi_R^{\dagger}(\tau_2) \psi_R^{\dagger}(\tau_3) \cdots \right\rangle \\ &= \lambda_B^{2k} \det \hat{G} \cdot \det \left(\hat{G}^T \right) \\ &= \lambda_B^{2k} \left(\det \hat{G} \right)^2 \quad -> \text{``weight'' for the snapshot configuration (= W)} \end{aligned}$$

Green's func matrix: $(\hat{G})_{ij} = G_0(\tau_i - \tau_j)$

Updates

Insertion

Metropolis $R = \frac{W_{\text{new}}}{W_{\text{old}}} F$ accept if $\boxed{\min(R, 1) > r}, \quad 0 \le r \le 1$

Remove

deny otherwise

 $F = \frac{\beta^2}{(k+1)^2}$ $F = \frac{k^2}{\beta^2}$

for insertion

for removal

Outline of this talk

Introduction

- bosonization (for beginners)
- CTQMC for fermonic systems

CTQMC for Tomonaga-Luttinger liquid (TLL)

- Kane-Fisher's backscattering problem in a quantum wire
- * XXZ Kondo problem in a herical liquid

Summary

Interaction part

We consider back scattering processes due to an impurity at x=0

Impurity operator (we will consider):

Kane-Fisher model

XY-Kondo model in Helical TL liquid

 $\hat{X}_B = 1$

 $\hat{X}_B = S^-$ XXZ-type: always reduced to this form

Interaction part

We consider back scattering processes due to an impurity at x=0

 $V = V_B + V_B^{\dagger} = \lambda_B \psi_L^{\dagger}(0) \psi_R(0) \hat{X}_B + \lambda_B^* \psi_R^{\dagger}(0) \psi_L(0) \hat{X}_B^{\dagger}.$

$$= a^{g-1}\lambda_B F_L^{\dagger} F_R \left(a^{-g} e^{i\sqrt{2g}\Phi_+} \right) \hat{X}_B + a^{g-1}\lambda_B^* F_R^{\dagger} F_L \left(a^{-g} e^{-i\sqrt{2g}\Phi_+} \right) \hat{X}_B^{\dagger}$$
$$\equiv V_{\sqrt{2g}} \qquad \equiv V_{-\sqrt{2g}}$$

Here, we have defined

$$\Phi_{\pm} \equiv \Phi_{\pm}(0) = \frac{g^{\pm \frac{1}{2}}}{\sqrt{2}} \Big[\phi_L(0) \mp \phi_R(0) \Big] \quad \begin{array}{l} \text{only "+" boson appears in } V \\ \text{"-" boson is decoupled and can be ignored} \end{array}$$

Impurity operator (we will consider):

Kane-Fisher model

XY-Kondo model in Helical TL liquid

 $\hat{X}_B = 1$ $\hat{X}_B = S^-$ XXZ-type: always reduced to this form

CTQMC in TLL

$$N=2k \text{ order term in } Z/Z_0 = \left\langle T_\tau \exp\left[-\int_0^\beta d\tau H_1(\tau)\right]\right\rangle_0 \qquad \lambda_B(g) \equiv a^{g-1}\lambda_B$$

$$\frac{(-1)^N}{N!} \int_0^\beta d\tau_1 \cdots \int_0^\beta d\tau_N \langle T_\tau V_B(\tau_1) V_B^{\dagger}(\tau_2) \cdots V_B^{\dagger}(\tau_N) \rangle_0$$

$$\xrightarrow{\text{snapshot}} |\lambda_B(g)|^{2k} \langle V_\lambda(\tau_1) \cdots V_{-\lambda}(\tau_{2k}) \rangle_b \langle F_L^{\dagger} F_R \cdots F_R^{\dagger} F_L \rangle_f \langle \hat{X}_B(\tau_1) \cdots \hat{X}_B^{\dagger}(\tau_{2k}) \rangle_{loc}$$

$$\lambda = \sqrt{2g} \quad \tau_i > \tau_{i+1} \qquad = 1 \qquad \begin{array}{c} \text{calculable (=1,0)} \\ \langle S^+ S^- S^+ S^- \cdots S^+ S^- \rangle \end{array}$$

$$= |\lambda_B(g)|^{2k} \prod_{i< j}^{2k} s_{0ij}^{\lambda_i \lambda_j}$$

$$\lambda_{i,j} = \pm \sqrt{2g}$$

$$s_{0ij} \equiv \frac{v\beta}{\pi} \sin\left[\frac{\pi}{v\beta}(v|\tau_i - \tau_j| \pm a)\right]$$

CTQMC in TLL

$$N=2k \text{ order term in } Z/Z_{0} = \left\langle T_{\tau} \exp\left[-\int_{0}^{\beta} d\tau H_{1}(\tau)\right]\right\rangle_{0} \qquad \lambda_{B}(g) \equiv a^{g-1}\lambda_{B}$$

$$\frac{(-1)^{N}}{N!} \int_{0}^{\beta} d\tau_{1} \cdots \int_{0}^{\beta} d\tau_{N} \langle T_{\tau} V_{B}(\tau_{1}) V_{B}^{\dagger}(\tau_{2}) \cdots V_{B}^{\dagger}(\tau_{N}) \rangle_{0}$$

$$\xrightarrow{\text{snapshot}} |\lambda_{B}(g)|^{2k} \langle V_{\lambda}(\tau_{1}) \cdots V_{-\lambda}(\tau_{2k}) \rangle_{b} \langle F_{L}^{\dagger} F_{R} \cdots F_{R}^{\dagger} F_{L} \rangle_{f} \langle \underline{\hat{X}}_{B}(\tau_{1}) \cdots \underline{\hat{X}}_{B}^{\dagger}(\tau_{2k}) \rangle_{loc}$$

$$\lambda = \sqrt{2g} \quad \tau_{i} > \tau_{i+1} \qquad = 1 \qquad \begin{array}{c} \text{calculable (=1,0)} \\ \langle S^{+} S^{-} S^{+} S^{-} \cdots S^{+} S^{-} \rangle \\ \rangle_{2k} \end{cases}$$

$$= |\lambda_B(g)|^{2k} \prod_{i< j}^{2k} s_{0ij}^{\lambda_i \lambda_j} > 0$$

$$\lambda_{i,j} = \pm \sqrt{2g}$$

Weight is positive definite

$$s_{0ij} \equiv \frac{v\beta}{\pi} \sin\left[\frac{\pi}{v\beta}(v|\tau_i - \tau_j| \pm a)\right] > 0$$

CTQMC in TLL

$$N=2k \text{ order term in } Z/Z_{0} = \left\langle T_{\tau} \exp\left[-\int_{0}^{\beta} d\tau H_{1}(\tau)\right]\right\rangle_{0} \qquad \lambda_{B}(g) \equiv a^{g-1}\lambda_{B}$$

$$\frac{(-1)^{N}}{N!} \int_{0}^{\beta} d\tau_{1} \cdots \int_{0}^{\beta} d\tau_{N} \langle T_{\tau} V_{B}(\tau_{1}) V_{B}^{\dagger}(\tau_{2}) \cdots V_{B}^{\dagger}(\tau_{N}) \rangle_{0}$$

$$\xrightarrow{\text{snapshot}} |\lambda_{B}(g)|^{2k} \langle V_{\lambda}(\tau_{1}) \cdots V_{-\lambda}(\tau_{2k}) \rangle_{b} \langle F_{L}^{\dagger} F_{R} \cdots F_{R}^{\dagger} F_{L} \rangle_{f} \langle \hat{X}_{B}(\tau_{1}) \cdots \hat{X}_{B}^{\dagger}(\tau_{2k}) \rangle_{loc}$$

$$\lambda = \sqrt{2g} \quad \tau_{i} > \tau_{i+1} \qquad = 1 \qquad \text{calculable (=1,0)}$$

$$\langle S^{+} S^{-} S^{+} S^{-} \cdots S^{+} S^{-} \rangle$$

$$= |\lambda_{B}(g)|^{2k} \prod_{i 0 \quad \text{for } a \rightarrow 0$$

$$\lambda_{i,j} = \pm \sqrt{2g}$$

- Weight is positive definite
- * This simple form represents all the interaction effects in the bulk part

non-int. "electron" Green's func.:

$$s_{0ij} \equiv \frac{v\beta}{\pi} \sin\left[\frac{\pi}{v\beta}(v|\tau_i - \tau_j| \pm a)\right] > 0 \qquad [\hat{S}]_{lm} = -\operatorname{sgn}(\tau_l^- - \tau_m^+)/s_{0lm}$$
$$\tau^{\pm}: \tau \text{ for } \pm \lambda$$

Kane-Fisher model

Kane & Fisher PRL (1992)

Kane-Fisher model

Potential barrier for spin-less fermion in 1D

 $H = H_0 + a^{g-1} \lambda_B F_L^{\dagger} F_R V_{+\lambda} + a^{g-1} \lambda_B^* F_R^{\dagger} F_L V_{-\lambda}$

Kane & Fisher PRL (1992)

Kane-Fisher model

RG eq.:

$$\partial \lambda_B = (1-g)\lambda_B \qquad \lambda_B \to \infty \quad (g < 1)$$

Completely decoupled chains at low-energy for repulsive int. g<1

This model is intensively analyzed so far, here we will show

- * electron Green's function (1st numerically exact data in our knowledge)
- Conductance G —> 0 at T=0 (compare exact result @g=0.5 —> check)

Both consistent with RG result.

Kane & Fisher PRL (1992)

Electron Green's functions

Fermion operator:

Direct sampling of G^+ (P_{ij} : No. of vertices between *i* and *j* in a snapshot) @2*n*th order

$$\begin{aligned} \mathscr{G}_{i>j}^{(2n)} &= -\left\langle F_L(\tau_i) V_{-\sqrt{\frac{g}{2}}}(\tau_i) F_L^{\dagger}(\tau_j) V_{\sqrt{\frac{g}{2}}}(\tau_j) \right\rangle_{\mathrm{MC}} & \text{Indirect sampling (fast)} \\ &= \left\langle -(-1)^{P_{ij}} s_{0ij}^{\frac{g}{2}} \left| \frac{\det \hat{S}_{n \oplus ij}}{\det \hat{S}_n} \right|^g \right\rangle_{\mathrm{MC}} & \tilde{\mathcal{G}}_{i>j}^{(2k)} = \left\langle -\frac{(-1)^{P_{ij}}}{|\lambda_B(g)|^2} s_{0ij}^{\frac{g}{2}} \left| \frac{\det \hat{S}_{n \oplus ij}}{\det \hat{S}_n} \right|^g \right\rangle_{\mathrm{MC}} \end{aligned}$$

Bench mark for g=1

Let us check the Green's function for non-interacting case (g=1)

Exact G can be obtained via EOM as

$$G_L^{+,\text{ex}}(\tau) = \frac{\left[s(\tau)\right]^{-\frac{1}{2}}}{1+\pi^2\lambda_B^2/v^2}$$
 for a—> 0

(c) 1 $\lambda_{B}=0.1, a=1$ symbols: \mathcal{G} lines: $\tilde{\mathcal{G}}$ 0.1 $\beta=200$ $\beta=400$ $\beta=800$ 0.5 τ/β

Electron Green's function

Nontrivial part:

$$G_L^+(\tau) = \langle F_L(\tau) \hat{V}_{-\sqrt{\frac{g}{2}}}(\tau) F_L(0) \hat{V}_{\sqrt{\frac{g}{2}}}(0) \rangle_{\Phi_+}$$

We found:

$$G^+_L(au) \sim au^{-rac{1}{2g}} \quad ext{for} \ \ au o \infty$$

consistent with result by Furusaki (1997) reflecting vanishing DOS $\omega^{1/g-1}$ at x=0

Universal function @ T=0

Green's function is expressed as

$$G_L^+(\tau) \approx [s(\tau)]^{-g/2} \mathcal{F}_g(T^*\tau, T/T^*)$$

$$T^* = \frac{v}{a} \left(\frac{\lambda_B}{v}\right)^{1/(1-g)}$$

Universal part has two obvious limits:

Universal function @ T>0

Green's function is expressed as $T^* = \frac{v}{a} \left(\frac{\lambda_B}{v}\right)^{1/(1-g)}$ $G_L^+(\tau) \approx [s(\tau)]^{-g/2} \mathcal{F}_g(T^*\tau, T/T^*)$ For T>0, universal func. (g-1/g)/2depends only T/T*. 10^{-1} This can be checked $(\beta, \lambda_B) =$ $G_{L}^{+}(\tau) [s(\tau)]^{-3/2}$ by examining data with (62424,0.0125) fixed T/T^* . ---- (23190,0.025) ----- (8615,0.05) (3200, 0.1)(1189, 0.2)

 10^{-4}

 $g=0.3, a=1, T/T*\sim0.014$ $0^{-5} 10^{-4} 10^{-3} 10^{-2}$

 10^{-1}

 $T^*\tau = \frac{T^*}{T} \cdot \frac{\tau}{\beta}$

Conductance

Kubo formula:

$$G(x,y) = \lim_{\omega \to 0} \frac{1}{\omega} \int dt e^{i\omega t} \langle [j(x,t), j(y,0)] \rangle \Theta(t)$$

In the bosonization language, the current operator is:

$$j(x,\tau) = \frac{ev}{2\pi} \partial_x (\phi_L(x,\tau) + \phi_R(x,\tau)) \longrightarrow j(x,\tau) = i \frac{e}{2\pi} \partial_\tau (\phi_L(x,\tau) - \phi_R(x,\tau))$$

In our basis @x=0,

$$j(0,\tau) = i \frac{e\sqrt{g}}{\sqrt{2}\pi} \partial_{\tau} \Phi_{+}(\tau)$$

we can calculate G in our CTQMC

c.f., PIMC, Moon et al (1993), real-time PIMC, Leung et al (1995)

There are some complicated things... about G in TLL wire:

$$G = rac{e^2 g}{h}$$
 or $rac{e^2}{h}$

without leads: Apel-Rice (1982)

With leads: Maslov-Stone (1995), Ponomarenko (1995) Feed-back effect of interactions: Kawabata (1996)

Conductance for g=0.5

For small cutoff *a*, results are consistent with the exact one by Kane&Fisher (1992)

$$\frac{G}{G_0} = -\lim_{\omega \to 0} \frac{g}{\pi \omega} \operatorname{Im} \left(D(i\omega_n) \Big|_{i\omega_n \to \omega + i0} \right), \quad D(\tau) = -\langle T_\tau \partial_\tau \Phi_+(\tau) \partial_\tau \Phi_+(0) \rangle$$

In CTQMC, D(au) is calculated by

Helical Kondo problem

Impurities in a helical liquid

What kinds of impurities are interesting in a helical liquid (e.g., on the edge of 2d topological insulator) ?

- * Non-magnetic impurity (like Kane-Fisher): impossible due to TRS $\sim u \psi^{\dagger}_{\uparrow}(0) \psi_{\downarrow}(0)$
- * Two-particle backward scattering: possible and relevant for g < 1/4 $\sim u' \psi^{\dagger}_{\uparrow}(0) \psi^{\dagger}_{\uparrow}(a) \psi_{\downarrow}(a) \psi_{\downarrow}(0)$
- Magnetic impurity: possible

Since general Kondo interactions are highly anisotropic due to the SO interaction (Eriksson et al., 2012), we here analyze a simpler XXZ model (Maciejko, 2012) by CTQMC

Wu et al., PRL (2006)

Helical Kondo problem

A magnetic impurity on the edge of 2d topological insulator (without Rashba term)

$$H = H_0 + \lambda_F \sqrt{\frac{2}{g}} \partial_x \Phi_+(0) S^{z} + a^{g-1} \lambda_B F_L^{\dagger} F_R \left(a^{-g} e^{i\sqrt{2g}} \Phi_+ \right) S^- + a^{g-1} \lambda_B^* F_R^{\dagger} F_L \left(a^{-g} e^{-i\sqrt{2g}} \Phi_+ \right) S^+$$

Remove forward scattering term via $U \equiv \exp\left[i\frac{\sqrt{2g}\lambda_F}{gv}\Phi_+(0)S^z\right]$

$$UHU^{\dagger} = H_0 + a^{\tilde{g}-1}\lambda_B F_L^{\dagger} F_R \left(a^{-\tilde{g}} e^{i\sqrt{2\tilde{g}}\Phi_+} \right) S^- + a^{\tilde{g}-1}\lambda_B^* F_R^{\dagger} F_L \left(a^{-\tilde{g}} e^{-i\sqrt{2\tilde{g}}\Phi_+} \right) S^+$$

now, exponent is shifted:

 $\sqrt{2\tilde{g}} \equiv \sqrt{2g}(1 - \lambda_F/gv)$ $\lambda_F = gv$: decoupled point (dP) Maciejko PRB (2012)

Poor man's scaling

Interactions:

$$V = \frac{J^z a}{\sqrt{2g}} \partial_x \Phi_+(0) S^z + \frac{J^{\pm} a^g}{2} \left(F_L^{\dagger} F_R V_\lambda S^- + F_R^{\dagger} F_L V_{-\lambda} S^+ \right)$$

2nd order perturbation for partition func. (only S^z terms shown):

$$-(J^{\pm})^2 \frac{a^{2g}}{4} \int_0^\infty d\tau_1 \int_0^{\tau_1} d\tau_2 \left\langle \left(V_{\lambda}(\tau_1) V_{-\lambda}(\tau_2) - V_{-\lambda}(\tau_1) V_{\lambda}(\tau_2) \right) S^z \right\rangle$$

OPE:

$$V_{\lambda}(z)V_{-\lambda}(z') \sim \frac{1}{(z-z'+a)^{\lambda^2}} + \lambda \frac{\partial_x \Phi(z)}{(z-z'+a)^{\lambda^2-1}} + \cdots$$

Thus, we have effective interaction correction to J^z as $-g(J^{\pm})^{2}\frac{a\Delta\tau}{\sqrt{2g}}\int_{0}^{\infty}d\tau_{1}\left\langle\partial_{x}\Phi(\tau_{1})S^{z}\right\rangle$

1-loop RG eqs. are given as (with adding trivial part):

$$\partial_l J^{\pm} = (1-g)J^{\pm} + \rho J^{\pm}J^z,$$

 $\partial_l J^z = \rho g J^{\pm 2}.$

RG flow & decoupled points

Exchange up and down local spin indices:

$$S^z \to -S^z, \ S^{\pm} \to S^{\mp}$$

Then, Hamiltonian reads,

Trajectories based on Anderson-Yuval-Hamann's method

Maciejko PRB (2012)

Spin-spin correlations

Sampling transverse spin-spin correlations is similar to that of G in Kane-Fisher model

$$\chi^{+-}(\tau_{ij}) \equiv \langle T_\tau \hat{S}^+(\tau_i) \hat{S}^-(\tau_j) \rangle$$

but note that we are in a transformed system: $\hat{U}\hat{S}^{\pm}\hat{U}^{\dagger}=e^{\pm i\sqrt{2g}\lambda_F/(gv)\Phi_+(0)}\hat{S}^{\pm}$

Indirect sampling of transverse spin susceptibility:

$$\chi^{+-}(\tau) = \frac{1}{\beta} \left\langle \sum_{ij}^{k} \mathcal{M}_{ij} \left[\delta(\tau - \tau_{ij}) + \delta(\beta + \tau_{ij} - \tau) \right] \right\rangle$$

with
$$\mathcal{M}_{ij} = \frac{a^{2g(\frac{\lambda_F}{gv})^2}}{|\lambda'_B|^2} \left[s(\tau_{ij})\right]^{-\frac{2\lambda_F}{v}} \left|\frac{\det \hat{S}_{k-1}\{\tau \ominus \tau_i^-, \tau_j^+\}}{\det \hat{S}_k\{\tau\}}\right|^{2g'} g' = g - \lambda_F/v$$

direct sampling of longitudinal spin susceptibility:

$$\chi^{z}(\tau_{i}-\tau_{j}) = \frac{\langle S^{\pm}(\tau_{1})\cdots S^{z}(\tau_{i})\cdots S^{z}(\tau_{j})\cdots \rangle}{\langle S^{\pm}(\tau_{1})\cdots \rangle}$$

Phase diagram

Phase boundary is well described by RG calculation (Maciejko, 2012)

"Strong-coupling" Fixed Point

Dynamical impurity spin-spin correlations

spin susceptibility $\chi^{\perp} \propto 1/T^{1-2g}$ diverges for g < 1/2, log corrections for g=1/2

$$\begin{array}{l} \text{Spin susceptibility} \\ \chi_O(\tau) \equiv \langle O(\tau)O(0) \rangle \sim \tau^{-2\Delta_O} \longrightarrow \\ \text{in our case, } \Delta_O = g \quad \text{for } \chi^{\perp} \end{array} \begin{array}{l} \chi_O(T) = \int_0^\beta d\tau \chi_O(\tau) \sim T^{2\Delta_O - 1} \\ \chi_O(T) \sim -\ln T \quad \text{for } \Delta_O = \frac{1}{2} \end{array}$$

Summary

- CTQMC applied to TLL successfully without negative sign in several models (also applicable to other models —> future studies):
- · Kane-Fisher model
 - · Green's functions for all TL parameters g
 - · Confirmed approx. exponent 1/(2g) by Furusaki (1997) $G_r^+(\tau) \sim \tau^{-1/2g}$
 - · Conductance is also calculable
- · <u>Helical Kondo model</u>
 - · Phase diagram

$$\chi^{\perp} \sim \tau^{-2g}, \ \chi^z \sim \tau^{-2}$$

 \cdot Spin-spin correlation functions

Other applications

- Two-particle backward scattering problem
 - Almost the same as Kane-Fisher model
 - But there needs a special care for electron Green's func.
- Topological Kondo problem(s)
 - Majorana fermions in SC island coupled with leads
 - negative-sign free CTQMC is applicable (with odd-order perturbations present)

Two-particle backward scattering problem

$$H = H_0 + a^{2g-1}\lambda_B (F_L^{\dagger}F_R)^2 V_{\lambda} + a^{2g-1}\lambda_B (F_R^{\dagger}F_L)^2 V_{-\lambda}$$

 $\sim H_0 + 2a^{2g-1}\lambda_B \cos(\lambda \Phi_+) \qquad \lambda = \sqrt{8g}$

RG eq.:

 $\partial \lambda_B = (1 - 4g)\lambda_B$ $\lambda_B \to \infty$ (g < 1/4) Kane & Fisher PRB (1992)

Completely decoupled chains at low-energy for g<1/4

Is this the full story? & Is there any quantitative difference from Kan-Fisher model?

There is a difference in electron Green's function!, which is closely related to Klein factors

Green's function

Let us consider "fermion sign" in G, i.e. Klein factor part

For any terms in perturbation series, we have something like

$$F_L(\tau)[(F_{L,R}^{\dagger}F_{R,L})^q\cdots]F_L^{\dagger}(\tau=0) \quad q=1(KFM), \ 2(2PBM)$$

For even No. of vertices in []:

 $\to (-1)^{p} F_{L}(\tau) [(F_{L,R}^{\dagger})^{n} (F_{R,L})^{n}] F_{L}^{\dagger}(\tau=0) \to (-1)^{p} [(F_{L,R}^{\dagger})^{n} (F_{R,L})^{n}]$

For odd No. of vertices in []:

$$\rightarrow (-1)^{p} F_{L}(\tau) [(F_{L,R}^{\dagger})^{n} (F_{R,L})^{n} (F_{L,R}^{\dagger} F_{R,L})^{q}] F_{L}^{\dagger}(\tau = 0) \rightarrow (-1)^{p+q} [(F_{L,R}^{\dagger})^{n} (F_{R,L})^{n}]$$

Note: there is no time dependence in Klein fac.

This clearly indicates difference in the two models

No sign in 2-particle backscattering model

$$\begin{array}{lll} \langle T_{\tau}\psi_{L}(\tau)\psi_{L}^{\dagger}(0)\rangle &=& \langle T_{\tau}e^{-i\sqrt{g/2}\Phi_{+}(\tau)}e^{i\sqrt{g/2}\Phi_{+}(0)}\rangle & \quad \text{i.e., no Klein fac.} \\ &\sim& \langle e^{-i\sqrt{g/2}\Phi_{+}(0)}\rangle\langle e^{i\sqrt{g/2}\Phi_{+}(0)}\rangle & \quad \text{Finite value remains} \end{array}$$

Topological Kondo problems

Beri&Cooper (2012) Altland&Egger (2013)

$$H = -i\sum_{j=1}^{M} \int_{-\infty}^{\infty} dx \ \psi_j^{\dagger}(x) \partial_x \psi_j(x) + \sum_{j \neq k} \lambda_{jk} \gamma_j \gamma_k \psi_k^{\dagger}(0) \psi_j(0)$$

.

- Robust (~topologically protected) NFL is realized (SO(M) sym.)
- As for CTQMC, no negative sign, but we need to introduce an update operation with cyclic three vertices insertion/removal or equivalent ones.

$$\boldsymbol{\psi}_1^{\dagger}(\tau)\boldsymbol{\psi}_2(\tau)\boldsymbol{\psi}_2^{\dagger}(\tau')\boldsymbol{\psi}_3(\tau')\boldsymbol{\psi}_3^{\dagger}(\tau'')\boldsymbol{\psi}_1(\tau'')$$

Probability density

Check SU(2) symmetry for g=1

FM cases

For small g, we succeeded to get the strong-coupling fixed point.

But, numerical difficulty appears when we approach g=1 for isotropic case

Effects of cutoff in LM phase

cutoff

Decoupled-point Hamiltonian

$$UHU^{\dagger} = H_{0} + \frac{\lambda_{B}}{a} \left[F_{L}^{\dagger} F_{R} S^{-} + \text{h.c.} \right]$$

$$\begin{pmatrix} 0 & h \\ & -h \\ & -h \\ & -h \\ & & 0 \end{pmatrix} |N_{R} N_{L}; \uparrow \rangle$$

$$|N_{R} + 1 N_{L} - 1; \uparrow \rangle$$

$$|N_{R} N_{L}; \downarrow \rangle$$

$$|N_{R} - 1 N_{L} + 1; \downarrow \rangle$$

$$\downarrow$$

$$UHU^{\dagger} = H_{0} + \frac{\lambda_{B}}{a} (S^{+} + S^{-})$$

$$h = \frac{\lambda_B}{a}$$

Decoupled point

$$(a) \lambda_F = gv$$

$$UHU^{\dagger} = H_0 + \frac{\lambda_B}{a} \left[F_L^{\dagger} F_R S^- + \text{h.c.} \right] \longrightarrow UHU^{\dagger} = H_0 + \frac{\lambda_B}{a} (S^+ + S^-)$$

Klein Factors play no role

Spin-spin correlations are trivial (T=0):

$$\chi_{+-}^{dFP} = \langle T_{\tau}S^{+}(\tau)S^{-}(0)\rangle_{dFP} = \frac{1}{4}(1+e^{-2h\tau})$$
$$\chi_{zz}^{dFP} = \langle T_{\tau}S^{z}(\tau)S^{z}(0)\rangle_{dFP} = \frac{1}{4}e^{-2h\tau} \qquad h = \frac{\lambda_{B}}{a}$$

In the original language (T=0):

Maciejko PRB (2012)

Perturbations from decoupled FP

$$U\delta VU^{\dagger} = \delta \lambda_F \sqrt{\frac{2}{g}} \partial_x \Phi_+(0)S^z = \delta \lambda_F \sqrt{\frac{1}{2g}} \partial_x \Phi_+(0)(\tilde{S}^+ + \tilde{S}^-)$$

change quantization axis
 $\delta \lambda_F = \lambda_F - gv_s$

 $\delta\chi^{dFP}_{\it zz}(\tau)$: power-low decay appears in two diagrams

 $\delta\chi^{dFP}_{+-}(\tau)$: stronger decay than the fixed point susceptibility, i.e., not important

Notations

$$2\sqrt{\pi}\phi_{\text{Maciejko}} = \phi_L - \phi_R \qquad \frac{J_{\perp,\text{Maciejko}}a_{\text{Maciejko}}}{2\pi\xi} = \frac{\lambda_B}{a}$$

$$2\sqrt{\pi}\Pi_{\text{Maciejko}} = \partial_x(\phi_L + \phi_R)$$

$$\rightarrow \sqrt{\frac{2}{g}}\partial_x \Phi_+(0) \quad (x \rightarrow 0)$$

$$S_{\text{Maciejko}}^{\pm} = S^{\mp}, S_{\text{Maciejko}}^{z} = -S^{z} \qquad \rho_{\text{Maciejko}}J_{z,\text{Maciejko}}^{\text{dFP}} = 2K = \frac{2\lambda_F}{v}$$

$$consistent with ours$$

$$-\frac{J_{z,\text{Maciejko}}a_{\text{Maciejko}}}{\sqrt{\pi}} \times \frac{1}{2\sqrt{\pi}}\sqrt{\frac{2}{g}}(-1) = \lambda_F\sqrt{\frac{2}{g}}$$

$$J_{z,\text{Maciejko}}a_{\text{Maciejko}} = 2\pi\lambda_F$$

$$\rho_{\text{Maciejko}}J_{z,\text{Maciejko}}^{*,\pm} = 2(K \pm \sqrt{K}) = 2\pi\lambda_F\rho/a = \frac{2\lambda_F}{v}$$

$$\lambda_F^{*,\pm}/v = (g \pm \sqrt{g})$$

Details of G's

$$\begin{aligned} \mathscr{G}_{i>j}^{(2n)} &= -\langle T_{\tau}F_{L}(\tau_{i})V_{-\lambda}(\tau_{i})F^{\dagger}(\tau_{j})V_{\lambda}(\tau_{j})\hat{P}_{2n}\rangle/\delta Z_{2n} \\ &= -\frac{\langle V_{\lambda_{1}}(\tau_{1})\cdots V_{-\lambda}(\tau_{i})\cdots V_{\lambda}(\tau_{j})\cdots V_{\lambda_{2n}}(\tau_{2n})\rangle_{+}\langle F_{*}^{\dagger}F_{\bar{*}}(\tau_{1})\cdots F_{L}(\tau_{i})\cdots F_{L}^{\dagger}(\tau_{j})\cdots F_{*}^{\dagger}F_{\bar{*}}(\tau_{2n})\rangle}{\langle V_{\lambda_{1}}(\tau_{1})\cdots V_{\lambda_{2n}}(\tau_{2n})\rangle_{+}\langle F_{*}^{\dagger}F_{\bar{*}}(\tau_{1})\cdots F_{*}^{\dagger}F_{\bar{*}}(\tau_{2n})\rangle} \\ &= -\frac{\langle V_{\lambda_{1}}(\tau_{1})\cdots V_{-\lambda}(\tau_{i})\cdots V_{\lambda}(\tau_{j})\cdots V_{\lambda_{2n}}(\tau_{2n})\rangle_{+}\langle F_{L}(\tau_{i})F_{L}^{\dagger}(\tau_{j})F_{*}^{\dagger}F_{\bar{*}}(\tau_{1})\cdots F_{*}^{\dagger}F_{\bar{*}}(\tau_{2n})\rangle(-1)^{P_{ij}}}{\langle V_{\lambda_{1}}(\tau_{1})\cdots V_{\lambda_{2n}}(\tau_{2n})\rangle_{+}\langle F_{*}^{\dagger}F_{\bar{*}}(\tau_{1})\cdots F_{*}^{\dagger}F_{\bar{*}}(\tau_{2n})\rangle} \end{aligned}$$

$$\lambda = \sqrt{rac{g}{2}}$$
 $\lambda_1, \cdots, \lambda_{2n} = \pm \sqrt{2g}$

Details of G's

$$\begin{aligned} \mathscr{G}_{i>j}^{(2n)} &= -\langle T_{\tau}F_{L}(\tau_{i})V_{-\lambda}(\tau_{i})F^{\dagger}(\tau_{j})V_{\lambda}(\tau_{j})\hat{P}_{2n}\rangle/\delta Z_{2n} \\ &= -\frac{\langle V_{\lambda_{1}}(\tau_{1})\cdots V_{-\lambda}(\tau_{i})\cdots V_{\lambda}(\tau_{j})\cdots V_{\lambda_{2n}}(\tau_{2n})\rangle_{+}\langle F_{*}^{\dagger}F_{\bar{*}}(\tau_{1})\cdots F_{L}(\tau_{i})\cdots F_{L}^{\dagger}(\tau_{j})\cdots F_{*}^{\dagger}F_{\bar{*}}(\tau_{2n})\rangle}{\langle V_{\lambda_{1}}(\tau_{1})\cdots V_{\lambda_{2n}}(\tau_{2n})\rangle_{+}\langle F_{*}^{\dagger}F_{\bar{*}}(\tau_{1})\cdots F_{*}^{\dagger}F_{\bar{*}}(\tau_{2n})\rangle} \\ &= -\frac{\langle V_{\lambda_{1}}(\tau_{1})\cdots V_{-\lambda}(\tau_{i})\cdots V_{\lambda}(\tau_{j})\cdots V_{\lambda_{2n}}(\tau_{2n})\rangle_{+}\langle F_{L}(\tau_{i})F_{L}^{\dagger}(\tau_{j})F_{*}^{\dagger}F_{\bar{*}}(\tau_{1})\cdots F_{*}^{\dagger}F_{\bar{*}}(\tau_{2n})\rangle(-1)^{P_{ij}}}{\langle V_{\lambda_{1}}(\tau_{1})\cdots V_{\lambda_{2n}}(\tau_{2n})\rangle_{+}\langle F_{*}^{\dagger}F_{\bar{*}}(\tau_{1})\cdots F_{*}^{\dagger}F_{\bar{*}}(\tau_{2n})\rangle} \end{aligned}$$

$$\mathscr{G}_{i>j}^{(2n)} = -(-1)^{P_{ij}} \frac{\prod_{\alpha>\gamma}^{2n\oplus ij} s_{0\alpha\gamma}^{\lambda_{\alpha}\lambda_{\gamma}}}{\prod_{\alpha'>\gamma'}^{2n} s_{0\alpha'\gamma'}^{\lambda_{\alpha'}\lambda_{\gamma'}}},$$

$$= -(-1)^{P_{ij}} s_{0ij}^{-\lambda^2} \prod_{\gamma}^{2n} s_{0i\gamma}^{-\lambda\lambda_{\gamma}} \prod_{\alpha}^{2n} s_{0\alpha}^{\lambda\lambda_{\alpha}}.$$

Details of G's

$$\begin{aligned} \mathscr{G}_{i>j}^{(2n)} &= -\langle T_{\tau}F_{L}(\tau_{i})V_{-\lambda}(\tau_{i})F^{\dagger}(\tau_{j})V_{\lambda}(\tau_{j})\hat{P}_{2n}\rangle/\delta Z_{2n} \\ &= -\frac{\langle V_{\lambda_{1}}(\tau_{1})\cdots V_{-\lambda}(\tau_{i})\cdots V_{\lambda}(\tau_{j})\cdots V_{\lambda_{2n}}(\tau_{2n})\rangle_{+}\langle F_{*}^{\dagger}F_{\bar{*}}(\tau_{1})\cdots F_{L}(\tau_{i})\cdots F_{L}^{\dagger}(\tau_{j})\cdots F_{*}^{\dagger}F_{\bar{*}}(\tau_{2n})\rangle}{\langle V_{\lambda_{1}}(\tau_{1})\cdots V_{\lambda_{2n}}(\tau_{2n})\rangle_{+}\langle F_{*}^{\dagger}F_{\bar{*}}(\tau_{1})\cdots F_{*}^{\dagger}F_{\bar{*}}(\tau_{2n})\rangle}. \\ &= -\frac{\langle V_{\lambda_{1}}(\tau_{1})\cdots V_{-\lambda}(\tau_{i})\cdots V_{\lambda}(\tau_{j})\cdots V_{\lambda_{2n}}(\tau_{2n})\rangle_{+}\langle F_{L}(\tau_{i})F_{L}^{\dagger}(\tau_{j})F_{*}^{\dagger}F_{\bar{*}}(\tau_{1})\cdots F_{*}^{\dagger}F_{\bar{*}}(\tau_{2n})\rangle(-1)^{P_{ij}}}{\langle V_{\lambda_{1}}(\tau_{1})\cdots V_{\lambda_{2n}}(\tau_{2n})\rangle_{+}\langle F_{*}^{\dagger}F_{\bar{*}}(\tau_{1})\cdots F_{*}^{\dagger}F_{\bar{*}}(\tau_{2n})\rangle}. \end{aligned}$$

$$\begin{aligned} \mathscr{G}_{i>j}^{(2n)} &= -(-1)^{P_{ij}} \frac{\prod_{\alpha>\gamma}^{2n\oplus ij} s_{0\alpha\gamma}^{\lambda_{\alpha}\lambda_{\gamma}}}{\prod_{\alpha'>\gamma'}^{2n} s_{0\alpha'\gamma'}^{\lambda_{\alpha'}\lambda_{\gamma'}}}, \\ &= -(-1)^{P_{ij}} s_{0ij}^{-\lambda^2} \prod_{\gamma}^{2n} s_{0i\gamma}^{-\lambda\lambda_{\gamma}} \prod_{\alpha}^{2n} s_{0\alphaj}^{\lambda\lambda_{\alpha}} \\ &= -(-1)^{P_{ij}} s_{0ij}^{\frac{g}{2}} \left(\frac{\prod_{\alpha>\gamma}^{2n\oplus ij} s_{0\alpha\gamma}^{w\alphaw_{\gamma}}}{\prod_{\alpha>\gamma}^{2n} s_{0\alpha\gamma}^{w\alphaw_{\gamma}}} \right)^{g} \\ &= -(-1)^{P_{ij}} s_{0ij}^{\frac{g}{2}} \left| \frac{\det \hat{S}_{n\oplus ij}}{\det \hat{S}_{n}} \right|^{g}. \end{aligned}$$

 $\lambda = \sqrt{rac{g}{2}}$ $\lambda_1, \cdots, \lambda_{2n} = \pm \sqrt{2g}$

with $w_{\alpha}, w_{\gamma} = \operatorname{sgn}(\lambda_{\alpha}), \ \operatorname{sgn}(\lambda_{\gamma})$

Basic algorithm of CTQMC

To be specific, let us consider Anderson model [Werner (2006)]

"Non-interacting" part:

$$H_0 = H_c + H_f$$

$$H_{c} = \sum_{\mathbf{k},\sigma} \epsilon_{\mathbf{k}} c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma}$$
$$H_{f} = \epsilon_{f} \sum_{\sigma} n_{f\sigma} + U n_{f\uparrow} n_{f\downarrow}$$

"perturbation" part:

$$H_1 = \sum_{\sigma} H_{1\sigma}, \quad H_{1\sigma} = vc_{\sigma}^{\dagger} f_{\sigma} + \text{h.c.} \qquad c_{\sigma} = \frac{1}{\sqrt{N}} \sum_{\mathbf{k}} c_{\mathbf{k}\sigma}$$

Only even-order terms survive (n=2k), and these are something like...

$$(-)^{2k} \langle H_1(\tau_1) \cdots \rangle = \pm v^{2k} \langle c_{\uparrow}^{\dagger}(\tau_1) c_{\uparrow}(\tau_2) c_{\uparrow}^{\dagger}(\tau_3) \cdots c_{\uparrow}(\tau_{n_{\uparrow}}) \rangle_{\uparrow,c} \langle c_{\downarrow}^{\dagger}(\tau_1') c_{\downarrow}(\tau_2') c_{\downarrow}^{\dagger}(\tau_3') \cdots c_{\downarrow}(\tau_{n_{\downarrow}}') \rangle_{\downarrow,c} \\ \times \langle f_{\uparrow}(\tau_1) f_{\uparrow}^{\dagger}(\tau_2) f_{\downarrow}(\tau_1') \cdots \rangle_f \\ = \pm v^{2k} \det \hat{G}_{c\uparrow} \det \hat{G}_{c\downarrow} \langle f_{\uparrow}(\tau_1) f_{\uparrow}^{\dagger}(\tau_2) f_{\downarrow}(\tau_1') \cdots \rangle_f \equiv W$$

"weight" for the config.

Wick's theorem

with
$$n_{\uparrow}+n_{\downarrow}=2k$$

Some details

Green's function matrix:

 $\left[\hat{G}_{c\uparrow}\right]_{ij} = \langle c^{\dagger}_{\uparrow}(\tau_{2i-1})c_{\uparrow}(\tau_{2j})\rangle = G^{0}_{c\uparrow}(\tau_{2j} - \tau_{2i-1})$: free electron Green's function

Matrix products for local degrees of freedom:

$$\langle f_{\uparrow}(\tau_1) f_{\uparrow}^{\dagger}(\tau_2) f_{\downarrow}(\tau_1') \cdots \rangle_f = \exp\{-\epsilon_f(l_{\uparrow} + l_{\downarrow}) - U l_{\text{doublon}}\}/Z_f$$

$$Z_f = 1 + 2e^{-\beta\varepsilon_f} + e^{-\beta(2\varepsilon_f + U)}$$

"Segment" representation:

Update operations

R = empirically positive for Anderson model