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❖ Introduction 

✤ Bosonization (for beginners)  

✤ CTQMC for fermonic systems  

❖ CTQMC for Tomonaga-Luttinger liquid (TLL) 

✤ Kane-Fisher’s backscattering problem in a quantum wire  

✤ XXZ Kondo problem in a herical liquid                    

❖ Summary

Outline of this talk
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Single impurity in a quantum wire

✤ Even a single impurity in 1d has significant impact   
Kane&Fisher (1992) 

✤ Cutting the wire @T=0

✤ most of the theoretical language is based on bosonization

✤ Some numerical simulations have been done by Path-integral 
Monte Carlo Moon et al (1993), Leung et al (1995), Hamamoto et al (2008)

✤ We try to construct algorithm of modern Continuous-time MC for 
quantum wires in a bosonization formulation



CTQMC for impurity models 

• CTQMC for impurity problems: Rubtsov (2005), Werner (2006), Otsuki (2007) 

• Applied to strongly correlated electron systems combined with DMFT 

• No negative sign problem [Werner (2006), Otsuki (2007)] for simple models 

• Bosonic versions are also developed by Anders (2010),  Otsuki (2012)

+ + …

Werner et al.(2006)
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CTQMC for impurity models 

• Our purpose here is to develop a “bosonization” version of CTQMC in 1d TLL 

!

!
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Note that F†
L,R adds a fermion at the lowest energy state that is not occupied. This is specified by nk = NL,R +1. In the same way

as Delft did, we finally obtain the form of the fermion operators,

ψL(x) = a−1/2FLe−
2πi
L (NL−δb/2)xe−iφL(x), (30)

ψR(x) = a−1/2FRe
2πi
L (NR−δb/2)xe−iφR(−x). (31)

Hamiltonian is written in terms of bosons as

H0
L,R =

vF

2

∫ L/2

−L/2

dx
2π

:
[
∂xφL,R(x)

]2
: +

2πvF

L
NL,R(NL,R +1−δb)

2
. (32)

From a direct substition, we can check that this reduces to the original form

H0
L,R =

∞

∑
q>0

vF qb†
L,R(q)bL,R(q)+

2πvF

L
NL,R(NL,R +1−δb)

2
. (33)

Now we introduce the Coulomb interaction U as

HU =
U
2

∫ L/2

−L/2

dx
2π

:
[
JL(x)+ JR(x)

]2
: (34)

=
U
2

∫ L/2

−L/2

dx
2π

:
[
∂x

(
φL(x)−φR(x)

)]2
: +

π(NL +NL)2U
L

. (35)

Combining HU and H0
L,R together with assuming δb = 1, we obtain

H0 = H0
L +H0

R +HU =
v
4

∫ L/2

−L/2

dx
2π

:

[
1
g

(
∂xφ−(x)

)2
+g

(
∂xφ+(x)

)2
]

:

+
πv
2L

[1
g
(NL +NR)2 +g(NL −NR)2

]
, (36)

φ±(x) = φL(x)±φR(x), (37)

g =
1√

1+2U/vF
, v = vF

√
1+2U/vF =

vF

g
. (38)

H0 =
πv
L

{(1
g

+g
)

∑
ν=L,R

[
N2

ν
2

+
∞

∑
q>0

nqb†
ν(q)bν(q)

]
+

(1
g
−g

)[
NLNR −

∞

∑
q>0

nq

(
bL(q)bR(q)+h.c.

)]}
(39)

Now, we introduce the Bogoliubov transformation:

bL(q) = cθ α(q)+ sθ β †(q), bR(q) = sθ α†(q)+ cθ β (q), (40)

with cθ = coshθ and sθ = sinhθ . In terms of α and β , we obtain

b†
LbL +b†

RbR = c2θ (α†α +β †β )+ s2θ (αβ +α†β †)+2s2
θ , (41)

bLbR +b†
Lb†

R = s2θ (α†α +β †β )+ c2θ (αβ +α†β †)+ s2θ , (42)

The b,b† part in {} becomes with setting A = 1/g+g and B = 1/g−g,

(Ac2θ −Bs2θ )nq(α†α +β †β )+(As2θ −Bc2θ )nq(αβ +α†β †)+(c2θ −1)Anq − s2θ Bnq. (43)

We set As2θ −Bc2θ = 0, i.e., tanh2θ = B/A > 0 for g < 1, c2θ = A/
√

A2 −B2 = A/2 > 0, and s2θ = B/
√

A2 −B2 = B/2. This
leads to

→
√

A2 −B2nq

[
α†(q)α(q)+β †(q)β (q)

]
+ e0 = 2nq

[
α†(q)α(q)+β †(q)β (q)

]
+ e0 (44)

with e0 = nq(2As2
θ −Bs2θ ). α and β are written by b and b† as

α(q) = cθ bL(q)− sθ b†
R(q), β (q) = −sθ b†

L(q)+ cθ bR(q), (45)

cθ =
1
2

[ 1
√g

+
√

g
]

> 0, sθ =
1
2

[ 1
√g

−√
g
]

> 0 for 0 < g < 1. (46)
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CTQMC for impurity models 

• Our purpose here is to develop a “bosonization” version of CTQMC in 1d TLL 
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❖ Interaction in the bulk part is “exactly” treated by bosonization 

Bosonization  — 1d spineless fermion system [-L/2,L/2]

FL, FR : Klein factor
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• Our purpose here is to develop a “bosonization” version of CTQMC in 1d TLL 
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❖ Interaction in the bulk part is “exactly” treated by bosonization 

❖ It can be proven analytically there is no negative signs (low T: welcome!)

We will show that the CTQMC works very well in several models, as examples
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FL, FR : Klein factor
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with e0 = nq(2As2
θ −Bs2θ ). α and β are written by b and b† as

α(q) = cθ bL(q)− sθ b†
R(q), β (q) = −sθ b†

L(q)+ cθ bR(q), (45)

cθ =
1
2

[ 1
√g

+
√

g
]

> 0, sθ =
1
2

[ 1
√g

−√
g
]

> 0 for 0 < g < 1. (46)

3

Note that F†
L,R adds a fermion at the lowest energy state that is not occupied. This is specified by nk = NL,R +1. In the same way

as Delft did, we finally obtain the form of the fermion operators,

ψL(x) = a−1/2FLe−
2πi
L (NL−δb/2)xe−iφL(x), (30)

ψR(x) = a−1/2FRe
2πi
L (NR−δb/2)xe−iφR(−x). (31)

Hamiltonian is written in terms of bosons as

H0
L,R =

vF

2

∫ L/2

−L/2

dx
2π

:
[
∂xφL,R(x)

]2
: +

2πvF

L
NL,R(NL,R +1−δb)

2
. (32)

From a direct substition, we can check that this reduces to the original form

H0
L,R =

∞

∑
q>0

vF qb†
L,R(q)bL,R(q)+

2πvF

L
NL,R(NL,R +1−δb)

2
. (33)

Now we introduce the Coulomb interaction U as

HU =
U
2

∫ L/2

−L/2

dx
2π

:
[
JL(x)+ JR(x)

]2
: (34)

=
U
2

∫ L/2

−L/2

dx
2π

:
[
∂x

(
φL(x)−φR(x)

)]2
: +

π(NL +NL)2U
L

. (35)

Combining HU and H0
L,R together with assuming δb = 1, we obtain

H0 = H0
L +H0

R +HU =
v
4

∫ L/2

−L/2

dx
2π

:

[
1
g

(
∂xφ−(x)

)2
+g

(
∂xφ+(x)

)2
]

:

+
πv
2L

[1
g
(NL +NR)2 +g(NL −NR)2

]
, (36)

φ±(x) = φL(x)±φR(x), (37)

g =
1√

1+2U/vF
, v = vF

√
1+2U/vF =

vF

g
. (38)

H0 =
πv
L

{(1
g

+g
)

∑
ν=L,R

[
N2

ν
2

+
∞

∑
q>0

nqb†
ν(q)bν(q)

]
+

(1
g
−g

)[
NLNR −

∞

∑
q>0

nq

(
bL(q)bR(q)+h.c.

)]}
(39)

Now, we introduce the Bogoliubov transformation:

bL(q) = cθ α(q)+ sθ β †(q), bR(q) = sθ α†(q)+ cθ β (q), (40)

with cθ = coshθ and sθ = sinhθ . In terms of α and β , we obtain

b†
LbL +b†

RbR = c2θ (α†α +β †β )+ s2θ (αβ +α†β †)+2s2
θ , (41)

bLbR +b†
Lb†

R = s2θ (α†α +β †β )+ c2θ (αβ +α†β †)+ s2θ , (42)

The b,b† part in {} becomes with setting A = 1/g+g and B = 1/g−g,

(Ac2θ −Bs2θ )nq(α†α +β †β )+(As2θ −Bc2θ )nq(αβ +α†β †)+(c2θ −1)Anq − s2θ Bnq. (43)

We set As2θ −Bc2θ = 0, i.e., tanh2θ = B/A > 0 for g < 1, c2θ = A/
√

A2 −B2 = A/2 > 0, and s2θ = B/
√

A2 −B2 = B/2. This
leads to

→
√

A2 −B2nq

[
α†(q)α(q)+β †(q)β (q)

]
+ e0 = 2nq

[
α†(q)α(q)+β †(q)β (q)

]
+ e0 (44)

with e0 = nq(2As2
θ −Bs2θ ). α and β are written by b and b† as

α(q) = cθ bL(q)− sθ b†
R(q), β (q) = −sθ b†

L(q)+ cθ bR(q), (45)

cθ =
1
2

[ 1
√g

+
√

g
]

> 0, sθ =
1
2

[ 1
√g

−√
g
]

> 0 for 0 < g < 1. (46)
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a : cutoff

�
L,R(x) =

1�
a

F

L,Re

�i�
L,R(x)



Bosonization

Here, we just start letting you know our notations for bosonization,

“          
!
 ”

since one can easily be confused in almost all textbook of bosonization, when  
one studies it at first! (even experts sometimes make mistakes… )



Klein factors
Bosonization (a la Shankar)

When one consider, e.g., one-particle fermion Green’s function, 
the bosonization formula without Klein factors makes no sense. 

Anticommutation relations are reproduced without Klein factors.

�
L,R(x) =

1�
a

F

L,Re

�i�
L,R(x)

Constructive bosonization:

Note also 

with

Shankar RMP (1994)

and      are independent �L �R



Preparation: 1D TLL

Note that F†
L,R adds a fermion at the lowest energy state that is not occupied. This is specified by nk = NL,R +1. In the same way

as Delft did, we finally obtain the form of the fermion operators,

ψL(x) = a−1/2FLe−
2πi
L (NL−δb/2)xe−iφL(x), (30)

ψR(x) = a−1/2FRe
2πi
L (NR−δb/2)xe−iφR(−x). (31)

Hamiltonian is written in terms of bosons as

H0
L,R =

vF

2

∫ L/2

−L/2

dx
2π

:
[
∂xφL,R(x)

]2
: +

2πvF

L
NL,R(NL,R +1−δb)

2
. (32)

From a direct substition, we can check that this reduces to the original form

H0
L,R =

∞

∑
q>0

vF qb†
L,R(q)bL,R(q)+

2πvF

L
NL,R(NL,R +1−δb)

2
. (33)

Now we introduce the Coulomb interaction U as

HU =
U
2

∫ L/2

−L/2

dx
2π

:
[
JL(x)+ JR(x)

]2
: (34)

=
U
2

∫ L/2

−L/2

dx
2π

:
[
∂x

(
φL(x)−φR(x)

)]2
: +

π(NL +NL)2U
L

. (35)

Combining HU and H0
L,R together with assuming δb = 1, we obtain

H0 = H0
L +H0

R +HU =
v
4

∫ L/2

−L/2

dx
2π

:

[
1
g

(
∂xφ−(x)

)2
+g

(
∂xφ+(x)

)2
]

:

+
πv
2L

[1
g
(NL +NR)2 +g(NL −NR)2

]
, (36)

φ±(x) = φL(x)±φR(x), (37)

g =
1√

1+2U/vF
, v = vF

√
1+2U/vF =

vF

g
. (38)

H0 =
πv
L

{(1
g

+g
)

∑
ν=L,R

[
N2

ν
2

+
∞

∑
q>0

nqb†
ν(q)bν(q)

]
+

(1
g
−g

)[
NLNR −

∞

∑
q>0

nq

(
bL(q)bR(q)+h.c.

)]}
(39)

Now, we introduce the Bogoliubov transformation:

bL(q) = cθ α(q)+ sθ β †(q), bR(q) = sθ α†(q)+ cθ β (q), (40)

with cθ = coshθ and sθ = sinhθ . In terms of α and β , we obtain

b†
LbL +b†

RbR = c2θ (α†α +β †β )+ s2θ (αβ +α†β †)+2s2
θ , (41)

bLbR +b†
Lb†

R = s2θ (α†α +β †β )+ c2θ (αβ +α†β †)+ s2θ , (42)

The b,b† part in {} becomes with setting A = 1/g+g and B = 1/g−g,

(Ac2θ −Bs2θ )nq(α†α +β †β )+(As2θ −Bc2θ )nq(αβ +α†β †)+(c2θ −1)Anq − s2θ Bnq. (43)

We set As2θ −Bc2θ = 0, i.e., tanh2θ = B/A > 0 for g < 1, c2θ = A/
√

A2 −B2 = A/2 > 0, and s2θ = B/
√

A2 −B2 = B/2. This
leads to

→
√

A2 −B2nq

[
α†(q)α(q)+β †(q)β (q)

]
+ e0 = 2nq

[
α†(q)α(q)+β †(q)β (q)

]
+ e0 (44)

with e0 = nq(2As2
θ −Bs2θ ). α and β are written by b and b† as

α(q) = cθ bL(q)− sθ b†
R(q), β (q) = −sθ b†

L(q)+ cθ bR(q), (45)

cθ =
1
2

[ 1
√g

+
√

g
]

> 0, sθ =
1
2

[ 1
√g

−√
g
]

> 0 for 0 < g < 1. (46)

3

Note that F†
L,R adds a fermion at the lowest energy state that is not occupied. This is specified by nk = NL,R +1. In the same way

as Delft did, we finally obtain the form of the fermion operators,

ψL(x) = a−1/2FLe−
2πi
L (NL−δb/2)xe−iφL(x), (30)

ψR(x) = a−1/2FRe
2πi
L (NR−δb/2)xe−iφR(−x). (31)

Hamiltonian is written in terms of bosons as

H0
L,R =

vF

2

∫ L/2

−L/2

dx
2π

:
[
∂xφL,R(x)

]2
: +

2πvF

L
NL,R(NL,R +1−δb)

2
. (32)

From a direct substition, we can check that this reduces to the original form

H0
L,R =

∞

∑
q>0

vF qb†
L,R(q)bL,R(q)+

2πvF

L
NL,R(NL,R +1−δb)

2
. (33)

Now we introduce the Coulomb interaction U as

HU =
U
2

∫ L/2

−L/2

dx
2π

:
[
JL(x)+ JR(x)

]2
: (34)

=
U
2

∫ L/2

−L/2

dx
2π

:
[
∂x

(
φL(x)−φR(x)

)]2
: +

π(NL +NL)2U
L

. (35)

Combining HU and H0
L,R together with assuming δb = 1, we obtain

H0 = H0
L +H0

R +HU =
v
4

∫ L/2

−L/2

dx
2π

:

[
1
g

(
∂xφ−(x)

)2
+g

(
∂xφ+(x)

)2
]

:

+
πv
2L

[1
g
(NL +NR)2 +g(NL −NR)2

]
, (36)

φ±(x) = φL(x)±φR(x), (37)

g =
1√

1+2U/vF
, v = vF

√
1+2U/vF =

vF

g
. (38)

H0 =
πv
L

{(1
g

+g
)

∑
ν=L,R

[
N2

ν
2

+
∞

∑
q>0

nqb†
ν(q)bν(q)

]
+

(1
g
−g

)[
NLNR −

∞

∑
q>0

nq

(
bL(q)bR(q)+h.c.

)]}
(39)

Now, we introduce the Bogoliubov transformation:

bL(q) = cθ α(q)+ sθ β †(q), bR(q) = sθ α†(q)+ cθ β (q), (40)

with cθ = coshθ and sθ = sinhθ . In terms of α and β , we obtain

b†
LbL +b†

RbR = c2θ (α†α +β †β )+ s2θ (αβ +α†β †)+2s2
θ , (41)

bLbR +b†
Lb†

R = s2θ (α†α +β †β )+ c2θ (αβ +α†β †)+ s2θ , (42)

The b,b† part in {} becomes with setting A = 1/g+g and B = 1/g−g,

(Ac2θ −Bs2θ )nq(α†α +β †β )+(As2θ −Bc2θ )nq(αβ +α†β †)+(c2θ −1)Anq − s2θ Bnq. (43)

We set As2θ −Bc2θ = 0, i.e., tanh2θ = B/A > 0 for g < 1, c2θ = A/
√

A2 −B2 = A/2 > 0, and s2θ = B/
√

A2 −B2 = B/2. This
leads to

→
√

A2 −B2nq

[
α†(q)α(q)+β †(q)β (q)

]
+ e0 = 2nq

[
α†(q)α(q)+β †(q)β (q)

]
+ e0 (44)

with e0 = nq(2As2
θ −Bs2θ ). α and β are written by b and b† as

α(q) = cθ bL(q)− sθ b†
R(q), β (q) = −sθ b†

L(q)+ cθ bR(q), (45)

cθ =
1
2

[ 1
√g

+
√

g
]

> 0, sθ =
1
2

[ 1
√g

−√
g
]

> 0 for 0 < g < 1. (46)

3

H0 =
2πv

L

{
∞

∑
q>0

nq

[
α†(q)α(q)+β †(q)β (q)

]
+

1
g

(NL +NR

2

)2
+g

(NL −NR

2

)2
}

(47)

=
v
2

∫ L/2

−L/2

dx
2π

:

[(
∂xΦα(x)

)2
+

(
∂xΦβ (x)

)2
]

: +
2πv

L

(
1
g

N2
− +gN2

+

)
, (48)

where N± = (NL ∓NR)/2 and

Φα(x) = −
∞

∑
q>0

e−qa/2
√nq

[
e−iqxα(q)+ eiqxα†(q)

]
, (49)

Φβ (x) = −
∞

∑
q>0

e−qa/2
√nq

[
e−iqxβ (q)+ eiqxβ †(q)

]
. (50)

Note that both Φα and Φβ are left-moving. The vacuum energy is given by

2πv
L

[
Q2

4g
+gS2

z +(some universal constant)

]
,

where Q = 2N− is the total charge and Sz = N+ is the z-component of the total spin.
For later purpose, we define linear combinations of Φα,β :

Φ±(x) =
1√
2

[
Φα(x)∓Φβ (x)

]
= −

∞

∑
q>0

e−qa/2
√nq

{
e−iqx 1√

2

[
α(q)∓β (q)

]
+ eiqx 1√

2

[
α†(q)∓β †(q)

]}
,

= −
∞

∑
q>0

e−qa/2
√nq

[
e−iqxa±(q)+ eiqxa†

±(q)
]
. (51)

Here,

a−(q) =
1

2
√

2

[( 1
√g

+
√

g
)
(bL +bR)−

( 1
√g

−√
g
)
(b†

L +b†
R)

]
, (52)

a+(q) =
1

2
√

2

[( 1
√g

+
√

g
)
(bL −bR)+

( 1
√g

−√
g
)
(b†

L −b†
R)

]
. (53)

Φ±(x) is related to φL,R(x) as

Φ±(x) =
1

2
√

2

{( 1
√g

+
√

g
)[

ϕL(x)∓ϕR(−x)
]
±

( 1
√g

−√
g
)[

ϕ†
L(−x)∓ϕR(x)

]

+
( 1
√g

+
√

g
)[

ϕ†
L(x)∓ϕ†

R(−x)
]
±

( 1
√g

−√
g
)[

ϕL(−x)∓ϕR(x)
]}

, (54)

=
1

2
√

2

{( 1
√g

+
√

g
)[

φL(x)∓φR(−x)
]
±

( 1
√g

−√
g
)[

φL(−x)∓φR(x)
]}

, (55)

and ∂xΦ±(x) is related to JL,R(x) as

∂xΦ±(x) =
1

2
√

2

{( 1
√g

+
√

g
)[

∂xφL(x)∓∂xφR(−x)
]
±

( 1
√g

−√
g
)[

∂xφL(−x)∓∂xφR(x)
]}

, (56)

=
1

2
√

2

{( 1
√g

+
√

g
)[

JL(x)− 2π
L

NL ∓
(

JR(−x)− 2π
L

NR

)]
(57)

∓
( 1
√g

−√
g
)[

JL(−x)− 2π
L

NL ∓
(

JR(x)− 2π
L

NR

)]}
, (58)

=
1

2
√

2

{( 1
√g

+
√

g
)[

JL(x)∓ JR(−x)
]
∓

( 1
√g

−√
g
)[

JL(−x)∓ JR(x)
]}

− 2π
L

√
2g±

1
2 N±,

(59)

≡ J±(x)− 2π
L

√
2g±

1
2 N±. (60)

4

H0 =
2πv

L

{
∞

∑
q>0

nq

[
α†(q)α(q)+β †(q)β (q)

]
+

1
g

(NL +NR

2

)2
+g

(NL −NR

2

)2
}

(47)

=
v
2

∫ L/2

−L/2

dx
2π

:

[(
∂xΦα(x)

)2
+

(
∂xΦβ (x)

)2
]

: +
2πv

L

(
1
g

N2
− +gN2

+

)
, (48)

where N± = (NL ∓NR)/2 and

Φα(x) = −
∞

∑
q>0

e−qa/2
√nq

[
e−iqxα(q)+ eiqxα†(q)

]
, (49)

Φβ (x) = −
∞

∑
q>0

e−qa/2
√nq

[
e−iqxβ (q)+ eiqxβ †(q)

]
. (50)

Note that both Φα and Φβ are left-moving. The vacuum energy is given by

2πv
L

[
Q2

4g
+gS2

z +(some universal constant)

]
,

where Q = 2N− is the total charge and Sz = N+ is the z-component of the total spin.
For later purpose, we define linear combinations of Φα,β :

Φ±(x) =
1√
2

[
Φα(x)∓Φβ (x)

]
= −

∞

∑
q>0

e−qa/2
√nq

{
e−iqx 1√

2

[
α(q)∓β (q)

]
+ eiqx 1√

2

[
α†(q)∓β †(q)

]}
,

= −
∞

∑
q>0

e−qa/2
√nq

[
e−iqxa±(q)+ eiqxa†

±(q)
]
. (51)

Here,

a−(q) =
1

2
√

2

[( 1
√g

+
√

g
)
(bL +bR)−

( 1
√g

−√
g
)
(b†

L +b†
R)

]
, (52)

a+(q) =
1

2
√

2

[( 1
√g

+
√

g
)
(bL −bR)+

( 1
√g

−√
g
)
(b†

L −b†
R)

]
. (53)

Φ±(x) is related to φL,R(x) as

Φ±(x) =
1

2
√

2

{( 1
√g

+
√

g
)[

ϕL(x)∓ϕR(−x)
]
±

( 1
√g

−√
g
)[

ϕ†
L(−x)∓ϕR(x)

]

+
( 1
√g

+
√

g
)[

ϕ†
L(x)∓ϕ†

R(−x)
]
±

( 1
√g

−√
g
)[

ϕL(−x)∓ϕR(x)
]}

, (54)

=
1

2
√

2

{( 1
√g

+
√

g
)[

φL(x)∓φR(−x)
]
±

( 1
√g

−√
g
)[

φL(−x)∓φR(x)
]}

, (55)

and ∂xΦ±(x) is related to JL,R(x) as

∂xΦ±(x) =
1

2
√

2

{( 1
√g

+
√

g
)[

∂xφL(x)∓∂xφR(−x)
]
±

( 1
√g

−√
g
)[

∂xφL(−x)∓∂xφR(x)
]}

, (56)

=
1

2
√

2

{( 1
√g

+
√

g
)[

JL(x)− 2π
L

NL ∓
(

JR(−x)− 2π
L

NR

)]
(57)

∓
( 1
√g

−√
g
)[

JL(−x)− 2π
L

NL ∓
(

JR(x)− 2π
L

NR

)]}
, (58)

=
1

2
√

2

{( 1
√g

+
√

g
)[

JL(x)∓ JR(−x)
]
∓

( 1
√g

−√
g
)[

JL(−x)∓ JR(x)
]}

− 2π
L

√
2g±

1
2 N±,

(59)

≡ J±(x)− 2π
L

√
2g±

1
2 N±. (60)

4

We can define two left-moving bosons:

H0 =
2πv

L

{
∞

∑
q>0

nq

[
α†(q)α(q)+β †(q)β (q)

]
+

1
g

(NL +NR

2

)2
+g

(NL −NR

2

)2
}

(47)

=
v
2

∫ L/2

−L/2

dx
2π

:

[(
∂xΦα(x)

)2
+

(
∂xΦβ (x)

)2
]

: +
2πv

L

(
1
g

N2
− +gN2

+

)
, (48)

where N± = (NL ∓NR)/2 and

Φα(x) = −
∞

∑
q>0

e−qa/2
√nq

[
e−iqxα(q)+ eiqxα†(q)

]
, (49)

Φβ (x) = −
∞

∑
q>0

e−qa/2
√nq

[
e−iqxβ (q)+ eiqxβ †(q)

]
. (50)

Note that both Φα and Φβ are left-moving. The vacuum energy is given by

2πv
L

[
Q2

4g
+gS2

z +(some universal constant)

]
,

where Q = 2N− is the total charge and Sz = N+ is the z-component of the total spin.
For later purpose, we define linear combinations of Φα,β :

Φ±(x) =
1√
2

[
Φα(x)∓Φβ (x)

]
= −

∞

∑
q>0

e−qa/2
√nq

{
e−iqx 1√

2

[
α(q)∓β (q)

]
+ eiqx 1√

2

[
α†(q)∓β †(q)

]}
,

= −
∞

∑
q>0

e−qa/2
√nq

[
e−iqxa±(q)+ eiqxa†

±(q)
]
. (51)

Here,

a−(q) =
1

2
√

2

[( 1
√g

+
√

g
)
(bL +bR)−

( 1
√g

−√
g
)
(b†

L +b†
R)

]
, (52)

a+(q) =
1

2
√

2

[( 1
√g

+
√

g
)
(bL −bR)+

( 1
√g

−√
g
)
(b†

L −b†
R)

]
. (53)

Φ±(x) is related to φL,R(x) as

Φ±(x) =
1

2
√

2

{( 1
√g

+
√

g
)[

ϕL(x)∓ϕR(−x)
]
±

( 1
√g

−√
g
)[

ϕ†
L(−x)∓ϕR(x)

]

+
( 1
√g

+
√

g
)[

ϕ†
L(x)∓ϕ†

R(−x)
]
±

( 1
√g

−√
g
)[

ϕL(−x)∓ϕR(x)
]}

, (54)

=
1

2
√

2

{( 1
√g

+
√

g
)[

φL(x)∓φR(−x)
]
±

( 1
√g

−√
g
)[

φL(−x)∓φR(x)
]}

, (55)

and ∂xΦ±(x) is related to JL,R(x) as

∂xΦ±(x) =
1

2
√

2

{( 1
√g

+
√

g
)[

∂xφL(x)∓∂xφR(−x)
]
±

( 1
√g

−√
g
)[

∂xφL(−x)∓∂xφR(x)
]}

, (56)

=
1

2
√

2

{( 1
√g

+
√

g
)[

JL(x)− 2π
L

NL ∓
(

JR(−x)− 2π
L

NR

)]
(57)

∓
( 1
√g

−√
g
)[

JL(−x)− 2π
L

NL ∓
(

JR(x)− 2π
L

NR

)]}
, (58)

=
1

2
√

2

{( 1
√g

+
√

g
)[

JL(x)∓ JR(−x)
]
∓

( 1
√g

−√
g
)[

JL(−x)∓ JR(x)
]}

− 2π
L

√
2g±

1
2 N±,

(59)

≡ J±(x)− 2π
L

√
2g±

1
2 N±. (60)

4

 
 + -H0 =

2πv
L

{
∞

∑
q>0

nq

[
α†(q)α(q)+β †(q)β (q)

]
+

1
g

(NL +NR

2

)2
+g

(NL −NR

2

)2
}

(47)

=
v
2

∫ L/2

−L/2

dx
2π

:

[(
∂xΦα(x)

)2
+

(
∂xΦβ (x)

)2
]

: +
2πv

L

(
1
g

N2
− +gN2

+

)
, (48)

where N± = (NL ∓NR)/2 and

Φα(x) = −
∞

∑
q>0

e−qa/2
√nq

[
e−iqxα(q)+ eiqxα†(q)

]
, (49)

Φβ (x) = −
∞

∑
q>0

e−qa/2
√nq

[
e−iqxβ (q)+ eiqxβ †(q)

]
. (50)

Note that both Φα and Φβ are left-moving. The vacuum energy is given by

2πv
L

[
Q2

4g
+gS2

z +(some universal constant)

]
,

where Q = 2N− is the total charge and Sz = N+ is the z-component of the total spin.
For later purpose, we define linear combinations of Φα,β :

Φ±(x) =
1√
2

[
Φα(x)∓Φβ (x)

]
= −

∞

∑
q>0

e−qa/2
√nq

{
e−iqx 1√

2

[
α(q)∓β (q)

]
+ eiqx 1√

2

[
α†(q)∓β †(q)

]}
,

= −
∞

∑
q>0

e−qa/2
√nq

[
e−iqxa±(q)+ eiqxa†

±(q)
]
. (51)

Here,

a−(q) =
1

2
√

2

[( 1
√g

+
√

g
)
(bL +bR)−

( 1
√g

−√
g
)
(b†

L +b†
R)

]
, (52)

a+(q) =
1

2
√

2

[( 1
√g

+
√

g
)
(bL −bR)+

( 1
√g

−√
g
)
(b†

L −b†
R)

]
. (53)

Φ±(x) is related to φL,R(x) as

Φ±(x) =
1

2
√

2

{( 1
√g

+
√

g
)[

ϕL(x)∓ϕR(−x)
]
±

( 1
√g

−√
g
)[

ϕ†
L(−x)∓ϕR(x)

]

+
( 1
√g

+
√

g
)[

ϕ†
L(x)∓ϕ†

R(−x)
]
±

( 1
√g

−√
g
)[

ϕL(−x)∓ϕR(x)
]}

, (54)

=
1

2
√

2

{( 1
√g

+
√

g
)[

φL(x)∓φR(−x)
]
±

( 1
√g

−√
g
)[

φL(−x)∓φR(x)
]}

, (55)

and ∂xΦ±(x) is related to JL,R(x) as

∂xΦ±(x) =
1

2
√

2

{( 1
√g

+
√

g
)[

∂xφL(x)∓∂xφR(−x)
]
±

( 1
√g

−√
g
)[

∂xφL(−x)∓∂xφR(x)
]}

, (56)

=
1

2
√

2

{( 1
√g

+
√

g
)[

JL(x)− 2π
L

NL ∓
(

JR(−x)− 2π
L

NR

)]
(57)

∓
( 1
√g

−√
g
)[

JL(−x)− 2π
L

NL ∓
(

JR(x)− 2π
L

NR

)]}
, (58)

=
1

2
√

2

{( 1
√g

+
√

g
)[

JL(x)∓ JR(−x)
]
∓

( 1
√g

−√
g
)[

JL(−x)∓ JR(x)
]}

− 2π
L

√
2g±

1
2 N±,

(59)

≡ J±(x)− 2π
L

√
2g±

1
2 N±. (60)

4

Now, Hamiltonian consists of two independent left-moving bosons

Hamiltonian with interaction U:

: TL parameter 

Note that F†
L,R adds a fermion at the lowest energy state that is not occupied. This is specified by nk = NL,R +1. In the same way

as Delft did, we finally obtain the form of the fermion operators,

ψL(x) = a−1/2FLe−
2πi
L (NL−δb/2)xe−iφL(x), (30)

ψR(x) = a−1/2FRe
2πi
L (NR−δb/2)xe−iφR(−x). (31)

Hamiltonian is written in terms of bosons as

H0
L,R =

vF

2

∫ L/2

−L/2

dx
2π

:
[
∂xφL,R(x)

]2
: +

2πvF

L
NL,R(NL,R +1−δb)

2
. (32)

From a direct substition, we can check that this reduces to the original form

H0
L,R =

∞

∑
q>0

vF qb†
L,R(q)bL,R(q)+

2πvF

L
NL,R(NL,R +1−δb)

2
. (33)

Now we introduce the Coulomb interaction U as

HU =
U
2

∫ L/2

−L/2

dx
2π

:
[
JL(x)+ JR(x)

]2
: (34)

=
U
2

∫ L/2

−L/2

dx
2π

:
[
∂x

(
φL(x)−φR(x)

)]2
: +

π(NL +NL)2U
L

. (35)

Combining HU and H0
L,R together with assuming δb = 1, we obtain

H0 = H0
L +H0

R +HU =
v
4

∫ L/2

−L/2

dx
2π

:

[
1
g

(
∂xφ−(x)

)2
+g

(
∂xφ+(x)

)2
]

:

+
πv
2L

[1
g
(NL +NR)2 +g(NL −NR)2

]
, (36)

φ±(x) = φL(x)±φR(x), (37)

g =
1√

1+2U/vF
, v = vF

√
1+2U/vF =

vF

g
. (38)

H0 =
πv
L

{(1
g

+g
)

∑
ν=L,R

[
N2

ν
2

+
∞

∑
q>0

nqb†
ν(q)bν(q)

]
+

(1
g
−g

)[
NLNR −

∞

∑
q>0

nq

(
bL(q)bR(q)+h.c.

)]}
(39)

Now, we introduce the Bogoliubov transformation:

bL(q) = cθ α(q)+ sθ β †(q), bR(q) = sθ α†(q)+ cθ β (q), (40)

with cθ = coshθ and sθ = sinhθ . In terms of α and β , we obtain

b†
LbL +b†

RbR = c2θ (α†α +β †β )+ s2θ (αβ +α†β †)+2s2
θ , (41)

bLbR +b†
Lb†

R = s2θ (α†α +β †β )+ c2θ (αβ +α†β †)+ s2θ , (42)

The b,b† part in {} becomes with setting A = 1/g+g and B = 1/g−g,

(Ac2θ −Bs2θ )nq(α†α +β †β )+(As2θ −Bc2θ )nq(αβ +α†β †)+(c2θ −1)Anq − s2θ Bnq. (43)

We set As2θ −Bc2θ = 0, i.e., tanh2θ = B/A > 0 for g < 1, c2θ = A/
√

A2 −B2 = A/2 > 0, and s2θ = B/
√

A2 −B2 = B/2. This
leads to

→
√

A2 −B2nq

[
α†(q)α(q)+β †(q)β (q)

]
+ e0 = 2nq

[
α†(q)α(q)+β †(q)β (q)

]
+ e0 (44)

with e0 = nq(2As2
θ −Bs2θ ). α and β are written by b and b† as

α(q) = cθ bL(q)− sθ b†
R(q), β (q) = −sθ b†

L(q)+ cθ bR(q), (45)

cθ =
1
2

[ 1
√g

+
√

g
]

> 0, sθ =
1
2

[ 1
√g

−√
g
]

> 0 for 0 < g < 1. (46)

3

Note that F†
L,R adds a fermion at the lowest energy state that is not occupied. This is specified by nk = NL,R +1. In the same way

as Delft did, we finally obtain the form of the fermion operators,

ψL(x) = a−1/2FLe−
2πi
L (NL−δb/2)xe−iφL(x), (30)

ψR(x) = a−1/2FRe
2πi
L (NR−δb/2)xe−iφR(−x). (31)

Hamiltonian is written in terms of bosons as

H0
L,R =

vF

2

∫ L/2

−L/2

dx
2π

:
[
∂xφL,R(x)

]2
: +

2πvF

L
NL,R(NL,R +1−δb)

2
. (32)

From a direct substition, we can check that this reduces to the original form

H0
L,R =

∞

∑
q>0

vF qb†
L,R(q)bL,R(q)+

2πvF

L
NL,R(NL,R +1−δb)

2
. (33)

Now we introduce the Coulomb interaction U as

HU =
U
2

∫ L/2

−L/2

dx
2π

:
[
JL(x)+ JR(x)

]2
: (34)

=
U
2

∫ L/2

−L/2

dx
2π

:
[
∂x

(
φL(x)−φR(x)

)]2
: +

π(NL +NL)2U
L

. (35)

Combining HU and H0
L,R together with assuming δb = 1, we obtain

H0 = H0
L +H0

R +HU =
v
4

∫ L/2

−L/2

dx
2π

:

[
1
g

(
∂xφ−(x)

)2
+g

(
∂xφ+(x)

)2
]

:

+
πv
2L

[1
g
(NL +NR)2 +g(NL −NR)2

]
, (36)

φ±(x) = φL(x)±φR(x), (37)

g =
1√

1+2U/vF
, v = vF

√
1+2U/vF =

vF

g
. (38)

H0 =
πv
L

{(1
g

+g
)

∑
ν=L,R

[
N2

ν
2

+
∞

∑
q>0

nqb†
ν(q)bν(q)

]
+

(1
g
−g

)[
NLNR −

∞

∑
q>0

nq

(
bL(q)bR(q)+h.c.

)]}
(39)

Now, we introduce the Bogoliubov transformation:

bL(q) = cθ α(q)+ sθ β †(q), bR(q) = sθ α†(q)+ cθ β (q), (40)

with cθ = coshθ and sθ = sinhθ . In terms of α and β , we obtain

b†
LbL +b†

RbR = c2θ (α†α +β †β )+ s2θ (αβ +α†β †)+2s2
θ , (41)

bLbR +b†
Lb†

R = s2θ (α†α +β †β )+ c2θ (αβ +α†β †)+ s2θ , (42)

The b,b† part in {} becomes with setting A = 1/g+g and B = 1/g−g,

(Ac2θ −Bs2θ )nq(α†α +β †β )+(As2θ −Bc2θ )nq(αβ +α†β †)+(c2θ −1)Anq − s2θ Bnq. (43)

We set As2θ −Bc2θ = 0, i.e., tanh2θ = B/A > 0 for g < 1, c2θ = A/
√

A2 −B2 = A/2 > 0, and s2θ = B/
√

A2 −B2 = B/2. This
leads to

→
√

A2 −B2nq

[
α†(q)α(q)+β †(q)β (q)

]
+ e0 = 2nq

[
α†(q)α(q)+β †(q)β (q)

]
+ e0 (44)

with e0 = nq(2As2
θ −Bs2θ ). α and β are written by b and b† as

α(q) = cθ bL(q)− sθ b†
R(q), β (q) = −sθ b†

L(q)+ cθ bR(q), (45)

cθ =
1
2

[ 1
√g

+
√

g
]

> 0, sθ =
1
2

[ 1
√g

−√
g
]

> 0 for 0 < g < 1. (46)

3

Note that F†
L,R adds a fermion at the lowest energy state that is not occupied. This is specified by nk = NL,R +1. In the same way

as Delft did, we finally obtain the form of the fermion operators,

ψL(x) = a−1/2FLe−
2πi
L (NL−δb/2)xe−iφL(x), (30)

ψR(x) = a−1/2FRe
2πi
L (NR−δb/2)xe−iφR(−x). (31)

Hamiltonian is written in terms of bosons as

H0
L,R =

vF

2

∫ L/2

−L/2

dx
2π

:
[
∂xφL,R(x)

]2
: +

2πvF

L
NL,R(NL,R +1−δb)

2
. (32)

From a direct substition, we can check that this reduces to the original form

H0
L,R =

∞

∑
q>0

vF qb†
L,R(q)bL,R(q)+

2πvF

L
NL,R(NL,R +1−δb)

2
. (33)

Now we introduce the Coulomb interaction U as

HU =
U
2

∫ L/2

−L/2

dx
2π

:
[
JL(x)+ JR(x)

]2
: (34)

=
U
2

∫ L/2

−L/2

dx
2π

:
[
∂x

(
φL(x)−φR(x)

)]2
: +

π(NL +NL)2U
L

. (35)

Combining HU and H0
L,R together with assuming δb = 1, we obtain

H0 = H0
L +H0

R +HU =
v
4

∫ L/2

−L/2

dx
2π

:

[
1
g

(
∂xφ−(x)

)2
+g

(
∂xφ+(x)

)2
]

:

+
πv
2L

[1
g
(NL +NR)2 +g(NL −NR)2

]
, (36)

φ±(x) = φL(x)±φR(x), (37)

g =
1√

1+2U/vF
, v = vF

√
1+2U/vF =

vF

g
. (38)

H0 =
πv
L

{(1
g

+g
)

∑
ν=L,R

[
N2

ν
2

+
∞

∑
q>0

nqb†
ν(q)bν(q)

]
+

(1
g
−g

)[
NLNR −

∞

∑
q>0

nq

(
bL(q)bR(q)+h.c.

)]}
(39)

Now, we introduce the Bogoliubov transformation:

bL(q) = cθ α(q)+ sθ β †(q), bR(q) = sθ α†(q)+ cθ β (q), (40)

with cθ = coshθ and sθ = sinhθ . In terms of α and β , we obtain

b†
LbL +b†

RbR = c2θ (α†α +β †β )+ s2θ (αβ +α†β †)+2s2
θ , (41)

bLbR +b†
Lb†

R = s2θ (α†α +β †β )+ c2θ (αβ +α†β †)+ s2θ , (42)

The b,b† part in {} becomes with setting A = 1/g+g and B = 1/g−g,

(Ac2θ −Bs2θ )nq(α†α +β †β )+(As2θ −Bc2θ )nq(αβ +α†β †)+(c2θ −1)Anq − s2θ Bnq. (43)

We set As2θ −Bc2θ = 0, i.e., tanh2θ = B/A > 0 for g < 1, c2θ = A/
√

A2 −B2 = A/2 > 0, and s2θ = B/
√

A2 −B2 = B/2. This
leads to

→
√

A2 −B2nq

[
α†(q)α(q)+β †(q)β (q)

]
+ e0 = 2nq

[
α†(q)α(q)+β †(q)β (q)

]
+ e0 (44)

with e0 = nq(2As2
θ −Bs2θ ). α and β are written by b and b† as

α(q) = cθ bL(q)− sθ b†
R(q), β (q) = −sθ b†

L(q)+ cθ bR(q), (45)

cθ =
1
2

[ 1
√g

+
√

g
]

> 0, sθ =
1
2

[ 1
√g

−√
g
]

> 0 for 0 < g < 1. (46)

3

Note that F†
L,R adds a fermion at the lowest energy state that is not occupied. This is specified by nk = NL,R +1. In the same way

as Delft did, we finally obtain the form of the fermion operators,

ψL(x) = a−1/2FLe−
2πi
L (NL−δb/2)xe−iφL(x), (30)

ψR(x) = a−1/2FRe
2πi
L (NR−δb/2)xe−iφR(−x). (31)

Hamiltonian is written in terms of bosons as

H0
L,R =

vF

2

∫ L/2

−L/2

dx
2π

:
[
∂xφL,R(x)

]2
: +

2πvF

L
NL,R(NL,R +1−δb)

2
. (32)

From a direct substition, we can check that this reduces to the original form

H0
L,R =

∞

∑
q>0

vF qb†
L,R(q)bL,R(q)+

2πvF

L
NL,R(NL,R +1−δb)

2
. (33)

Now we introduce the Coulomb interaction U as

HU =
U
2

∫ L/2

−L/2

dx
2π

:
[
JL(x)+ JR(x)

]2
: (34)

=
U
2

∫ L/2

−L/2

dx
2π

:
[
∂x

(
φL(x)−φR(x)

)]2
: +

π(NL +NL)2U
L

. (35)

Combining HU and H0
L,R together with assuming δb = 1, we obtain

H0 = H0
L +H0

R +HU =
v
4

∫ L/2

−L/2

dx
2π

:

[
1
g

(
∂xφ−(x)

)2
+g

(
∂xφ+(x)

)2
]

:

+
πv
2L

[1
g
(NL +NR)2 +g(NL −NR)2

]
, (36)

φ±(x) = φL(x)±φR(x), (37)

g =
1√

1+2U/vF
, v = vF

√
1+2U/vF =

vF

g
. (38)

H0 =
πv
L

{(1
g

+g
)

∑
ν=L,R

[
N2

ν
2

+
∞

∑
q>0

nqb†
ν(q)bν(q)

]
+

(1
g
−g

)[
NLNR −

∞

∑
q>0

nq

(
bL(q)bR(q)+h.c.

)]}
(39)

Now, we introduce the Bogoliubov transformation:

bL(q) = cθ α(q)+ sθ β †(q), bR(q) = sθ α†(q)+ cθ β (q), (40)

with cθ = coshθ and sθ = sinhθ . In terms of α and β , we obtain

b†
LbL +b†

RbR = c2θ (α†α +β †β )+ s2θ (αβ +α†β †)+2s2
θ , (41)

bLbR +b†
Lb†

R = s2θ (α†α +β †β )+ c2θ (αβ +α†β †)+ s2θ , (42)

The b,b† part in {} becomes with setting A = 1/g+g and B = 1/g−g,

(Ac2θ −Bs2θ )nq(α†α +β †β )+(As2θ −Bc2θ )nq(αβ +α†β †)+(c2θ −1)Anq − s2θ Bnq. (43)

We set As2θ −Bc2θ = 0, i.e., tanh2θ = B/A > 0 for g < 1, c2θ = A/
√

A2 −B2 = A/2 > 0, and s2θ = B/
√

A2 −B2 = B/2. This
leads to

→
√

A2 −B2nq

[
α†(q)α(q)+β †(q)β (q)

]
+ e0 = 2nq

[
α†(q)α(q)+β †(q)β (q)

]
+ e0 (44)

with e0 = nq(2As2
θ −Bs2θ ). α and β are written by b and b† as

α(q) = cθ bL(q)− sθ b†
R(q), β (q) = −sθ b†

L(q)+ cθ bR(q), (45)

cθ =
1
2

[ 1
√g

+
√

g
]

> 0, sθ =
1
2

[ 1
√g

−√
g
]

> 0 for 0 < g < 1. (46)
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Note that F†
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2πi
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2πi
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2
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dx
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2πvF

L
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2
. (32)
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L
NL,R(NL,R +1−δb)

2
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∞
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+
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We set As2θ −Bc2θ = 0, i.e., tanh2θ = B/A > 0 for g < 1, c2θ = A/
√

A2 −B2 = A/2 > 0, and s2θ = B/
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A2 −B2 = B/2. This
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→
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[
α†(q)α(q)+β †(q)β (q)

]
+ e0 = 2nq

[
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]
+ e0 (44)

with e0 = nq(2As2
θ −Bs2θ ). α and β are written by b and b† as

α(q) = cθ bL(q)− sθ b†
R(q), β (q) = −sθ b†
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Multi-point correlator
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One important formula is a multi-point correlator expression:

For thermodynamic limit, neutral condition emerges: 
!
!
!
!
!
local boson field: 
!
sign for cutoff is chosen as

�(�) = �(x = 0,�)

+a/v for �i� � j � 0

�a/v for �i� � j � �

This expression serves as “Wick’s theorem” and  
will be extensively used in our CTQMC



Fermionic CTQMC
Let us consider Kane-Fisher model for g=1 i.e., non-interacting wire

H = H0 +(�B�†
L(0)�R(0)+h.c.)

A general term in perturbation series of Z is
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Green’s func matrix:

—> “weight” for the snapshot configuration (= W)  



Updates
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Interaction part

R

L

R

L

We also define Φ± ≡ Φ±(0) and J± ≡ J±(0) and they are given as

Φ± =
g∓

1
2

√
2

[
φL(0)∓φR(0)

]
, J± =

g±
1
2

√
2

[
JL(0)∓ JR(0)

]
. (61)

3 Interactions between an impurity spin and bosons
Interactions between an impurity spin and bosons are written as

V = λF :
[
ψ†

L(0)ψL(0)−ψ†
R(0)ψR(0)

]
: X̂F +λBψ†

L(0)ψR(0)X̂B +λ ∗
Bψ†

R(0)ψL(0)X̂†
B , (62)

where X̂F,B is the operator in the form of linear combinations of the spin operators. In terms of Φ+ and J+, this leads to

V = λF

√
2
g

J+X̂F +ag−1λBF†
L FR

(
a−gei

√
2gΦ+

)
X̂B +ag−1λ ∗

BF†
R FL

(
a−ge−i

√
2gΦ+

)
X̂†

B (63)

We note here that vF/a ∼ D with 2D bandwidth, and thus, a ∼ vF/D (It is rather messy that we have ag−1 dependence in the
interaction for λB terms. )

4 Continuous-time Quantum Monte Carlo Method
In this section, we explain how continuous-time quantum Monte Carlo method can be applied to the impurity problem in the
Tomonaga-Luttinger liquids.

4.1 Partition function
We want to calculate partition function Z, which is given by

Z = Trexp[−β (H0 +V )]. (64)

This is achieved via perturbative expansion of V and written as

Z/Z0 =

〈
Tτ exp

[
−

∫ β

0
V (τ)dτ

]〉

0

, (65)

where Z0 = Tre−βH0 and ⟨A⟩0 = [TrAe−βH0 ]/Z0 and Tτ indicates the time-ordered product. In order to distinguish the three terms
in V , we define

VF ≡ λF
√

2/gJ+X̂F ≡ λF(g)J+X̂F , (66)

VB ≡ ag−1λBF†
L FR

(
a−gei

√
2gΦ+

)
X̂B ≡ λB(g)F†

L FRV√
2gX̂B, (67)

V †
B = ag−1λ ∗

BF†
R FL

(
a−ge−i

√
2gΦ+

)
X̂†

B ≡ λB(g)∗F†
R FLV−

√
2gX̂†

B . (68)

In terms VF and VB, a general Nth order term δZN in the partition function is expressed as

δZN =
(−1)N

N!

∫ β

0
dτ1 · · ·

∫ β

0
dτN⟨TτVF(τ1)VB(τ2) · · ·V †

B (τN)⟩0 (69)

When we fix numbers of VF , VB, and V †
B to n1,n2, and n3 with n1 +n2 +n3 = N and consider fixed series of {τ;τ1 > τ2 > · · ·> τN},

we obtain

δZN = (−1)N [λF(g)]n1 [λB(g)]n2 [λ ∗
B(g)]n3⟨J+(τ1)V√

2g(τ2) · · ·V−
√

2g(τN)⟩b

×⟨F†
L FR · · ·F†

R FL⟩ f ⟨X̂F(τ1)X̂B(τ2) · · · X̂†
B(τN)⟩loc, (70)

where ⟨A⟩b, f ,loc represent averages in each sector. Since the number of FL,R and F†
L,R is the same, n2 = n3. The average for the

Klein factors always gives (−1)F with F = 0 (Note that for L → ∞ the time-dependence of the Klein factor can be neglected).
Then we can write

δZN = (−1)N [λF(g)]n1 |λB(g)|2n2⟨J+(τ1)V√
2g(τ2) · · ·V−

√
2g(τN)⟩b⟨X̂F(τ1)X̂B(τ2) · · · X̂†

B(τN)⟩loc, (71)

≡ (−1)N [λF(g)]n1 |λB(g)|2n2δZb
NδZX

N (72)
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We note here that vF/a ∼ D with 2D bandwidth, and thus, a ∼ vF/D (It is rather messy that we have ag−1 dependence in the
interaction for λB terms. )

4 Continuous-time Quantum Monte Carlo Method
In this section, we explain how continuous-time quantum Monte Carlo method can be applied to the impurity problem in the
Tomonaga-Luttinger liquids.

4.1 Partition function
We want to calculate partition function Z, which is given by
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, (65)
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Klein factors always gives (−1)F with F = 0 (Note that for L → ∞ the time-dependence of the Klein factor can be neglected).
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We consider back scattering processes due to an impurity at x=0
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2
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✒ ✑
where τα± represents the vertex with ±|λα±| as before.

7 “XY” model
Let us now consider the case with X̂F = Sz and X̂B = S−. For λF = 0, eq. (98) is written as

δZN = |λB(g)|2n2
( m

∏
α<γ

sλα λγ
0αγ

)
δZX

N . (186)

Even for general values of λF , by introducing a unitary transformation

U ≡ exp
[
i
√

2gλF

gv
Φ+(0)Sz

]
, (187)

we can eliminate λF term: λF
√

2/g∂xΦ+(0)Sz, since

UH0U† = H0 −
√

2gλF

gv
· vSz∂xΦ+(0). (188)

Now, the Hamiltonian is transformed to

UHU† = H0 +ag−1λBF†
L FR

(
a−gei

√
2g(1−λF /gv)Φ+

)
S− +ag−1λ ∗

BF†
R FL

(
a−ge−i

√
2g(1−λF /gv)Φ+

)
S+. (189)

Thus, the difference is only in the exponent:
√

2g →
√

2g(1−λF/gv) ≡
√

2g̃ and usually λF/(gv) < 1. For later purpose, it is
better to redefine vertex operators with g̃ and the Hamiltonian reads

UHU† = H0 +ag̃−1λBF†
L FR

(
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√
2g̃Φ+

)
S− +ag̃−1λ ∗

BF†
R FL

(
a−g̃e−i

√
2g̃Φ+

)
S+. (190)

7.1 Green’s functions
In the original system before the application of U , correlation function of operator A is ⟨α|A(τ)A†(0)|α⟩= ⟨α̃|UA(τ)U†UA†(0)U†|α̃⟩.
When A ∼ FLe−i

√
g/2Φ+(0), UAU† = A. Thus, LL Green’s function can be calculated directly. Since g̃ ̸= g, we should slightly

change the previous formulation developed in the Kane-Fisher model. For GLL(τi − τ j),
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Interaction part

We also define Φ± ≡ Φ±(0) and J± ≡ J±(0) and they are given as
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]
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g±
1
2

√
2
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JL(0)∓ JR(0)

]
. (61)

3 Interactions between an impurity spin and bosons
Interactions between an impurity spin and bosons are written as

V = λF :
[
ψ†

L(0)ψL(0)−ψ†
R(0)ψR(0)

]
: X̂F +λBψ†

L(0)ψR(0)X̂B +λ ∗
Bψ†

R(0)ψL(0)X̂†
B , (62)

where X̂F,B is the operator in the form of linear combinations of the spin operators. In terms of Φ+ and J+, this leads to
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)
X̂†

B (63)

We note here that vF/a ∼ D with 2D bandwidth, and thus, a ∼ vF/D (It is rather messy that we have ag−1 dependence in the
interaction for λB terms. )

4 Continuous-time Quantum Monte Carlo Method
In this section, we explain how continuous-time quantum Monte Carlo method can be applied to the impurity problem in the
Tomonaga-Luttinger liquids.

4.1 Partition function
We want to calculate partition function Z, which is given by

Z = Trexp[−β (H0 +V )]. (64)

This is achieved via perturbative expansion of V and written as

Z/Z0 =

〈
Tτ exp

[
−

∫ β

0
V (τ)dτ

]〉

0

, (65)

where Z0 = Tre−βH0 and ⟨A⟩0 = [TrAe−βH0 ]/Z0 and Tτ indicates the time-ordered product. In order to distinguish the three terms
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In terms VF and VB, a general Nth order term δZN in the partition function is expressed as
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where ⟨A⟩b, f ,loc represent averages in each sector. Since the number of FL,R and F†
L,R is the same, n2 = n3. The average for the

Klein factors always gives (−1)F with F = 0 (Note that for L → ∞ the time-dependence of the Klein factor can be neglected).
Then we can write
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where τα± represents the vertex with ±|λα±| as before.

7 “XY” model
Let us now consider the case with X̂F = Sz and X̂B = S−. For λF = 0, eq. (98) is written as
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Even for general values of λF , by introducing a unitary transformation
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Thus, the difference is only in the exponent:
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√
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2g̃ and usually λF/(gv) < 1. For later purpose, it is
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7.1 Green’s functions
In the original system before the application of U , correlation function of operator A is ⟨α|A(τ)A†(0)|α⟩= ⟨α̃|UA(τ)U†UA†(0)U†|α̃⟩.
When A ∼ FLe−i

√
g/2Φ+(0), UAU† = A. Thus, LL Green’s function can be calculated directly. Since g̃ ̸= g, we should slightly

change the previous formulation developed in the Kane-Fisher model. For GLL(τi − τ j),
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We also define Φ± ≡ Φ±(0) and J± ≡ J±(0) and they are given as

Φ± =
g∓

1
2

√
2

[
φL(0)∓φR(0)

]
, J± =

g±
1
2

√
2

[
JL(0)∓ JR(0)

]
. (61)

3 Interactions between an impurity spin and bosons
Interactions between an impurity spin and bosons are written as

V = λF :
[
ψ†

L(0)ψL(0)−ψ†
R(0)ψR(0)

]
: X̂F +λBψ†

L(0)ψR(0)X̂B +λ ∗
Bψ†

R(0)ψL(0)X̂†
B , (62)

where X̂F,B is the operator in the form of linear combinations of the spin operators. In terms of Φ+ and J+, this leads to

V = λF

√
2
g

J+X̂F +ag−1λBF†
L FR

(
a−gei

√
2gΦ+

)
X̂B +ag−1λ ∗

BF†
R FL

(
a−ge−i

√
2gΦ+

)
X̂†

B (63)

We note here that vF/a ∼ D with 2D bandwidth, and thus, a ∼ vF/D (It is rather messy that we have ag−1 dependence in the
interaction for λB terms. )

4 Continuous-time Quantum Monte Carlo Method
In this section, we explain how continuous-time quantum Monte Carlo method can be applied to the impurity problem in the
Tomonaga-Luttinger liquids.

4.1 Partition function
We want to calculate partition function Z, which is given by

Z = Trexp[−β (H0 +V )]. (64)

This is achieved via perturbative expansion of V and written as

Z/Z0 =

〈
Tτ exp

[
−

∫ β

0
V (τ)dτ

]〉

0

, (65)

where Z0 = Tre−βH0 and ⟨A⟩0 = [TrAe−βH0 ]/Z0 and Tτ indicates the time-ordered product. In order to distinguish the three terms
in V , we define

VF ≡ λF
√

2/gJ+X̂F ≡ λF(g)J+X̂F , (66)

VB ≡ ag−1λBF†
L FR

(
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√
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X̂B ≡ λB(g)F†

L FRV√
2gX̂B, (67)

V †
B = ag−1λ ∗

BF†
R FL

(
a−ge−i

√
2gΦ+

)
X̂†

B ≡ λB(g)∗F†
R FLV−

√
2gX̂†

B . (68)

In terms VF and VB, a general Nth order term δZN in the partition function is expressed as

δZN =
(−1)N

N!

∫ β

0
dτ1 · · ·

∫ β

0
dτN⟨TτVF(τ1)VB(τ2) · · ·V †

B (τN)⟩0 (69)

When we fix numbers of VF , VB, and V †
B to n1,n2, and n3 with n1 +n2 +n3 = N and consider fixed series of {τ;τ1 > τ2 > · · ·> τN},

we obtain
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B(τN)⟩loc, (70)

where ⟨A⟩b, f ,loc represent averages in each sector. Since the number of FL,R and F†
L,R is the same, n2 = n3. The average for the

Klein factors always gives (−1)F with F = 0 (Note that for L → ∞ the time-dependence of the Klein factor can be neglected).
Then we can write
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NδZX

N (72)
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Potential barrier for spin-less fermion in 1D

RG eq.: 

��B = (1�g)�B �B� � (g < 1)

Completely decoupled chains at low-energy for repulsive int. g<1 

Kane & Fisher PRL (1992)

H = H0 +ag�1�BF†
L FRV+� +ag�1� �

BF†
R FLV��

This model is intensively analyzed so far, here we will show

❖ electron Green’s function (1st numerically exact data in our knowledge) 

❖ Conductance G —> 0 at T=0 (compare exact result @g=0.5 —> check) 

Both consistent with RG result.
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Thus, in total, GLL
λ (τi − τ j) is sampled as

GLL
λ (τi − τ j) =

〈
Gi> j −Gi< j

∣∣∣
τi−τ j+β=τ j−τi

〉

MC

(126)

For RR part, we just exchange αi+ and αi− in (· · ·)g.

5.3 Important notes
The expressions (124) and (125), however, do not reproduce the result for g = 1, i.e., free-fermion model. This is due to a finite
a.

First, note that the equivalence of fermion- and boson-representation can be reflected in the following identity:

sin(x1 − x2)sin(x3 − x4) = sin(x1 − x3)sin(x2 − x4)− sin(x1 − x4)sin(x2 − x3). (127)

This leads to a fermionic representation of eq. (186):

δZ2n = |λB(g)|2n|detŜn|2g. (128)

Here, Ŝn is n×n matrix whose matrix elements are given by (Ŝn)lm = 1/s0lm with l(m) being the index for negative (positive) λ .
Similarly, for example, when a = 0, R for the adding vertices, if this identity is used, reduced to✓ ✏

R =
|λB|2β 2

(n2 +1)2

(
∏2n2⊕i j

αγ s0αγ |λα λγ >0

∏2n2⊕i j
αγ s0αγ |λα λγ <0

/
∏2n2

αγ s0αγ |λα λγ >0

∏2n2
αγ s0αγ |λα λγ <0

)2g

(129)

=
|λB|2β 2

(n2 +1)2

∣∣∣∣∣
detŜn2⊕i j

detŜn2

∣∣∣∣∣

2g

. (130)

✒ ✑
Here, Ŝn2(Ŝn2⊕i j) is n2×n2(n2 +1×n2 +1) matrix whose matrix elements are given by (Ŝ)lm = 1/s0lm with l(m) being the index
for negative (positive) λ . For g = 1, this is nothing but R for the free-fermion model in terms of fermionic CTQMC. However,
for finite a, eq. (127) is modified to

sin(x1−x2 +a)sin(x3−x4 +a)= sin(x1−x3 +a)sin(x2−x4 +a)−sin(x1−x4 +a)sin(x2−x3 +a)+sinasin(x1−x2 +x3−x4 +a).
(131)

One might wonder that the correction is in O(sina ∼ a), thus, it is negligible when a → 0 in numerical calculations. In actual
calculations, we have checked that even when a → 0, the two results differ. We observe that when a decreases, the average
perturbation order increases. This leads that a typical (or say, there are some sets of xi’s which gives small x1 − x2 ∼ a or
x3 − x4 ∼ a.) xi − x j decreases, and thus, the correction term cannot be neglected.

Our proposal is that we (should) always use expressions like eq. (130), i.e., those in terms of the detŜ even for finite a.
For evaluating the Green’s function GLL

λ , the following expression is derived.✓ ✏
G (2n)

i> j = −(−1)Pi j s
g
2
0i j

(
∏2n⊕i j

α>γ swα wγ
0αγ

∏2n
α>γ swα wγ

0αγ

)g

with wα ,wγ = sgn(λα), sgn(λγ) (132)

= −(−1)Pi j s
g
2
0i j

∣∣∣∣∣
detŜn⊕i j

detŜn

∣∣∣∣∣

g

. (133)

✒ ✑
For i < j, a similar expression is derived. As for RR part, the expressions are completely the same but in this time, the τi vertex
has +λ exponent while the τ j vertex does −λ exponent. This should be separately calculated and check after the calculations
GLL = GRR. For g = 1, the fermion Green’s function is given by s−g/2

0i j G (2n)
i> j = (−1)Pi j+1|detŜn⊕i j/detŜn| as it should be.

Note that the ratio of two determinants can be calculated by so-called fast-update algorithm. In the numerical calculations,
after long MC steps, sometimes Ŝ−1

n used in the fast-update processes becomes full of errors, and thus, one needs to recalculate
it directly after some MC steps. This is serious if the average perturbation order is high.
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=�
�

FL(�i)V�
� g

2
(�i)F†

L (� j)V� g
2
(� j)

�

MC

The correlation function for the Φ− part is trivial,leading to

⟨V (−)
− 1√

2g
(τ)V (−)

1√
2g

(0)⟩− =
{vβ

π
sin

[ π
vβ

(|τ|+a)]
}− 1

2g
. (116)

In the following, we concentrate on the Φ+ part.

5.2.1 Direct sampling

Let us consider LL part and a correlation function of vertex operators with λ =
√

g/2: Vλ (z) ≡V (+)
λ (z) = a−λ 2/2eiλΦ+(z):

GLL
λ (z− z′) = −⟨Tτ FL(τ)V−λ (z)F†

L (τ ′)Vλ (z′)⟩ (117)

with z = τ > z′ = τ ′, and λ =
√

g/2 > 0.
The expectation value at each MC step at the 2nth order is evaluated as

G (2n)
i> j = −⟨Tτ FL(τi)V−λ (τi)F†(τ j)Vλ (τ j)P̂2n⟩/δZ2n (118)

= −
⟨Vλ1(τ1) · · ·V−λ (τi) · · ·Vλ (τ j) · · ·Vλ2n(τ2n)⟩+⟨F†

∗ F∗̄(τ1) · · ·FL(τi) · · ·F†
L (τ j) · · ·F†

∗ F∗̄(τ2n)⟩
⟨Vλ1(τ1) · · ·Vλ2n(τ2n)⟩+⟨F†

∗ F∗̄(τ1) · · · · · ·F†
∗ F∗̄(τ2n)⟩

. (119)

= −
⟨Vλ1(τ1) · · ·V−λ (τi) · · ·Vλ (τ j) · · ·Vλ2n(τ2n)⟩+⟨FL(τi)F†

L (τ j)F†
∗ F∗̄(τ1) · · · · · ·F†

∗ F∗̄(τ2n)⟩(−1)Pi j

⟨Vλ1(τ1) · · ·Vλ2n(τ2n)⟩+⟨F†
∗ F∗̄(τ1) · · · · · ·F†

∗ F∗̄(τ2n)⟩
. (120)

Here, Pi j is the number of vertices between τi and τ j in the MC snapshot. Since the products of the Klein factors gives unity in
both denominator and numerator, we obtain

G (2n)
i> j = −(−1)Pi j

∏2n⊕i j
α>γ sλα λγ

0αγ

∏2n
α ′>γ ′ s

λα ′λγ′
0α ′γ ′

, (121)

= −(−1)Pi j s−λ 2

0i j

2n

∏
γ

s−λλγ
0iγ

2n

∏
α

sλλγ
0α j , (122)

= −(−1)Pi j

(
πT

vsin[πT (|τi j|+a/v)]

)λ 2

×
(

sin[πT (|τiα1− |+a/v)] · · ·sin[πT (|τiαn− |+a/v)]sin[πT (|τ jα1+ |+a/v)] · · ·sin[πT (|τ jαn+ |+a/v)]
sin[πT (|τiα1+ |+a/v)] · · ·sin[πT (|τiαn+ |+a/v)]sin[πT (|τ jα1− |+a/v)] · · ·sin[πT (|τ jαn− |+a/v)]

)2λ 2

, (123)

where τα± represents the vertex with ±|λα±|. Substituting λ =
√

g/2, we finally obtain for τi > τ j,✓ ✏
G (2n)

i> j = −(−1)Pi j

(
πT

vsin[πT (|τi j|+a/v)]

) g
2

×
(

sin[πT (|τiα1− |+a/v)] · · ·sin[πT (|τiαn− |+a/v)]sin[πT (|τ jα1+ |+a/v)] · · ·sin[πT (|τ jαn+ |+a/v)]
sin[πT (|τiα1+ |+a/v)] · · ·sin[πT (|τiαn+ |+a/v)]sin[πT (|τ jα1− |+a/v)] · · ·sin[πT (|τ jαn− |+a/v)]

)g

, (124)

✒ ✑
When τi < τ j, a similar analysis leads to✓ ✏

G (2n)
i< j = (−1)Pji

(
πT

vsin[πT (|τi j|+a/v)]

) g
2

×
(

sin[πT (|τiα1− |+a/v)] · · ·sin[πT (|τiαn− |+a/v)]sin[πT (|τ jα1+ |+a/v)] · · ·sin[πT (|τ jαn+ |+a/v)]
sin[πT (|τiα1+ |+a/v)] · · ·sin[πT (|τiαn+ |+a/v)]sin[πT (|τ jα1− |+a/v)] · · ·sin[πT (|τ jαn− |+a/v)]

)g

, (125)

✒ ✑
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5.3.1 Another way to calcurate G

Consider the following quantity with 0 > λi ∈ {λ ; |λα | =
√

2g} and 0 < λ j ∈ {λ ; |λα | =
√

2g}:

MLL
i j δZ2n = MLL

i j × |λB(g)|2n
( 2n

∏
α<γ

sλα λγ
0αγ

)
(134)

≡
[
− (−1) j−i−1|λB(g)|−2

(
sλiλ j

0i j

)1/4( 2n

∏
γ ̸=i

sλiλγ
0iγ

)−1/2( 2n

∏
α ̸= j

sλα λ j
0α j

)−1/2
]
× |λB(g)|2n

( 2n

∏
α<γ

sλα λγ
0αγ

)
(135)

= (−1) j−i
(

s−λ 2

0i j

)( 2n

∏
γ ̸=i, j

s−λλγ
0iγ

)( 2n

∏
α ̸=i, j

sλα λ
0α j

)
× |λB(g)|2n−2

( 2n

∏
α<γ

sλα λγ
0αγ

)

α,γ ̸=i, j

= (−1) j−i|λB(g)|2n−2⟨Vλ1(τ1) · · ·V−λ (zi) · · ·Vλ (z j) · · ·Vλ2n−2(τ2n−2)⟩+⟨F†
∗ F∗̄(τ1) · · ·F†

R FL(τi) · · ·F†
L FR(τ j) · · ·F†

∗ F∗̄(τ2n−2)⟩

= −|λB(g)|2n−2⟨Vλ1(τ1) · · ·V−λ (zi) · · ·Vλ (z j) · · ·Vλ2n−2(τ2n−2)⟩+⟨F†
∗ F∗̄(τ1) · · ·FL(τi) · · ·F†

L (τ j) · · ·F†
∗ F∗̄(τ2n−2)⟩ (136)

= −|λB(g)|2n−2⟨V−λ (zi)Vλ (z j)Vλ1(τ1) · · ·Vλ2n−2(τ2n−2)⟩+⟨FL(τi)F†
L (τ j)F†

∗ F∗̄(τ1) · · · · · ·F†
∗ F∗̄(τ2n−2)⟩ (137)

= −⟨Tτ FLV−λ (zi)F†
L Vλ (z j)P̂2n−2⟩+. (138)

Thus, sampling MLL
i j at 2nth order is equivalent to sampling GLL

λ (zi − z j) at (2n−2)th order. Here, MLL
i j is rewritten as

MLL
i j =

(−1) j−i

|λB(g)|2
(

s0i j

)−λ 2( 2n

∏
γ ̸=i

sλλγ
0iγ

)( 2n

∏
α ̸= j

s−λα λ
0α j

)
, (139)

=
(−1) j−i

|λB(g)|2 s
g
2
0i j

[
swiw j

0i j

( 2n

∏
γ ̸=i j

swiwγ
0iγ

)( 2n

∏
α ̸=i j

sw jwα
0α j

)]−g

, with wα = sgn(λα), etc., (140)

=
(−1) j−i

|λB(g)|2 s
g
2
0i j

[
∏2n

α>γ swα wγ
0αγ

∏2n⊖i j
α>γ swα wγ

0αγ

]−g

, (141)

= − (−1)Pi j

|λB(g)|2 s
g
2
0i j

∣∣∣∣∣
detŜn⊖i j

detŜn

∣∣∣∣∣

g

. (142)

Remember we need to consider configurations with λi < 0 and λ j > 0 and λ = λα/2 =
√

g/2. Since MLL
i j contributes to a part

with τ − τ ′ > 0 in this expression, we need to add MRR
i j (See below) by shifting τ − τ ′ → β − (τ − τ ′), in order to obtain full

results. This is understood by noting that if τ < τ ′,

GLL
λ (z− z′) = ⟨Tτ F†

L (τ ′)Vλ (z′)FL(τ)V−λ (z)⟩. (143)

This is (−1) times GRR(z′ − z) with FR and FL interchanged, which does not matter in the final results. Finally, we need to scale
MLL

i j by β , since both the two vertices at τi and τ j are taken into account.

GLL
λ (τ) =

1
β

〈 n

∑
i j

MLL
i j δ (τi − τ j − τ)

〉

MC
+RR part. (144)

5.3.2 RR part

As for RR part, we need to calculate

GRR
λ (z− z′) = −⟨Tτ FR(τ)Vλ (z)F†

R (τ ′)V−λ (z′)⟩ (145)

with z = τ > z′ = τ ′, and λ =
√

g/2 > 0. In this time, we consider vertices with 0 < λi ∈ {λ ; |λα | =
√

2g} and 0 > λ j ∈
{λ ; |λα | =

√
2g}. We end up with a similar expression for MLL

i j with exchanging i and j. Namely,

MRR
i j =

(−1) j−i

|λB(g)|2
(

s0i j

)−λ 2( 2n

∏
γ ̸=i

s−λλγ
0iγ

)( 2n

∏
α ̸= j

sλα λ
0α j

)
, (146)

=
(−1) j−i

|λB(g)|2
(

s0i j

) g
2

[
swiw j

0i j

( 2n

∏
γ ̸=i j

swiwγ
0iγ

)( 2n

∏
α ̸=i j

swα w j
0α j

)]−g

, (147)

= − (−1)Pi j

|λB(g)|2
(

s0i j

) g
2

∣∣∣∣∣
detŜn

detŜn⊖i j

∣∣∣∣∣

−g

. (148)
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Bench mark for g=1

Let us check the Green’s function for  
non-interacting case (g=1)

Exact G can be obtained via EOM as

for a—> 0

large a

small aEffects of T



Electron Green’s function

 10  10 10  10  1  10

 1

−3 −2 −1 1 0.01 2

 0.1

(β/100, λ)=  
(1024,0.00625)
(512,0.0125)
(256,0.025)
(128,0.05)
(64,0.1)

a
b
c
d
e  

a
     b
         c 
            d  
                e

∼τ(g−1/g)/2

−G
 (τ

)/[
s(τ

)] 
 

 
−g

/2

T*τ

+

g=0.5, a=1   

 1

 10  1−5  10−4  10−3  10−2  10−1 0.1

(β/100, λ)=  
(2048,0.025)
(1024,0.0325)
(512,0.05)
(256,0.07)

g=0.75, a=1   

a
b
c
d  

a
     b
            c 
               d  

∼τ (g−1/g)/2

−G
 (τ

)/[
s(τ

)] 
 

 
−g

/2

T*τ

+

G+
L (�) = �FL(�)V̂�

� g
2
(�)FL(0)V̂� g

2
(0)��+

Nontrivial part:

G+
L (�)� ��

1

2g
for � � �

We found:

consistent with result by Furusaki (1997)

T � � �
1

1�g
B

T � � �
1

1�g
B

g=0.5 

g=0.75 

reflecting vanishing DOS              at x=0�1/g�1

B

B

�B)

�B)

g=0.3 



Universal function @ T=0
Green’s function is expressed as

Universal part has two obvious limits:

T=0 universal func. is 
drawn from our T>0 
data by using data  
for  



Universal function @ T>0
Green’s function is expressed as

For T>0, universal func. 
depends only T/T*. 
!
This can be checked 
by examining data with  
fixed T/T*. 

T �� =
T �

T
· �

�



Conductance

Here, j(x, t) is the current operator and χR is the retarded current-current correlation function. In the Lehman representation,

χR(ω,x,y) = ∑
nm

ρn
(1− e−βωmn)⟨n| j(x)|m⟩⟨m| j(y)|n⟩

ω −ωmn + iδ
. (271)

Here, ρn = e−βEn/Z and ωmn = Em−En. This is of course calculated via analytic continuation from the corresponding Matsubara
correlation function given by

χ(iωn,x,y) =
∫ β

0
dτeiωnτ(−1)⟨Tτ j(x,τ) j(y,0)⟩, (272)

= ∑
nm

ρn
(1− e−βωmn)⟨n| j(x)|m⟩⟨m| j(y)|n⟩

iωn −ωmn
. (273)

In the bosonization language, the current operator is given as

j(x,τ) =
ev
2π

∂x(φL(x,τ)+φR(x,τ)). (274)

Note that the normalization (2π) comes from the normalization of density operator JL,R. Since φL,R(x,τ) = φL,R(vτ ± ix), we can
alternatively write

j(x,τ) = i
e

2π
∂τ(φL(x,τ)−φR(x,τ)). (275)

In terms of our basis set, Φα,β , we obtain

j(x,τ) = i
e√g
2π

∂τ
[
Φα(x,τ)−Φβ (−x,τ)

]
(276)

Now, χ(τ − τ ′,x,y) = T ∑n e−iωnτ χ(iωn,x,y) leads

− (2π)2

e2g
χ(τ − τ ′,x,y) = −⟨Tτ ∂τ Φα(x,τ)∂τ ′Φα(y,τ ′)⟩−⟨Tτ ∂τ Φβ (−x,τ)∂τ ′Φβ (−y,τ ′)⟩, (277)

= −⟨Tτ ∂τ Φα(x,τ)∂τ ′Φα(y,τ ′)⟩+(x ↔ y) (278)
= ∂ 2

τ ⟨Tτ Φα(x,τ − τ ′)Φα(y,0)⟩+(x ↔ y). (279)

We now define boson Green’s function

G(x,y,τ) = ⟨Tτ Φα(x,τ − τ ′)Φα(y,0)⟩, (280)

=
∫ ∞

0
dq

e−qa

q

[
(nB(q)+1)e−(vτ+i(x−y))q +nB(q)e(vτ+i(x−y))q

]
(281)

and

∂ 2
τ G(x,y,τ) = v2

∫ ∞

0
dqqe−qa

[
(nB(q)+1)e−(vτ+i(x−y))q +nB(q)e(vτ+i(x−y))q

]
(282)

In the Fourrier space, we have

− (2π)2

e2g
χ(ωn,x,y) = v

∫ ∞

0
dqq

[
e−iq(x−y)−aq

q− iωn/v
+

eiq(x−y)−aq

q+ iωn/v
+(x ↔ y)

]
, (283)

= 2v
∫ ∞

0
dqq

[
1

q− iωn/v
+

1
q+ iωn/v

]
cos[q(x− y)]e−qa. (284)

We now carry out analytic continuation iωn → ω + iδ , and take the imaginary part for ωn > 0,

− (2π)2

e2g
Imχ(ω + i0,x,y) = −2πv

∫ ∞

0
dqq

[
−δ (ω/v−q)+δ (ω/v+q)

]
cos[q(x− y)]e−qa, (285)

= 2πω cos[ω(x− y)/v] ∼ 2πω (ω → 0) (286)

Thus,

G(x,y) =
e2g
2π

→ e2g
h

, (287)

where we recover the dimension (h̄ = 1 → 2π = h). Note that there is no position dependences in G(x,y).
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Here, j(x, t) is the current operator and χR is the retarded current-current correlation function. In the Lehman representation,

χR(ω,x,y) = ∑
nm

ρn
(1− e−βωmn)⟨n| j(x)|m⟩⟨m| j(y)|n⟩

ω −ωmn + iδ
. (271)

Here, ρn = e−βEn/Z and ωmn = Em−En. This is of course calculated via analytic continuation from the corresponding Matsubara
correlation function given by

χ(iωn,x,y) =
∫ β

0
dτeiωnτ(−1)⟨Tτ j(x,τ) j(y,0)⟩, (272)

= ∑
nm

ρn
(1− e−βωmn)⟨n| j(x)|m⟩⟨m| j(y)|n⟩

iωn −ωmn
. (273)

In the bosonization language, the current operator is given as

j(x,τ) =
ev
2π

∂x(φL(x,τ)+φR(x,τ)). (274)

Note that the normalization (2π) comes from the normalization of density operator JL,R. Since φL,R(x,τ) = φL,R(vτ ± ix), we can
alternatively write

j(x,τ) = i
e

2π
∂τ(φL(x,τ)−φR(x,τ)). (275)

In terms of our basis set, Φα,β , we obtain

j(x,τ) = i
e√g
2π

∂τ
[
Φα(x,τ)−Φβ (−x,τ)

]
(276)

Now, χ(τ − τ ′,x,y) = T ∑n e−iωnτ χ(iωn,x,y) leads

− (2π)2

e2g
χ(τ − τ ′,x,y) = −⟨Tτ ∂τ Φα(x,τ)∂τ ′Φα(y,τ ′)⟩−⟨Tτ ∂τ Φβ (−x,τ)∂τ ′Φβ (−y,τ ′)⟩, (277)

= −⟨Tτ ∂τ Φα(x,τ)∂τ ′Φα(y,τ ′)⟩+(x ↔ y) (278)
= ∂ 2

τ ⟨Tτ Φα(x,τ − τ ′)Φα(y,0)⟩+(x ↔ y). (279)

We now define boson Green’s function

G(x,y,τ) = ⟨Tτ Φα(x,τ − τ ′)Φα(y,0)⟩, (280)

=
∫ ∞

0
dq

e−qa

q

[
(nB(q)+1)e−(vτ+i(x−y))q +nB(q)e(vτ+i(x−y))q

]
(281)

and

∂ 2
τ G(x,y,τ) = v2

∫ ∞

0
dqqe−qa

[
(nB(q)+1)e−(vτ+i(x−y))q +nB(q)e(vτ+i(x−y))q

]
(282)

In the Fourrier space, we have

− (2π)2

e2g
χ(ωn,x,y) = v

∫ ∞

0
dqq

[
e−iq(x−y)−aq

q− iωn/v
+

eiq(x−y)−aq

q+ iωn/v
+(x ↔ y)

]
, (283)

= 2v
∫ ∞

0
dqq

[
1

q− iωn/v
+

1
q+ iωn/v

]
cos[q(x− y)]e−qa. (284)

We now carry out analytic continuation iωn → ω + iδ , and take the imaginary part for ωn > 0,

− (2π)2

e2g
Imχ(ω + i0,x,y) = −2πv

∫ ∞

0
dqq

[
−δ (ω/v−q)+δ (ω/v+q)

]
cos[q(x− y)]e−qa, (285)

= 2πω cos[ω(x− y)/v] ∼ 2πω (ω → 0) (286)

Thus,

G(x,y) =
e2g
2π

→ e2g
h

, (287)

where we recover the dimension (h̄ = 1 → 2π = h). Note that there is no position dependences in G(x,y).
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Next, we consider the cross product of Jz and J±V−λ . They are

J±Jz ag+1

2
1√
2g

∫ ∞

0
dτ1

∫ τ1

0
dτ2

〈(
∂xΦ(τ1)V−λ (τ2)SzS+ +V−λ (τ1)∂xΦ(τ2)S+Sz

)
F†

R FL

〉
. (262)

Again, we use the corresponding OPE:

∂xΦ(z)Vλ (z′) =
λ

z− z′ +a
Vλ (z′)+ · · · , Vλ (z)∂xΦ(z′) = − λ

z− z′ +a
Vλ (z′)+ · · · , (263)

which leads to

−λJ±Jz ag

2
1√
2g

∫ ∞

0
dτ1∆τ

〈
V−λ (τ1)[Sz,S+]F†

R FL

〉
= −J±Jz ag∆τ

2

∫ ∞

0
dτ1

〈
V−λ (τ1)S+F†

R FL

〉
. (264)

This is the renormalization to the first-order contribution of J±S+ term, and thus,

∆J± = J±Jz∆τ → ∂lJ± = ρJ±Jz. (265)

Finally, let us check the scaling dimension of each term in V at the Gaussian fixed point. Since ⟨∂Φ(τ)∂Φ(0)⟩ ∼ 1/τ2, the
scaling dimension of the Jz term is 1. As for the second terms, ⟨Vλ (τ)V−λ (0)⟩ ∼ 1/τλ 2 . This means the scaling dimension is
λ 2/2 = g. Thus, the second term is renormalized, when τ → τel , to V +(1−g)lV , where 1 comes from rescaling of field at the
Gaussian fixed point. Thus, in total,✓ ✏

∂lJ± = (1−g)J± +ρJ±Jz, (266)

∂lJz = ρgJ±2
. (267)✒ ✑
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Figure 14: Scaling flows for g = 1, 0.5, 0.1

7.9 Conductance
Let us review the formula for the quantized conductance at T = 0 in TLL without taking into account the effects of leads. The
conductance G is calculated via the Kubo formula:

G(x,y) = lim
ω→0

1
ω

∫
dteiωt⟨[ j(x, t), j(y,0)]⟩θ(t), (268)

= i lim
ω→0

1
ω

∫
dteiωt(−i)⟨[ j(x, t), j(y,0)]⟩θ(t), (269)

= i lim
ω→0

1
ω

χR(ω,x,y) = − lim
ω→0

ImχR(ω,x,y)
ω

. (270)
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without leads:  Apel-Rice (1982) 

With leads:  
Maslov-Stone (1995), Ponomarenko (1995)  
Feed-back effect of interactions:  
Kawabata (1996)

Here, j(x, t) is the current operator and χR is the retarded current-current correlation function. In the Lehman representation,

χR(ω,x,y) = ∑
nm

ρn
(1− e−βωmn)⟨n| j(x)|m⟩⟨m| j(y)|n⟩

ω −ωmn + iδ
. (271)

Here, ρn = e−βEn/Z and ωmn = Em−En. This is of course calculated via analytic continuation from the corresponding Matsubara
correlation function given by

χ(iωn,x,y) =
∫ β

0
dτeiωnτ(−1)⟨Tτ j(x,τ) j(y,0)⟩, (272)

= ∑
nm

ρn
(1− e−βωmn)⟨n| j(x)|m⟩⟨m| j(y)|n⟩

iωn −ωmn
. (273)

In the bosonization language, the current operator is given as

j(x,τ) =
ev
2π

∂x(φL(x,τ)+φR(x,τ)). (274)

Note that the normalization (2π) comes from the normalization of density operator JL,R. Since φL,R(x,τ) = φL,R(vτ ± ix), we can
alternatively write

j(x,τ) = i
e

2π
∂τ(φL(x,τ)−φR(x,τ)). (275)

In terms of our basis set, Φα,β , we obtain

j(x,τ) = i
e√g
2π

∂τ
[
Φα(x,τ)−Φβ (−x,τ)

]
(276)

Now, χ(τ − τ ′,x,y) = T ∑n e−iωnτ χ(iωn,x,y) leads

− (2π)2

e2g
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= ∂ 2
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We now define boson Green’s function
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=
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0
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]
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and
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+
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]
, (283)

= 2v
∫ ∞

0
dqq

[
1

q− iωn/v
+

1
q+ iωn/v

]
cos[q(x− y)]e−qa. (284)

We now carry out analytic continuation iωn → ω + iδ , and take the imaginary part for ωn > 0,

− (2π)2

e2g
Imχ(ω + i0,x,y) = −2πv

∫ ∞

0
dqq

[
−δ (ω/v−q)+δ (ω/v+q)

]
cos[q(x− y)]e−qa, (285)

= 2πω cos[ω(x− y)/v] ∼ 2πω (ω → 0) (286)

Thus,

G(x,y) =
e2g
2π

→ e2g
h

, (287)

where we recover the dimension (h̄ = 1 → 2π = h). Note that there is no position dependences in G(x,y).
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e2

hG =

Kubo formula:  

In the bosonization language, the current operator is: 

In our basis @x=0, 

we can calculate G in our CTQMC

c.f., PIMC, Moon et al (1993),  
       real-time PIMC, Leung et al (1995)

There are some complicated things… about G in TLL wire:

or 
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Conductance for g=0.5
For small cutoff    , results are consistent with the exact one by Kane&Fisher (1992) 
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Helical Kondo problem



Impurities in a helical liquid
What kinds of impurities are interesting in a helical liquid (e.g., on the edge of 2d 
topological insulator) ?

R

L

R

L ��

��

✤ Non-magnetic impurity (like Kane-Fisher):    impossible due to TRS 

!
✤ Two-particle backward scattering: possible and relevant for g < 1/4 

!
✤ Magnetic impurity: possible 

� u�†
� (0)��(0)

� u��†
� (0)�†

� (a)��(a)��(0)

Wu et al., PRL (2006)

Since general Kondo interactions are highly anisotropic due to the SO 
interaction (Eriksson et al., 2012), we here analyze a simpler XXZ model 
(Maciejko, 2012) by CTQMC



Helical Kondo problem

H = H0 +�F

�
2
g

�x�+(0)Sz +ag�1�BFLFR

�
a�gei

�
2g�+

�
S�+ag�1� �BFRFL

�
a�ge�i

�
2g�+

�
S+

R

L

R

L

We also define Φ± ≡ Φ±(0) and J± ≡ J±(0) and they are given as

Φ± =
g∓

1
2

√
2

[
φL(0)∓φR(0)

]
, J± =

g±
1
2

√
2

[
JL(0)∓ JR(0)

]
. (61)

3 Interactions between an impurity spin and bosons
Interactions between an impurity spin and bosons are written as

V = λF :
[
ψ†

L(0)ψL(0)−ψ†
R(0)ψR(0)

]
: X̂F +λBψ†

L(0)ψR(0)X̂B +λ ∗
Bψ†

R(0)ψL(0)X̂†
B , (62)

where X̂F,B is the operator in the form of linear combinations of the spin operators. In terms of Φ+ and J+, this leads to

V = λF

√
2
g

J+X̂F +ag−1λBF†
L FR

(
a−gei

√
2gΦ+

)
X̂B +ag−1λ ∗

BF†
R FL

(
a−ge−i

√
2gΦ+

)
X̂†

B (63)

We note here that vF/a ∼ D with 2D bandwidth, and thus, a ∼ vF/D (It is rather messy that we have ag−1 dependence in the
interaction for λB terms. )

4 Continuous-time Quantum Monte Carlo Method
In this section, we explain how continuous-time quantum Monte Carlo method can be applied to the impurity problem in the
Tomonaga-Luttinger liquids.

4.1 Partition function
We want to calculate partition function Z, which is given by

Z = Trexp[−β (H0 +V )]. (64)

This is achieved via perturbative expansion of V and written as

Z/Z0 =

〈
Tτ exp

[
−

∫ β

0
V (τ)dτ

]〉

0

, (65)

where Z0 = Tre−βH0 and ⟨A⟩0 = [TrAe−βH0 ]/Z0 and Tτ indicates the time-ordered product. In order to distinguish the three terms
in V , we define

VF ≡ λF
√

2/gJ+X̂F ≡ λF(g)J+X̂F , (66)

VB ≡ ag−1λBF†
L FR

(
a−gei

√
2gΦ+

)
X̂B ≡ λB(g)F†

L FRV√
2gX̂B, (67)

V †
B = ag−1λ ∗

BF†
R FL

(
a−ge−i

√
2gΦ+

)
X̂†

B ≡ λB(g)∗F†
R FLV−

√
2gX̂†

B . (68)

In terms VF and VB, a general Nth order term δZN in the partition function is expressed as

δZN =
(−1)N

N!

∫ β

0
dτ1 · · ·

∫ β

0
dτN⟨TτVF(τ1)VB(τ2) · · ·V †

B (τN)⟩0 (69)

When we fix numbers of VF , VB, and V †
B to n1,n2, and n3 with n1 +n2 +n3 = N and consider fixed series of {τ;τ1 > τ2 > · · ·> τN},

we obtain

δZN = (−1)N [λF(g)]n1 [λB(g)]n2 [λ ∗
B(g)]n3⟨J+(τ1)V√

2g(τ2) · · ·V−
√

2g(τN)⟩b

×⟨F†
L FR · · ·F†

R FL⟩ f ⟨X̂F(τ1)X̂B(τ2) · · · X̂†
B(τN)⟩loc, (70)

where ⟨A⟩b, f ,loc represent averages in each sector. Since the number of FL,R and F†
L,R is the same, n2 = n3. The average for the

Klein factors always gives (−1)F with F = 0 (Note that for L → ∞ the time-dependence of the Klein factor can be neglected).
Then we can write

δZN = (−1)N [λF(g)]n1 |λB(g)|2n2⟨J+(τ1)V√
2g(τ2) · · ·V−

√
2g(τN)⟩b⟨X̂F(τ1)X̂B(τ2) · · · X̂†

B(τN)⟩loc, (71)

≡ (−1)N [λF(g)]n1 |λB(g)|2n2δZb
NδZX

N (72)
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We note here that vF/a ∼ D with 2D bandwidth, and thus, a ∼ vF/D (It is rather messy that we have ag−1 dependence in the
interaction for λB terms. )

4 Continuous-time Quantum Monte Carlo Method
In this section, we explain how continuous-time quantum Monte Carlo method can be applied to the impurity problem in the
Tomonaga-Luttinger liquids.

4.1 Partition function
We want to calculate partition function Z, which is given by
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L FR
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L FRV√
2gX̂B, (67)

V †
B = ag−1λ ∗

BF†
R FL
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a−ge−i

√
2gΦ+

)
X̂†

B ≡ λB(g)∗F†
R FLV−

√
2gX̂†

B . (68)

In terms VF and VB, a general Nth order term δZN in the partition function is expressed as

δZN =
(−1)N

N!

∫ β

0
dτ1 · · ·
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0
dτN⟨TτVF(τ1)VB(τ2) · · ·V †

B (τN)⟩0 (69)

When we fix numbers of VF , VB, and V †
B to n1,n2, and n3 with n1 +n2 +n3 = N and consider fixed series of {τ;τ1 > τ2 > · · ·> τN},

we obtain

δZN = (−1)N [λF(g)]n1 [λB(g)]n2 [λ ∗
B(g)]n3⟨J+(τ1)V√

2g(τ2) · · ·V−
√

2g(τN)⟩b

×⟨F†
L FR · · ·F†

R FL⟩ f ⟨X̂F(τ1)X̂B(τ2) · · · X̂†
B(τN)⟩loc, (70)

where ⟨A⟩b, f ,loc represent averages in each sector. Since the number of FL,R and F†
L,R is the same, n2 = n3. The average for the

Klein factors always gives (−1)F with F = 0 (Note that for L → ∞ the time-dependence of the Klein factor can be neglected).
Then we can write

δZN = (−1)N [λF(g)]n1 |λB(g)|2n2⟨J+(τ1)V√
2g(τ2) · · ·V−

√
2g(τN)⟩b⟨X̂F(τ1)X̂B(τ2) · · · X̂†

B(τN)⟩loc, (71)

≡ (−1)N [λF(g)]n1 |λB(g)|2n2δZb
NδZX

N (72)
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A magnetic impurity on the edge of 2d topological insulator (without Rashba term)
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�� �F

✓ ✏
G (n)

i> j = −(−1)PB
i j

∏2n2⊕i j
α>γ sλα λγ

0αγ

∏2n2
α ′>γ ′ s

λα′λγ′
0α ′γ ′

∏n1⊕i, j
k ̸∈D iLk

∏n1
k′ ̸∈D iLk′

, (183)

= −(−1)PB
i j s−λ 2

0i j

2n2

∏
γ

s−λλγ
0iγ

2n

∏
α

sλλγ
0α j

∏n1⊕i, j
k ̸∈D iLk

∏n1
k′ ̸∈D iLk′

, (184)

= −(−1)PB
i j

(
πT

vsin[πT (|τi j|+a/v)]

) g
2

×
(

sin[πT (|τiα1− |+a/v)] · · ·sin[πT (|τiαn− |+a/v)]sin[πT (|τ jα1+ |+a/v)] · · ·sin[πT (|τ jαn+ |+a/v)]
sin[πT (|τiα1+ |+a/v)] · · ·sin[πT (|τiαn+ |+a/v)]sin[πT (|τ jα1− |+a/v)] · · ·sin[πT (|τ jαn− |+a/v)]

)g

×
∏n1⊕i, j

k ̸∈D

{
∑2n2⊕i, j

α=1 sgn(ταk)λα cot[πT (|ταk|+ a
v )]

}

∏n1
k′ ̸∈D

{
∑2n2

α ′=1 sgn(τα ′k′)λα ′ cot[πT (|τα ′k′ |+ a
v )]

} , (185)

✒ ✑
where τα± represents the vertex with ±|λα±| as before.

7 “XY” model
Let us now consider the case with X̂F = Sz and X̂B = S−. For λF = 0, eq. (98) is written as

δZN = |λB(g)|2n2
( m

∏
α<γ

sλα λγ
0αγ

)
δZX

N . (186)

Even for general values of λF , by introducing a unitary transformation

U ≡ exp
[
i
√

2gλF

gv
Φ+(0)Sz

]
, (187)

we can eliminate λF term: λF
√

2/g∂xΦ+(0)Sz, since

UH0U† = H0 −
√

2gλF

gv
· vSz∂xΦ+(0). (188)

Now, the Hamiltonian is transformed to

UHU† = H0 +ag−1λBF†
L FR

(
a−gei

√
2g(1−λF /gv)Φ+

)
S− +ag−1λ ∗

BF†
R FL

(
a−ge−i

√
2g(1−λF /gv)Φ+

)
S+. (189)

Thus, the difference is only in the exponent:
√

2g →
√

2g(1−λF/gv) ≡
√

2g̃ and usually λF/(gv) < 1. For later purpose, it is
better to redefine vertex operators with g̃ and the Hamiltonian reads

UHU† = H0 +ag̃−1λBF†
L FR

(
a−g̃ei

√
2g̃Φ+

)
S− +ag̃−1λ ∗

BF†
R FL

(
a−g̃e−i

√
2g̃Φ+

)
S+. (190)

7.1 Green’s functions
In the original system before the application of U , correlation function of operator A is ⟨α|A(τ)A†(0)|α⟩= ⟨α̃|UA(τ)U†UA†(0)U†|α̃⟩.
When A ∼ FLe−i

√
g/2Φ+(0), UAU† = A. Thus, LL Green’s function can be calculated directly. Since g̃ ̸= g, we should slightly

change the previous formulation developed in the Kane-Fisher model. For GLL(τi − τ j),
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sin[πT (|τiα1− |+a/v)] · · ·sin[πT (|τiαn− |+a/v)]sin[πT (|τ jα1+ |+a/v)] · · ·sin[πT (|τ jαn+ |+a/v)]
sin[πT (|τiα1+ |+a/v)] · · ·sin[πT (|τiαn+ |+a/v)]sin[πT (|τ jα1− |+a/v)] · · ·sin[πT (|τ jαn− |+a/v)]

)g

×
∏n1⊕i, j

k ̸∈D

{
∑2n2⊕i, j

α=1 sgn(ταk)λα cot[πT (|ταk|+ a
v )]

}

∏n1
k′ ̸∈D

{
∑2n2

α ′=1 sgn(τα ′k′)λα ′ cot[πT (|τα ′k′ |+ a
v )]

} , (185)

✒ ✑
where τα± represents the vertex with ±|λα±| as before.

7 “XY” model
Let us now consider the case with X̂F = Sz and X̂B = S−. For λF = 0, eq. (98) is written as

δZN = |λB(g)|2n2
( m

∏
α<γ

sλα λγ
0αγ

)
δZX

N . (186)

Even for general values of λF , by introducing a unitary transformation

U ≡ exp
[
i
√

2gλF

gv
Φ+(0)Sz

]
, (187)

we can eliminate λF term: λF
√

2/g∂xΦ+(0)Sz, since

UH0U† = H0 −
√

2gλF

gv
· vSz∂xΦ+(0). (188)

Now, the Hamiltonian is transformed to

UHU† = H0 +ag−1λBF†
L FR

(
a−gei

√
2g(1−λF /gv)Φ+

)
S− +ag−1λ ∗

BF†
R FL

(
a−ge−i

√
2g(1−λF /gv)Φ+

)
S+. (189)

Thus, the difference is only in the exponent:
√

2g →
√

2g(1−λF/gv) ≡
√

2g̃ and usually λF/(gv) < 1. For later purpose, it is
better to redefine vertex operators with g̃ and the Hamiltonian reads

UHU† = H0 +ag̃−1λBF†
L FR

(
a−g̃ei

√
2g̃Φ+

)
S− +ag̃−1λ ∗

BF†
R FL

(
a−g̃e−i

√
2g̃Φ+

)
S+. (190)

7.1 Green’s functions
In the original system before the application of U , correlation function of operator A is ⟨α|A(τ)A†(0)|α⟩= ⟨α̃|UA(τ)U†UA†(0)U†|α̃⟩.
When A ∼ FLe−i

√
g/2Φ+(0), UAU† = A. Thus, LL Green’s function can be calculated directly. Since g̃ ̸= g, we should slightly

change the previous formulation developed in the Kane-Fisher model. For GLL(τi − τ j),
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now, exponent is shifted:

Wu et al,  
PRL (2006)

�F = gv : decoupled point (dP)   
                         Maciejko PRB (2012)

† †



Poor man’s scaling
Interactions:

2nd order perturbation for partition func. (only Sz terms shown):

OPE:

Thus, we have effective interaction correction to Jz 
as

1-loop RG eqs. are given as 
(with adding trivial part):



RG flow & decoupled points

Sz ��Sz, S±� S�
Exchange up and down local spin indices:

Then, Hamiltonian reads,
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Spin-spin correlations

Indirect sampling of transverse spin susceptibility:

direct sampling of longitudinal spin susceptibility:

Sampling transverse spin-spin correlations is similar to that of G in Kane-Fisher model

but note that we are in a transformed system:

with
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“Strong-coupling” Fixed Point
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Spin susceptibility

7.7 Numerical Results
For g = 1, SU(2) symmetry is indeed checked and the results are shown in Fig. 11. There are still discrepancy at high temperature
but this is reduced by using smaller a.
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Figure 11: χ⊥(τ)/2 and χz(τ) vs. τ/β for λA = λB = 0.2, g = 1, a = 1, and β =100-3200.

As for the imaginary-time dependence of spin susceptibilities, χz ∼ τ−2 for all the values of g, while χ⊥ ∼ τ−2g at low
temperature. Note that

χO(τ) ≡ ⟨O(τ)O(0)⟩ ∼ τ−2∆O (250)

with ∆O being the scaling dimension of operator O, and the corresponding static susceptibility χO is given as

χO(T ) =
∫ β

0
dτχO(τ) ∼ T 2∆O−1 (251)

For ∆O = 1/2, there is logarithmic correction and

χO(T ) ∼− lnT for ∆O =
1
2
. (252)

The numerical result shown in Fig. 12 indicates that the scaling dimension of Sz is ∆z = 1, while that of S± is ∆⊥ = g. Indeed,
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Figure 12: (a)χz(τ) for λF = λB = 0.2, a = 1, and β = 1600 and 3200. (b) χ⊥(τ) for λF = λB = 0.2, a = 1, and β =1600.

if integrated, the static part shows expected results as shown in Fig. 13. Especially, for g = 1/2, there appear logarithmic
temperature dependence.
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Summary
• CTQMC applied to TLL successfully without negative sign 

in several models (also applicable to other models —> future studies): 

• Kane-Fisher model 

• Green’s functions for all TL parameters g 

• Confirmed approx. exponent 1/(2g) by Furusaki (1997) 

• Conductance is also calculable 

• Helical Kondo model 

• Phase diagram 

• Spin-spin correlation functions

�� � ��2g, �z � ��2

G+
L (�)� ��1/2g



Other applications

❖ Two-particle backward scattering problem 

✤ Almost the same as Kane-Fisher model  

✤ But there needs a special care for electron Green’s func.  

❖ Topological Kondo problem(s) 

✤ Majorana fermions in SC island coupled with leads 

✤ negative-sign free CTQMC is applicable (with odd-order 
perturbations present)                   



Two-particle backward scattering problem

R

L

R

L

We also define Φ± ≡ Φ±(0) and J± ≡ J±(0) and they are given as

Φ± =
g∓

1
2

√
2

[
φL(0)∓φR(0)

]
, J± =

g±
1
2

√
2

[
JL(0)∓ JR(0)

]
. (61)

3 Interactions between an impurity spin and bosons
Interactions between an impurity spin and bosons are written as

V = λF :
[
ψ†

L(0)ψL(0)−ψ†
R(0)ψR(0)

]
: X̂F +λBψ†

L(0)ψR(0)X̂B +λ ∗
Bψ†

R(0)ψL(0)X̂†
B , (62)

where X̂F,B is the operator in the form of linear combinations of the spin operators. In terms of Φ+ and J+, this leads to

V = λF

√
2
g

J+X̂F +ag−1λBF†
L FR

(
a−gei

√
2gΦ+

)
X̂B +ag−1λ ∗

BF†
R FL

(
a−ge−i

√
2gΦ+

)
X̂†

B (63)

We note here that vF/a ∼ D with 2D bandwidth, and thus, a ∼ vF/D (It is rather messy that we have ag−1 dependence in the
interaction for λB terms. )

4 Continuous-time Quantum Monte Carlo Method
In this section, we explain how continuous-time quantum Monte Carlo method can be applied to the impurity problem in the
Tomonaga-Luttinger liquids.

4.1 Partition function
We want to calculate partition function Z, which is given by

Z = Trexp[−β (H0 +V )]. (64)

This is achieved via perturbative expansion of V and written as

Z/Z0 =

〈
Tτ exp

[
−

∫ β

0
V (τ)dτ

]〉

0

, (65)

where Z0 = Tre−βH0 and ⟨A⟩0 = [TrAe−βH0 ]/Z0 and Tτ indicates the time-ordered product. In order to distinguish the three terms
in V , we define

VF ≡ λF
√

2/gJ+X̂F ≡ λF(g)J+X̂F , (66)

VB ≡ ag−1λBF†
L FR

(
a−gei

√
2gΦ+

)
X̂B ≡ λB(g)F†

L FRV√
2gX̂B, (67)

V †
B = ag−1λ ∗

BF†
R FL

(
a−ge−i

√
2gΦ+

)
X̂†

B ≡ λB(g)∗F†
R FLV−

√
2gX̂†

B . (68)

In terms VF and VB, a general Nth order term δZN in the partition function is expressed as

δZN =
(−1)N

N!

∫ β

0
dτ1 · · ·

∫ β

0
dτN⟨TτVF(τ1)VB(τ2) · · ·V †

B (τN)⟩0 (69)

When we fix numbers of VF , VB, and V †
B to n1,n2, and n3 with n1 +n2 +n3 = N and consider fixed series of {τ;τ1 > τ2 > · · ·> τN},

we obtain

δZN = (−1)N [λF(g)]n1 [λB(g)]n2 [λ ∗
B(g)]n3⟨J+(τ1)V√

2g(τ2) · · ·V−
√

2g(τN)⟩b

×⟨F†
L FR · · ·F†

R FL⟩ f ⟨X̂F(τ1)X̂B(τ2) · · · X̂†
B(τN)⟩loc, (70)

where ⟨A⟩b, f ,loc represent averages in each sector. Since the number of FL,R and F†
L,R is the same, n2 = n3. The average for the

Klein factors always gives (−1)F with F = 0 (Note that for L → ∞ the time-dependence of the Klein factor can be neglected).
Then we can write

δZN = (−1)N [λF(g)]n1 |λB(g)|2n2⟨J+(τ1)V√
2g(τ2) · · ·V−

√
2g(τN)⟩b⟨X̂F(τ1)X̂B(τ2) · · · X̂†

B(τN)⟩loc, (71)

≡ (−1)N [λF(g)]n1 |λB(g)|2n2δZb
NδZX

N (72)
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5

RG eq.: 

Completely decoupled chains at low-energy for g<1/4 

Kane & Fisher PRB (1992)

� =
�

8g

��B = (1�4g)�B �B� � (g < 1/4)

H = H0 +a2g�1�B(F†
L FR)2V� +a2g�1�B(F†

R FL)2V��

� H
0

+2a2g�1�B cos(��+)

Is this the full story? & Is there any quantitative difference from Kan-Fisher model?

There is a difference in electron Green’s function!, which is  
closely related to Klein factors



Green’s function
Let us consider “fermion sign” in G, i.e. Klein factor part 

For any terms in perturbation series, we have something like

FL(�)[(F†
L,RFR,L)q · · ·]F†

L (� = 0) q = 1(KFM), 2(2PBM)

� (�1)pFL(�)[(F†
L,R)n(FR,L)n(F†

L,RFR,L)q]F†
L (� = 0)

� (�1)pFL(�)[(F†
L,R)n(FR,L)n]F†

L (� = 0) � (�1)p[(F†
L,R)n(FR,L)n]

� (�1)p+q[(F†
L,R)n(FR,L)n]

For even No. of vertices in [ ]:

For odd No. of vertices in [ ]:

This clearly indicates difference in the two models 
✤ No sign in 2-particle backscattering model
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g/2�+(0)��ei
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i.e., no Klein fac.

Note: there is no time dependence in Klein fac.



Topological Kondo problems

Altland&Egger (2013)
Beri&Cooper (2012)

✤ Robust (~topologically protected) NFL is realized (SO(M) sym.) 

✤ As for CTQMC, no negative sign, but we need to introduce an update 
operation with cyclic three vertices insertion/removal or equivalent ones.

�†
1 (�)�2(�)�†

2 (� �)�3(� �)�†
3 (� ��)�1(� ��)

Kitaev chain (2001)

Majorana fermion



Probability density

5.5 Numerical results
5.5.1 g = 1 case

Figure 1 shows τ dependence of GLL(τ) for several values of λB and a. One can see that the deviations between numerical
results and exact one become smaller and smaller as a decreases. Note also that the results by two methods for calculating GLL

is consistent with each other for all the parameters.
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Figure 1: −G(τ) vs. τ/β for g = 1, β = 200 with a = 1, 0.5, and 0.25.

Figure 2 shows distribution of perturbation order P(n) in the MC samplings. The peak position of P(n) scales to ∝ βλB/a.
This (evidently) means, cases for low T , strong coupling, and smaller cutoff, require heavy calculations.
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Check SU(2) symmetry for g=1
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FM cases
For small g, we succeeded to get the strong-coupling fixed point. 

But, numerical difficulty appears when we approach g=1 for isotropic case
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Effects of cutoff  in LM phase 
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Decoupled-point Hamiltonian

|NR NL ;   >

|NR+1 NL-1;  >

h

h

-h

-h
0

0

Thus, sampling M̃⊥
i j at 2nth order is equivalent to sampling χ⊥(τi − τ j) at (2n−2)th order. M̃⊥

i j is rewritten as

M̃⊥
i j = |λB(g̃)|−2

(
s−λiλ j

0i j

)( 2n

∏
γ ̸=i j

s−λiλγ
0iγ

)( 2n

∏
α ̸=i j

s−λα λ j
0α j

)
, (222)

=
1

|λB(g̃)|2

[
swiw j

0i j

( 2n

∏
γ ̸=i j

swiwγ
0iγ

)( 2n

∏
α ̸=i j

sw jwα
0α j

)]−2g̃

, with wα = sgn(λα), etc., (223)

=
1

|λB(g̃)|2

[
∏2n

α>γ swα wγ
0αγ

∏2n⊖i j
α>γ swα wγ

0αγ

]−2g̃

, (224)

=
1

|λB(g̃)|2

∣∣∣∣∣
detŜn⊖i j

detŜn

∣∣∣∣∣

2g̃

for λ ′ > 0, λi < 0, and λ j > 0. (225)

Similarly, we can calculate ther second term S−S+. We obtain completely the same expression as

7.4 Longitudinal spin susceptibility
Since USzU† = Sz, longitudinal spin susceptibility is directly evaluated. This is possible because the operator Sz does not alter
any quantum numbers along imaginary time axis in CTQMC. In this sense transverse one can be calculated only through the
method discussed in the previous subsection.

χz(τi − τ j) =
⟨S±(τ1) · · ·Sz(τi) · · ·Sz(τ j) · · ·⟩

⟨S±(τ1) · · · · · ·⟩
. (226)

One should check that 2χz = χ⊥ for SU(2) symmetric case: λF = λB for g = 1. For g ̸= 1, there is no SU(2) symmetry and thus,
χ⊥/2 ̸= χz.

7.5 For λF/(gv) > 1
For λF > gv, the Hamiltonian is given as

UHU† = H0 +ag−1λBF†
L FR

(
a−ge−i

√
2g(λF /gv−1)Φ+

)
S− +ag−1λ ∗

BF†
R FL
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)
S+. (227)

We now interchange the up and the down spin for the local moment. Then, we obtain

UHU† → H0 +ag−1λBF†
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√
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)
S−. (228)

This is equivalent to Eq. (190) if (λF/gv−1) of Eq. (228) → (1−λF/gv) of Eq. (190). This means the system with λF/gv > 1
is equivalent to that with (2−λF/gv), i.e., antiferromagnetically very very large λF is reduced to very very large ferromagnetic
λF < 0 in the transformed system.

7.6 Decoupled fixed points: Maciejko PRB 2012
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Since the Klein factors do nothing, this is equivalent to
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(S+ +S−), (230)

which is just single spin Hamiltonian under the magnetic field h parralel to x direction with h = 2λB/a.
We now take a new quantization axis parallel to original x direction, then

S± = S̃z ∓ 1
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Decoupled point
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Let us calculate correlation functions of S̃.

χ̃+− = ⟨Tτ S̃+(τ)S̃−(0)⟩ =
e−2(β−τ)h

1+ e−2βh (234)

χ̃−+ = ⟨Tτ S̃−(τ)S̃+(0)⟩ =
e−2hτ

1+ e−2βh (235)

χ̃zz = ⟨Tτ S̃z(τ)S̃z(0)⟩ =
1
4

(236)

χdFP
+− = ⟨Tτ S+(τ)S−(0)⟩dFP =

1
4
(1+ e−2hτ) for T = 0 (237)

χdFP
zz = ⟨Tτ Sz(τ)Sz(0)⟩dFP =

1
4

e−2hτ for T = 0 (238)

Finally, we calculate original correlation functions before applying U , we obtain

χ+− = ⟨Tτ S+(τ)S−(0)⟩ =
1
4
(1+ e−2hτ)

( a
vτ

)2g
for T = 0 (239)

χzz = ⟨Tτ Sz(τ)Sz(0)⟩ =
1
4

e−2hτ for T = 0. (240)

Here, we have used US±U† = e±
√

2gΦ+S± for λF = gv.

7.6.1 perturbations from the decoupled fixed points

Consider deviation δλF = λF −gv, then

UδVU† = δλF

√
2
g

∂xΦ+(0)Sz (241)

= δλF

√
1
2g

∂xΦ+(0)(S̃+ + S̃−) (242)

Let us calculate the corrections to χdFP
zz . The second-order perturbation gives

δ χdFP
zz (τ) =

[TrSz(τ)Sz(0)](2)

ZdFP
− Z(2)

ZdFP
χdFP

zz (τ). (243)

The time dependence different from χdFP
zz (τ) comes from the first term. At T = 0, we find that the power-law dependence appears

from

1
4

[TrS̃+(τ)S̃−(0)](2)

ZdFP
=

δλ 2
F

8gZdFP

∫ τ

0
dτ1

∫ τ1

0
dτ2[TrS̃−(τ)S̃+(τ1)S̃−(τ2)S̃+(0)] ≡ δλ 2

F
8gv2 I+−(τ) (244)

and

1
4

[TrS̃+(τ)S̃+(0)](2)

ZdFP
=

δλ 2
F

8gZdFP

∫ β→∞

τ
dτ1

∫ τ

0
dτ2[TrS̃−(τ1)S̃+(τ)S̃−(τ2)S̃+(0)] ≡ δλ 2

F
8gv2 I++(τ). (245)

Note that only terms S̃+(0) are relevant, since S̃z =↓ is the ground state at the decoupled fixed point.

I+−(τ) = e−2hτ
∫ 2hτ

0
dx

∫ x

0
dy

ex−y

(x− y+2ha)2 ≡ e−t
∫ t

0
dx

∫ x

0
dy

ex−y

(x− y+ c)2 ≃ 1
t2 + · · · (246)

I++(τ) = et
∫ b

t
dx

∫ t

0
dy

e−x−y

(x− y+ c)2 , b ≡ 2hβ → ∞, (247)

≃ 1
t2 + · · · (248)

Thus,

δ χdFP
zz (τ) ≃ a2δλ 2

F
16gv2λ 2

B

1
τ2 (249)

As for δ χdFP
+− (τ), there are cutoff-dependent constant renormalization from 1

4 and leading τ-dependent corrections include
e−2hτ and thus not important here.
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e−2hτ for T = 0. (240)

Here, we have used US±U† = e±
√

2gΦ+S± for λF = gv.

7.6.1 perturbations from the decoupled fixed points

Consider deviation δλF = λF −gv, then

UδVU† = δλF

√
2
g

∂xΦ+(0)Sz (241)

= δλF

√
1
2g

∂xΦ+(0)(S̃+ + S̃−) (242)

Let us calculate the corrections to χdFP
zz . The second-order perturbation gives

δ χdFP
zz (τ) =

[TrSz(τ)Sz(0)](2)

ZdFP
− Z(2)

ZdFP
χdFP

zz (τ). (243)

The time dependence different from χdFP
zz (τ) comes from the first term. At T = 0, we find that the power-law dependence appears

from

1
4

[TrS̃+(τ)S̃−(0)](2)

ZdFP
=

δλ 2
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8gZdFP

∫ τ

0
dτ1

∫ τ1

0
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=

δλ 2
F

8gZdFP

∫ β→∞
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0
dτ2[TrS̃−(τ1)S̃+(τ)S̃−(τ2)S̃+(0)] ≡ δλ 2

F
8gv2 I++(τ). (245)

Note that only terms S̃+(0) are relevant, since S̃z =↓ is the ground state at the decoupled fixed point.

I+−(τ) = e−2hτ
∫ 2hτ

0
dx

∫ x

0
dy

ex−y

(x− y+2ha)2 ≡ e−t
∫ t

0
dx

∫ x

0
dy

ex−y

(x− y+ c)2 ≃ 1
t2 + · · · (246)

I++(τ) = et
∫ b

t
dx

∫ t

0
dy

e−x−y

(x− y+ c)2 , b ≡ 2hβ → ∞, (247)

≃ 1
t2 + · · · (248)

Thus,

δ χdFP
zz (τ) ≃ a2δλ 2

F
16gv2λ 2

B

1
τ2 (249)

As for δ χdFP
+− (τ), there are cutoff-dependent constant renormalization from 1

4 and leading τ-dependent corrections include
e−2hτ and thus not important here.
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USzU† = Sz

Let us calculate correlation functions of S̃.
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1+ e−2βh (235)

χ̃zz = ⟨Tτ S̃z(τ)S̃z(0)⟩ =
1
4

(236)

χdFP
+− = ⟨Tτ S+(τ)S−(0)⟩dFP =

1
4
(1+ e−2hτ) for T = 0 (237)

χdFP
zz = ⟨Tτ Sz(τ)Sz(0)⟩dFP =

1
4

e−2hτ for T = 0 (238)

Finally, we calculate original correlation functions before applying U , we obtain

χ+− = ⟨Tτ S+(τ)S−(0)⟩ =
1
4
(1+ e−2hτ)

( a
vτ

)2g
for T = 0 (239)

χzz = ⟨Tτ Sz(τ)Sz(0)⟩ =
1
4

e−2hτ for T = 0. (240)

Here, we have used US±U† = e±
√

2gΦ+S± for λF = gv.

7.6.1 perturbations from the decoupled fixed points

Consider deviation δλF = λF −gv, then

UδVU† = δλF

√
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∂xΦ+(0)Sz (241)

= δλF
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1
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∂xΦ+(0)(S̃+ + S̃−) (242)

Let us calculate the corrections to χdFP
zz . The second-order perturbation gives

δ χdFP
zz (τ) =

[TrSz(τ)Sz(0)](2)

ZdFP
− Z(2)

ZdFP
χdFP

zz (τ). (243)

The time dependence different from χdFP
zz (τ) comes from the first term. At T = 0, we find that the power-law dependence appears

from

1
4
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Note that only terms S̃+(0) are relevant, since S̃z =↓ is the ground state at the decoupled fixed point.
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(x− y+2ha)2 ≡ e−t
∫ t

0
dx
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t
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0
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≃ 1
t2 + · · · (248)

Thus,

δ χdFP
zz (τ) ≃ a2δλ 2

F
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As for δ χdFP
+− (τ), there are cutoff-dependent constant renormalization from 1

4 and leading τ-dependent corrections include
e−2hτ and thus not important here.
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Perturbations from decoupled FP

Let us calculate correlation functions of S̃.

χ̃+− = ⟨Tτ S̃+(τ)S̃−(0)⟩ =
e−2(β−τ)h

1+ e−2βh (234)

χ̃−+ = ⟨Tτ S̃−(τ)S̃+(0)⟩ =
e−2hτ
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χ̃zz = ⟨Tτ S̃z(τ)S̃z(0)⟩ =
1
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χdFP
+− = ⟨Tτ S+(τ)S−(0)⟩dFP =

1
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(1+ e−2hτ) for T = 0 (237)

χdFP
zz = ⟨Tτ Sz(τ)Sz(0)⟩dFP =

1
4

e−2hτ for T = 0 (238)

Finally, we calculate original correlation functions before applying U , we obtain

χ+− = ⟨Tτ S+(τ)S−(0)⟩ =
1
4
(1+ e−2hτ)

( a
vτ

)2g
for T = 0 (239)

χzz = ⟨Tτ Sz(τ)Sz(0)⟩ =
1
4

e−2hτ for T = 0. (240)

Here, we have used US±U† = e±
√

2gΦ+S± for λF = gv.

7.6.1 perturbations from the decoupled fixed points

Consider deviation δλF = λF −gv, then

UδVU† = δλF

√
2
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∂xΦ+(0)Sz (241)

= δλF

√
1
2g

∂xΦ+(0)(S̃+ + S̃−) (242)

Let us calculate the corrections to χdFP
zz . The second-order perturbation gives

δ χdFP
zz (τ) =

[TrSz(τ)Sz(0)](2)

ZdFP
− Z(2)

ZdFP
χdFP

zz (τ). (243)

The time dependence different from χdFP
zz (τ) comes from the first term. At T = 0, we find that the power-law dependence appears

from
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[TrS̃+(τ)S̃−(0)](2)

ZdFP
=

δλ 2
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8gZdFP

∫ τ
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dτ1
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F
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0
dτ2[TrS̃−(τ1)S̃+(τ)S̃−(τ2)S̃+(0)] ≡ δλ 2

F
8gv2 I++(τ). (245)

Note that only terms S̃+(0) are relevant, since S̃z =↓ is the ground state at the decoupled fixed point.

I+−(τ) = e−2hτ
∫ 2hτ

0
dx

∫ x

0
dy
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(x− y+2ha)2 ≡ e−t
∫ t
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I++(τ) = et
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t
dx

∫ t

0
dy
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(x− y+ c)2 , b ≡ 2hβ → ∞, (247)

≃ 1
t2 + · · · (248)

Thus,

δ χdFP
zz (τ) ≃ a2δλ 2

F
16gv2λ 2
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As for δ χdFP
+− (τ), there are cutoff-dependent constant renormalization from 1

4 and leading τ-dependent corrections include
e−2hτ and thus not important here.
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Let us calculate correlation functions of S̃.

χ̃+− = ⟨Tτ S̃+(τ)S̃−(0)⟩ =
e−2(β−τ)h

1+ e−2βh (234)

χ̃−+ = ⟨Tτ S̃−(τ)S̃+(0)⟩ =
e−2hτ

1+ e−2βh (235)

χ̃zz = ⟨Tτ S̃z(τ)S̃z(0)⟩ =
1
4

(236)

χdFP
+− = ⟨Tτ S+(τ)S−(0)⟩dFP =

1
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(1+ e−2hτ) for T = 0 (237)

χdFP
zz = ⟨Tτ Sz(τ)Sz(0)⟩dFP =

1
4

e−2hτ for T = 0 (238)

Finally, we calculate original correlation functions before applying U , we obtain

χ+− = ⟨Tτ S+(τ)S−(0)⟩ =
1
4
(1+ e−2hτ)

( a
vτ

)2g
for T = 0 (239)

χzz = ⟨Tτ Sz(τ)Sz(0)⟩ =
1
4

e−2hτ for T = 0. (240)

Here, we have used US±U† = e±
√

2gΦ+S± for λF = gv.

7.6.1 perturbations from the decoupled fixed points

Consider deviation δλF = λF −gv, then

UδVU† = δλF

√
2
g

∂xΦ+(0)Sz (241)

= δλF

√
1
2g

∂xΦ+(0)(S̃+ + S̃−) (242)

Let us calculate the corrections to χdFP
zz . The second-order perturbation gives

δ χdFP
zz (τ) =

[TrSz(τ)Sz(0)](2)

ZdFP
− Z(2)

ZdFP
χdFP

zz (τ). (243)

The time dependence different from χdFP
zz (τ) comes from the first term. At T = 0, we find that the power-law dependence appears

from

1
4

[TrS̃+(τ)S̃−(0)](2)

ZdFP
=

δλ 2
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8gZdFP

∫ τ

0
dτ1
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0
dτ2[TrS̃−(τ1)S̃+(τ)S̃−(τ2)S̃+(0)] ≡ δλ 2

F
8gv2 I++(τ). (245)

Note that only terms S̃+(0) are relevant, since S̃z =↓ is the ground state at the decoupled fixed point.

I+−(τ) = e−2hτ
∫ 2hτ
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∫ x
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∫ t
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≃ 1
t2 + · · · (248)

Thus,

δ χdFP
zz (τ) ≃ a2δλ 2

F
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As for δ χdFP
+− (τ), there are cutoff-dependent constant renormalization from 1

4 and leading τ-dependent corrections include
e−2hτ and thus not important here.
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Let us calculate correlation functions of S̃.

χ̃+− = ⟨Tτ S̃+(τ)S̃−(0)⟩ =
e−2(β−τ)h

1+ e−2βh (234)

χ̃−+ = ⟨Tτ S̃−(τ)S̃+(0)⟩ =
e−2hτ

1+ e−2βh (235)

χ̃zz = ⟨Tτ S̃z(τ)S̃z(0)⟩ =
1
4
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χdFP
+− = ⟨Tτ S+(τ)S−(0)⟩dFP =

1
4
(1+ e−2hτ) for T = 0 (237)

χdFP
zz = ⟨Tτ Sz(τ)Sz(0)⟩dFP =

1
4

e−2hτ for T = 0 (238)

Finally, we calculate original correlation functions before applying U , we obtain

χ+− = ⟨Tτ S+(τ)S−(0)⟩ =
1
4
(1+ e−2hτ)

( a
vτ

)2g
for T = 0 (239)

χzz = ⟨Tτ Sz(τ)Sz(0)⟩ =
1
4

e−2hτ for T = 0. (240)

Here, we have used US±U† = e±
√

2gΦ+S± for λF = gv.

7.6.1 perturbations from the decoupled fixed points

Consider deviation δλF = λF −gv, then

UδVU† = δλF

√
2
g

∂xΦ+(0)Sz (241)

= δλF

√
1
2g

∂xΦ+(0)(S̃+ + S̃−) (242)

Let us calculate the corrections to χdFP
zz . The second-order perturbation gives

δ χdFP
zz (τ) =

[TrSz(τ)Sz(0)](2)

ZdFP
− Z(2)

ZdFP
χdFP

zz (τ). (243)

The time dependence different from χdFP
zz (τ) comes from the first term. At T = 0, we find that the power-law dependence appears

from

1
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[TrS̃+(τ)S̃−(0)](2)
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=
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Note that only terms S̃+(0) are relevant, since S̃z =↓ is the ground state at the decoupled fixed point.
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≃ 1
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Thus,

δ χdFP
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F
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As for δ χdFP
+− (τ), there are cutoff-dependent constant renormalization from 1

4 and leading τ-dependent corrections include
e−2hτ and thus not important here.
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Let us calculate correlation functions of S̃.

χ̃+− = ⟨Tτ S̃+(τ)S̃−(0)⟩ =
e−2(β−τ)h

1+ e−2βh (234)

χ̃−+ = ⟨Tτ S̃−(τ)S̃+(0)⟩ =
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1+ e−2βh (235)
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(1+ e−2hτ) for T = 0 (237)

χdFP
zz = ⟨Tτ Sz(τ)Sz(0)⟩dFP =

1
4

e−2hτ for T = 0 (238)

Finally, we calculate original correlation functions before applying U , we obtain

χ+− = ⟨Tτ S+(τ)S−(0)⟩ =
1
4
(1+ e−2hτ)

( a
vτ

)2g
for T = 0 (239)

χzz = ⟨Tτ Sz(τ)Sz(0)⟩ =
1
4

e−2hτ for T = 0. (240)

Here, we have used US±U† = e±
√

2gΦ+S± for λF = gv.

7.6.1 perturbations from the decoupled fixed points

Consider deviation δλF = λF −gv, then

UδVU† = δλF

√
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∂xΦ+(0)Sz (241)

= δλF

√
1
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∂xΦ+(0)(S̃+ + S̃−) (242)

Let us calculate the corrections to χdFP
zz . The second-order perturbation gives

δ χdFP
zz (τ) =

[TrSz(τ)Sz(0)](2)

ZdFP
− Z(2)

ZdFP
χdFP

zz (τ). (243)

The time dependence different from χdFP
zz (τ) comes from the first term. At T = 0, we find that the power-law dependence appears

from
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[TrS̃+(τ)S̃−(0)](2)
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=
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dτ1
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8gv2 I++(τ). (245)

Note that only terms S̃+(0) are relevant, since S̃z =↓ is the ground state at the decoupled fixed point.
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≃ 1
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Thus,

δ χdFP
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F
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As for δ χdFP
+− (τ), there are cutoff-dependent constant renormalization from 1

4 and leading τ-dependent corrections include
e−2hτ and thus not important here.
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Let us calculate correlation functions of S̃.

χ̃+− = ⟨Tτ S̃+(τ)S̃−(0)⟩ =
e−2(β−τ)h

1+ e−2βh (234)

χ̃−+ = ⟨Tτ S̃−(τ)S̃+(0)⟩ =
e−2hτ

1+ e−2βh (235)
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χdFP
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(1+ e−2hτ) for T = 0 (237)

χdFP
zz = ⟨Tτ Sz(τ)Sz(0)⟩dFP =

1
4

e−2hτ for T = 0 (238)

Finally, we calculate original correlation functions before applying U , we obtain

χ+− = ⟨Tτ S+(τ)S−(0)⟩ =
1
4
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( a
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Here, we have used US±U† = e±
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2gΦ+S± for λF = gv.

7.6.1 perturbations from the decoupled fixed points

Consider deviation δλF = λF −gv, then
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Let us calculate the corrections to χdFP
zz . The second-order perturbation gives

δ χdFP
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[TrSz(τ)Sz(0)](2)

ZdFP
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ZdFP
χdFP
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The time dependence different from χdFP
zz (τ) comes from the first term. At T = 0, we find that the power-law dependence appears
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Note that only terms S̃+(0) are relevant, since S̃z =↓ is the ground state at the decoupled fixed point.
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As for δ χdFP
+− (τ), there are cutoff-dependent constant renormalization from 1

4 and leading τ-dependent corrections include
e−2hτ and thus not important here.
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1
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(1+ e−2hτ) for T = 0 (237)

χdFP
zz = ⟨Tτ Sz(τ)Sz(0)⟩dFP =

1
4

e−2hτ for T = 0 (238)

Finally, we calculate original correlation functions before applying U , we obtain

χ+− = ⟨Tτ S+(τ)S−(0)⟩ =
1
4
(1+ e−2hτ)

( a
vτ

)2g
for T = 0 (239)

χzz = ⟨Tτ Sz(τ)Sz(0)⟩ =
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e−2hτ for T = 0. (240)

Here, we have used US±U† = e±
√

2gΦ+S± for λF = gv.

7.6.1 perturbations from the decoupled fixed points

Consider deviation δλF = λF −gv, then

UδVU† = δλF

√
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zz . The second-order perturbation gives
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The time dependence different from χdFP
zz (τ) comes from the first term. At T = 0, we find that the power-law dependence appears
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=
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=
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Note that only terms S̃+(0) are relevant, since S̃z =↓ is the ground state at the decoupled fixed point.
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Thus,

δ χdFP
zz (τ) ≃ a2δλ 2

F
16gv2λ 2

B

1
τ2 (249)

As for δ χdFP
+− (τ), there are cutoff-dependent constant renormalization from 1

4 and leading τ-dependent corrections include
e−2hτ and thus not important here.
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Note that only terms S̃+(0) are relevant, since S̃z =↓ is the ground state at the decoupled fixed point.
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As for δ χdFP
+− (τ), there are cutoff-dependent constant renormalization from 1

4 and leading τ-dependent corrections include
e−2hτ and thus not important here.
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Here, we have used US±U† = e±
√

2gΦ+S± for λF = gv.
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Let us calculate the corrections to χdFP
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δ χdFP
zz (τ) =
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Note that only terms S̃+(0) are relevant, since S̃z =↓ is the ground state at the decoupled fixed point.

I+−(τ) = e−2hτ
∫ 2hτ

0
dx

∫ x

0
dy

ex−y

(x− y+2ha)2 ≡ e−t
∫ t

0
dx

∫ x

0
dy

ex−y

(x− y+ c)2 ≃ 1
t2 + · · · (246)

I++(τ) = et
∫ b

t
dx

∫ t

0
dy

e−x−y

(x− y+ c)2 , b ≡ 2hβ → ∞, (247)

≃ 1
t2 + · · · (248)

Thus,

δ χdFP
zz (τ) ≃ a2δλ 2

F
16gv2λ 2

B

1
τ2 (249)

As for δ χdFP
+− (τ), there are cutoff-dependent constant renormalization from 1

4 and leading τ-dependent corrections include
e−2hτ and thus not important here.
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Here, we have used US±U† = e±
√

2gΦ+S± for λF = gv.

7.6.1 perturbations from the decoupled fixed points

Consider deviation δλF = λF −gv, then
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√
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= δλF
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Let us calculate the corrections to χdFP
zz . The second-order perturbation gives

δ χdFP
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ZdFP
χdFP
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The time dependence different from χdFP
zz (τ) comes from the first term. At T = 0, we find that the power-law dependence appears
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Note that only terms S̃+(0) are relevant, since S̃z =↓ is the ground state at the decoupled fixed point.
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As for δ χdFP
+− (τ), there are cutoff-dependent constant renormalization from 1

4 and leading τ-dependent corrections include
e−2hτ and thus not important here.
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Finally, we calculate original correlation functions before applying U , we obtain
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Here, we have used US±U† = e±
√

2gΦ+S± for λF = gv.

7.6.1 perturbations from the decoupled fixed points

Consider deviation δλF = λF −gv, then

UδVU† = δλF

√
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∂xΦ+(0)Sz (241)

= δλF
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Let us calculate the corrections to χdFP
zz . The second-order perturbation gives

δ χdFP
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ZdFP
− Z(2)

ZdFP
χdFP
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The time dependence different from χdFP
zz (τ) comes from the first term. At T = 0, we find that the power-law dependence appears

from
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Note that only terms S̃+(0) are relevant, since S̃z =↓ is the ground state at the decoupled fixed point.
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As for δ χdFP
+− (τ), there are cutoff-dependent constant renormalization from 1

4 and leading τ-dependent corrections include
e−2hτ and thus not important here.
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1
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e−2hτ for T = 0 (238)

Finally, we calculate original correlation functions before applying U , we obtain

χ+− = ⟨Tτ S+(τ)S−(0)⟩ =
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Here, we have used US±U† = e±
√

2gΦ+S± for λF = gv.

7.6.1 perturbations from the decoupled fixed points

Consider deviation δλF = λF −gv, then

UδVU† = δλF

√
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∂xΦ+(0)Sz (241)

= δλF

√
1
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∂xΦ+(0)(S̃+ + S̃−) (242)

Let us calculate the corrections to χdFP
zz . The second-order perturbation gives

δ χdFP
zz (τ) =

[TrSz(τ)Sz(0)](2)

ZdFP
− Z(2)

ZdFP
χdFP

zz (τ). (243)

The time dependence different from χdFP
zz (τ) comes from the first term. At T = 0, we find that the power-law dependence appears

from
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Note that only terms S̃+(0) are relevant, since S̃z =↓ is the ground state at the decoupled fixed point.
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≃ 1
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Thus,

δ χdFP
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As for δ χdFP
+− (τ), there are cutoff-dependent constant renormalization from 1

4 and leading τ-dependent corrections include
e−2hτ and thus not important here.
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Let us calculate correlation functions of S̃.
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1
4

e−2hτ for T = 0 (238)

Finally, we calculate original correlation functions before applying U , we obtain
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1
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Here, we have used US±U† = e±
√

2gΦ+S± for λF = gv.

7.6.1 perturbations from the decoupled fixed points

Consider deviation δλF = λF −gv, then
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Let us calculate the corrections to χdFP
zz . The second-order perturbation gives

δ χdFP
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[TrSz(τ)Sz(0)](2)

ZdFP
− Z(2)

ZdFP
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zz (τ). (243)

The time dependence different from χdFP
zz (τ) comes from the first term. At T = 0, we find that the power-law dependence appears

from
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Note that only terms S̃+(0) are relevant, since S̃z =↓ is the ground state at the decoupled fixed point.
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≃ 1
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Thus,
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As for δ χdFP
+− (τ), there are cutoff-dependent constant renormalization from 1

4 and leading τ-dependent corrections include
e−2hτ and thus not important here.
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: stronger decay than the fixed point susceptibility, i.e., not important

: power-low decay appears in two diagrams

Let us calculate correlation functions of S̃.

χ̃+− = ⟨Tτ S̃+(τ)S̃−(0)⟩ =
e−2(β−τ)h

1+ e−2βh (234)

χ̃−+ = ⟨Tτ S̃−(τ)S̃+(0)⟩ =
e−2hτ

1+ e−2βh (235)

χ̃zz = ⟨Tτ S̃z(τ)S̃z(0)⟩ =
1
4

(236)

χdFP
+− = ⟨Tτ S+(τ)S−(0)⟩dFP =

1
4
(1+ e−2hτ) for T = 0 (237)

χdFP
zz = ⟨Tτ Sz(τ)Sz(0)⟩dFP =

1
4

e−2hτ for T = 0 (238)

Finally, we calculate original correlation functions before applying U , we obtain

χ+− = ⟨Tτ S+(τ)S−(0)⟩ =
1
4
(1+ e−2hτ)

( a
vτ

)2g
for T = 0 (239)

χzz = ⟨Tτ Sz(τ)Sz(0)⟩ =
1
4

e−2hτ for T = 0. (240)

Here, we have used US±U† = e±
√

2gΦ+S± for λF = gv.

7.6.1 perturbations from the decoupled fixed points

Consider deviation δλF = λF −gv, then

UδVU† = δλF

√
2
g

∂xΦ+(0)Sz (241)

= δλF

√
1
2g

∂xΦ+(0)(S̃+ + S̃−) (242)

Let us calculate the corrections to χdFP
zz . The second-order perturbation gives

δ χdFP
zz (τ) =

[TrSz(τ)Sz(0)](2)

ZdFP
− Z(2)

ZdFP
χdFP

zz (τ). (243)

The time dependence different from χdFP
zz (τ) comes from the first term. At T = 0, we find that the power-law dependence appears

from

1
4

[TrS̃+(τ)S̃−(0)](2)

ZdFP
=

δλ 2
F

8gZdFP

∫ τ

0
dτ1

∫ τ1

0
dτ2[TrS̃−(τ)S̃+(τ1)S̃−(τ2)S̃+(0)] ≡ δλ 2

F
8gv2 I+−(τ) (244)

and

1
4

[TrS̃+(τ)S̃+(0)](2)

ZdFP
=

δλ 2
F

8gZdFP

∫ β→∞

τ
dτ1

∫ τ

0
dτ2[TrS̃−(τ1)S̃+(τ)S̃−(τ2)S̃+(0)] ≡ δλ 2

F
8gv2 I++(τ). (245)

Note that only terms S̃+(0) are relevant, since S̃z =↓ is the ground state at the decoupled fixed point.
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16gv2λ 2

B

1
τ2 (249)

As for δ χdFP
+− (τ), there are cutoff-dependent constant renormalization from 1

4 and leading τ-dependent corrections include
e−2hτ and thus not important here.
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Details of G’s

The correlation function for the Φ− part is trivial,leading to

⟨V (−)
− 1√

2g
(τ)V (−)

1√
2g

(0)⟩− =
{vβ

π
sin

[ π
vβ

(|τ|+a)]
}− 1

2g
. (116)

In the following, we concentrate on the Φ+ part.

5.2.1 Direct sampling

Let us consider LL part and a correlation function of vertex operators with λ =
√

g/2: Vλ (z) ≡V (+)
λ (z) = a−λ 2/2eiλΦ+(z):

GLL
λ (z− z′) = −⟨Tτ FL(τ)V−λ (z)F†

L (τ ′)Vλ (z′)⟩ (117)

with z = τ > z′ = τ ′, and λ =
√

g/2 > 0.
The expectation value at each MC step at the 2nth order is evaluated as

G (2n)
i> j = −⟨Tτ FL(τi)V−λ (τi)F†(τ j)Vλ (τ j)P̂2n⟩/δZ2n (118)

= −
⟨Vλ1(τ1) · · ·V−λ (τi) · · ·Vλ (τ j) · · ·Vλ2n(τ2n)⟩+⟨F†

∗ F∗̄(τ1) · · ·FL(τi) · · ·F†
L (τ j) · · ·F†

∗ F∗̄(τ2n)⟩
⟨Vλ1(τ1) · · ·Vλ2n(τ2n)⟩+⟨F†

∗ F∗̄(τ1) · · · · · ·F†
∗ F∗̄(τ2n)⟩

. (119)

= −
⟨Vλ1(τ1) · · ·V−λ (τi) · · ·Vλ (τ j) · · ·Vλ2n(τ2n)⟩+⟨FL(τi)F†

L (τ j)F†
∗ F∗̄(τ1) · · · · · ·F†

∗ F∗̄(τ2n)⟩(−1)Pi j

⟨Vλ1(τ1) · · ·Vλ2n(τ2n)⟩+⟨F†
∗ F∗̄(τ1) · · · · · ·F†

∗ F∗̄(τ2n)⟩
. (120)

Here, Pi j is the number of vertices between τi and τ j in the MC snapshot. Since the products of the Klein factors gives unity in
both denominator and numerator, we obtain

G (2n)
i> j = −(−1)Pi j

∏2n⊕i j
α>γ sλα λγ

0αγ

∏2n
α ′>γ ′ s

λα ′λγ′
0α ′γ ′

, (121)

= −(−1)Pi j s−λ 2

0i j

2n

∏
γ

s−λλγ
0iγ

2n

∏
α

sλλγ
0α j , (122)

= −(−1)Pi j

(
πT

vsin[πT (|τi j|+a/v)]

)λ 2

×
(

sin[πT (|τiα1− |+a/v)] · · ·sin[πT (|τiαn− |+a/v)]sin[πT (|τ jα1+ |+a/v)] · · ·sin[πT (|τ jαn+ |+a/v)]
sin[πT (|τiα1+ |+a/v)] · · ·sin[πT (|τiαn+ |+a/v)]sin[πT (|τ jα1− |+a/v)] · · ·sin[πT (|τ jαn− |+a/v)]

)2λ 2

, (123)

where τα± represents the vertex with ±|λα±|. Substituting λ =
√

g/2, we finally obtain for τi > τ j,✓ ✏
G (2n)

i> j = −(−1)Pi j

(
πT

vsin[πT (|τi j|+a/v)]

) g
2

×
(

sin[πT (|τiα1− |+a/v)] · · ·sin[πT (|τiαn− |+a/v)]sin[πT (|τ jα1+ |+a/v)] · · ·sin[πT (|τ jαn+ |+a/v)]
sin[πT (|τiα1+ |+a/v)] · · ·sin[πT (|τiαn+ |+a/v)]sin[πT (|τ jα1− |+a/v)] · · ·sin[πT (|τ jαn− |+a/v)]

)g

, (124)

✒ ✑
When τi < τ j, a similar analysis leads to✓ ✏

G (2n)
i< j = (−1)Pji

(
πT

vsin[πT (|τi j|+a/v)]

) g
2

×
(

sin[πT (|τiα1− |+a/v)] · · ·sin[πT (|τiαn− |+a/v)]sin[πT (|τ jα1+ |+a/v)] · · ·sin[πT (|τ jαn+ |+a/v)]
sin[πT (|τiα1+ |+a/v)] · · ·sin[πT (|τiαn+ |+a/v)]sin[πT (|τ jα1− |+a/v)] · · ·sin[πT (|τ jαn− |+a/v)]

)g

, (125)

✒ ✑
10
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g
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L (τ j)F†
∗ F∗̄(τ1) · · · · · ·F†
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When τi < τ j, a similar analysis leads to✓ ✏

G (2n)
i< j = (−1)Pji

(
πT

vsin[πT (|τi j|+a/v)]

) g
2

×
(

sin[πT (|τiα1− |+a/v)] · · ·sin[πT (|τiαn− |+a/v)]sin[πT (|τ jα1+ |+a/v)] · · ·sin[πT (|τ jαn+ |+a/v)]
sin[πT (|τiα1+ |+a/v)] · · ·sin[πT (|τiαn+ |+a/v)]sin[πT (|τ jα1− |+a/v)] · · ·sin[πT (|τ jαn− |+a/v)]

)g

, (125)

✒ ✑
10

Thus, in total, GLL
λ (τi − τ j) is sampled as

GLL
λ (τi − τ j) =

〈
Gi> j −Gi< j

∣∣∣
τi−τ j+β=τ j−τi

〉

MC

(126)

For RR part, we just exchange αi+ and αi− in (· · ·)g.

5.3 Important notes
The expressions (124) and (125), however, do not reproduce the result for g = 1, i.e., free-fermion model. This is due to a finite
a.

First, note that the equivalence of fermion- and boson-representation can be reflected in the following identity:

sin(x1 − x2)sin(x3 − x4) = sin(x1 − x3)sin(x2 − x4)− sin(x1 − x4)sin(x2 − x3). (127)

This leads to a fermionic representation of eq. (186):

δZ2n = |λB(g)|2n|detŜn|2g. (128)

Here, Ŝn is n×n matrix whose matrix elements are given by (Ŝn)lm = 1/s0lm with l(m) being the index for negative (positive) λ .
Similarly, for example, when a = 0, R for the adding vertices, if this identity is used, reduced to✓ ✏

R =
|λB|2β 2

(n2 +1)2

(
∏2n2⊕i j

αγ s0αγ |λα λγ >0

∏2n2⊕i j
αγ s0αγ |λα λγ <0

/
∏2n2

αγ s0αγ |λα λγ >0

∏2n2
αγ s0αγ |λα λγ <0

)2g

(129)

=
|λB|2β 2

(n2 +1)2

∣∣∣∣∣
detŜn2⊕i j

detŜn2

∣∣∣∣∣

2g

. (130)

✒ ✑
Here, Ŝn2(Ŝn2⊕i j) is n2×n2(n2 +1×n2 +1) matrix whose matrix elements are given by (Ŝ)lm = 1/s0lm with l(m) being the index
for negative (positive) λ . For g = 1, this is nothing but R for the free-fermion model in terms of fermionic CTQMC. However,
for finite a, eq. (127) is modified to

sin(x1−x2 +a)sin(x3−x4 +a)= sin(x1−x3 +a)sin(x2−x4 +a)−sin(x1−x4 +a)sin(x2−x3 +a)+sinasin(x1−x2 +x3−x4 +a).
(131)

One might wonder that the correction is in O(sina ∼ a), thus, it is negligible when a → 0 in numerical calculations. In actual
calculations, we have checked that even when a → 0, the two results differ. We observe that when a decreases, the average
perturbation order increases. This leads that a typical (or say, there are some sets of xi’s which gives small x1 − x2 ∼ a or
x3 − x4 ∼ a.) xi − x j decreases, and thus, the correction term cannot be neglected.

Our proposal is that we (should) always use expressions like eq. (130), i.e., those in terms of the detŜ even for finite a.
For evaluating the Green’s function GLL

λ , the following expression is derived.✓ ✏
G (2n)

i> j = −(−1)Pi j s
g
2
0i j

(
∏2n⊕i j

α>γ swα wγ
0αγ

∏2n
α>γ swα wγ

0αγ

)g

with wα ,wγ = sgn(λα), sgn(λγ) (132)

= −(−1)Pi j s
g
2
0i j

∣∣∣∣∣
detŜn⊕i j

detŜn

∣∣∣∣∣

g

. (133)

✒ ✑
For i < j, a similar expression is derived. As for RR part, the expressions are completely the same but in this time, the τi vertex
has +λ exponent while the τ j vertex does −λ exponent. This should be separately calculated and check after the calculations
GLL = GRR. For g = 1, the fermion Green’s function is given by s−g/2

0i j G (2n)
i> j = (−1)Pi j+1|detŜn⊕i j/detŜn| as it should be.

Note that the ratio of two determinants can be calculated by so-called fast-update algorithm. In the numerical calculations,
after long MC steps, sometimes Ŝ−1

n used in the fast-update processes becomes full of errors, and thus, one needs to recalculate
it directly after some MC steps. This is serious if the average perturbation order is high.
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The correlation function for the Φ− part is trivial,leading to

⟨V (−)
− 1√

2g
(τ)V (−)

1√
2g

(0)⟩− =
{vβ

π
sin

[ π
vβ

(|τ|+a)]
}− 1

2g
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In the following, we concentrate on the Φ+ part.

5.2.1 Direct sampling

Let us consider LL part and a correlation function of vertex operators with λ =
√

g/2: Vλ (z) ≡V (+)
λ (z) = a−λ 2/2eiλΦ+(z):

GLL
λ (z− z′) = −⟨Tτ FL(τ)V−λ (z)F†

L (τ ′)Vλ (z′)⟩ (117)

with z = τ > z′ = τ ′, and λ =
√

g/2 > 0.
The expectation value at each MC step at the 2nth order is evaluated as

G (2n)
i> j = −⟨Tτ FL(τi)V−λ (τi)F†(τ j)Vλ (τ j)P̂2n⟩/δZ2n (118)

= −
⟨Vλ1(τ1) · · ·V−λ (τi) · · ·Vλ (τ j) · · ·Vλ2n(τ2n)⟩+⟨F†

∗ F∗̄(τ1) · · ·FL(τi) · · ·F†
L (τ j) · · ·F†

∗ F∗̄(τ2n)⟩
⟨Vλ1(τ1) · · ·Vλ2n(τ2n)⟩+⟨F†

∗ F∗̄(τ1) · · · · · ·F†
∗ F∗̄(τ2n)⟩

. (119)

= −
⟨Vλ1(τ1) · · ·V−λ (τi) · · ·Vλ (τ j) · · ·Vλ2n(τ2n)⟩+⟨FL(τi)F†

L (τ j)F†
∗ F∗̄(τ1) · · · · · ·F†

∗ F∗̄(τ2n)⟩(−1)Pi j

⟨Vλ1(τ1) · · ·Vλ2n(τ2n)⟩+⟨F†
∗ F∗̄(τ1) · · · · · ·F†

∗ F∗̄(τ2n)⟩
. (120)

Here, Pi j is the number of vertices between τi and τ j in the MC snapshot. Since the products of the Klein factors gives unity in
both denominator and numerator, we obtain

G (2n)
i> j = −(−1)Pi j

∏2n⊕i j
α>γ sλα λγ

0αγ

∏2n
α ′>γ ′ s

λα ′λγ′
0α ′γ ′

, (121)

= −(−1)Pi j s−λ 2

0i j

2n

∏
γ

s−λλγ
0iγ

2n

∏
α

sλλα
0α j , (122)

= −(−1)Pi j

(
πT

vsin[πT (|τi j|+a/v)]

)λ 2

×
(

sin[πT (|τiα1− |+a/v)] · · ·sin[πT (|τiαn− |+a/v)]sin[πT (|τ jα1+ |+a/v)] · · ·sin[πT (|τ jαn+ |+a/v)]
sin[πT (|τiα1+ |+a/v)] · · ·sin[πT (|τiαn+ |+a/v)]sin[πT (|τ jα1− |+a/v)] · · ·sin[πT (|τ jαn− |+a/v)]

)2λ 2

, (123)

where τα± represents the vertex with ±|λα±|. Substituting λ =
√

g/2, we finally obtain for τi > τ j,✓ ✏
G (2n)

i> j = −(−1)Pi j

(
πT

vsin[πT (|τi j|+a/v)]

) g
2

×
(

sin[πT (|τiα1− |+a/v)] · · ·sin[πT (|τiαn− |+a/v)]sin[πT (|τ jα1+ |+a/v)] · · ·sin[πT (|τ jαn+ |+a/v)]
sin[πT (|τiα1+ |+a/v)] · · ·sin[πT (|τiαn+ |+a/v)]sin[πT (|τ jα1− |+a/v)] · · ·sin[πT (|τ jαn− |+a/v)]

)g

, (124)

✒ ✑
When τi < τ j, a similar analysis leads to✓ ✏

G (2n)
i< j = (−1)Pji

(
πT

vsin[πT (|τi j|+a/v)]

) g
2

×
(

sin[πT (|τiα1− |+a/v)] · · ·sin[πT (|τiαn− |+a/v)]sin[πT (|τ jα1+ |+a/v)] · · ·sin[πT (|τ jαn+ |+a/v)]
sin[πT (|τiα1+ |+a/v)] · · ·sin[πT (|τiαn+ |+a/v)]sin[πT (|τ jα1− |+a/v)] · · ·sin[πT (|τ jαn− |+a/v)]

)g

, (125)

✒ ✑
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Details of G’s

The correlation function for the Φ− part is trivial,leading to

⟨V (−)
− 1√

2g
(τ)V (−)

1√
2g

(0)⟩− =
{vβ

π
sin

[ π
vβ

(|τ|+a)]
}− 1

2g
. (116)

In the following, we concentrate on the Φ+ part.

5.2.1 Direct sampling

Let us consider LL part and a correlation function of vertex operators with λ =
√

g/2: Vλ (z) ≡V (+)
λ (z) = a−λ 2/2eiλΦ+(z):

GLL
λ (z− z′) = −⟨Tτ FL(τ)V−λ (z)F†

L (τ ′)Vλ (z′)⟩ (117)

with z = τ > z′ = τ ′, and λ =
√

g/2 > 0.
The expectation value at each MC step at the 2nth order is evaluated as

G (2n)
i> j = −⟨Tτ FL(τi)V−λ (τi)F†(τ j)Vλ (τ j)P̂2n⟩/δZ2n (118)

= −
⟨Vλ1(τ1) · · ·V−λ (τi) · · ·Vλ (τ j) · · ·Vλ2n(τ2n)⟩+⟨F†

∗ F∗̄(τ1) · · ·FL(τi) · · ·F†
L (τ j) · · ·F†

∗ F∗̄(τ2n)⟩
⟨Vλ1(τ1) · · ·Vλ2n(τ2n)⟩+⟨F†

∗ F∗̄(τ1) · · · · · ·F†
∗ F∗̄(τ2n)⟩

. (119)

= −
⟨Vλ1(τ1) · · ·V−λ (τi) · · ·Vλ (τ j) · · ·Vλ2n(τ2n)⟩+⟨FL(τi)F†

L (τ j)F†
∗ F∗̄(τ1) · · · · · ·F†

∗ F∗̄(τ2n)⟩(−1)Pi j

⟨Vλ1(τ1) · · ·Vλ2n(τ2n)⟩+⟨F†
∗ F∗̄(τ1) · · · · · ·F†

∗ F∗̄(τ2n)⟩
. (120)

Here, Pi j is the number of vertices between τi and τ j in the MC snapshot. Since the products of the Klein factors gives unity in
both denominator and numerator, we obtain

G (2n)
i> j = −(−1)Pi j

∏2n⊕i j
α>γ sλα λγ

0αγ

∏2n
α ′>γ ′ s

λα ′λγ′
0α ′γ ′

, (121)

= −(−1)Pi j s−λ 2

0i j

2n

∏
γ

s−λλγ
0iγ

2n

∏
α

sλλγ
0α j , (122)

= −(−1)Pi j

(
πT

vsin[πT (|τi j|+a/v)]

)λ 2

×
(

sin[πT (|τiα1− |+a/v)] · · ·sin[πT (|τiαn− |+a/v)]sin[πT (|τ jα1+ |+a/v)] · · ·sin[πT (|τ jαn+ |+a/v)]
sin[πT (|τiα1+ |+a/v)] · · ·sin[πT (|τiαn+ |+a/v)]sin[πT (|τ jα1− |+a/v)] · · ·sin[πT (|τ jαn− |+a/v)]

)2λ 2

, (123)

where τα± represents the vertex with ±|λα±|. Substituting λ =
√

g/2, we finally obtain for τi > τ j,✓ ✏
G (2n)

i> j = −(−1)Pi j

(
πT

vsin[πT (|τi j|+a/v)]

) g
2

×
(

sin[πT (|τiα1− |+a/v)] · · ·sin[πT (|τiαn− |+a/v)]sin[πT (|τ jα1+ |+a/v)] · · ·sin[πT (|τ jαn+ |+a/v)]
sin[πT (|τiα1+ |+a/v)] · · ·sin[πT (|τiαn+ |+a/v)]sin[πT (|τ jα1− |+a/v)] · · ·sin[πT (|τ jαn− |+a/v)]

)g

, (124)

✒ ✑
When τi < τ j, a similar analysis leads to✓ ✏

G (2n)
i< j = (−1)Pji

(
πT

vsin[πT (|τi j|+a/v)]

) g
2

×
(

sin[πT (|τiα1− |+a/v)] · · ·sin[πT (|τiαn− |+a/v)]sin[πT (|τ jα1+ |+a/v)] · · ·sin[πT (|τ jαn+ |+a/v)]
sin[πT (|τiα1+ |+a/v)] · · ·sin[πT (|τiαn+ |+a/v)]sin[πT (|τ jα1− |+a/v)] · · ·sin[πT (|τ jαn− |+a/v)]

)g

, (125)

✒ ✑
10

Thus, in total, GLL
λ (τi − τ j) is sampled as

GLL
λ (τi − τ j) =

〈
Gi> j −Gi< j

∣∣∣
τi−τ j+β=τ j−τi

〉

MC

(126)

For RR part, we just exchange αi+ and αi− in (· · ·)g.

5.3 Important notes
The expressions (124) and (125), however, do not reproduce the result for g = 1, i.e., free-fermion model. This is due to a finite
a.

First, note that the equivalence of fermion- and boson-representation can be reflected in the following identity:

sin(x1 − x2)sin(x3 − x4) = sin(x1 − x3)sin(x2 − x4)− sin(x1 − x4)sin(x2 − x3). (127)

This leads to a fermionic representation of eq. (186):

δZ2n = |λB(g)|2n|detŜn|2g. (128)

Here, Ŝn is n×n matrix whose matrix elements are given by (Ŝn)lm = 1/s0lm with l(m) being the index for negative (positive) λ .
Similarly, for example, when a = 0, R for the adding vertices, if this identity is used, reduced to✓ ✏

R =
|λB|2β 2

(n2 +1)2

(
∏2n2⊕i j

αγ s0αγ |λα λγ >0

∏2n2⊕i j
αγ s0αγ |λα λγ <0

/
∏2n2

αγ s0αγ |λα λγ >0

∏2n2
αγ s0αγ |λα λγ <0

)2g

(129)

=
|λB|2β 2

(n2 +1)2

∣∣∣∣∣
detŜn2⊕i j

detŜn2

∣∣∣∣∣

2g

. (130)

✒ ✑
Here, Ŝn2(Ŝn2⊕i j) is n2×n2(n2 +1×n2 +1) matrix whose matrix elements are given by (Ŝ)lm = 1/s0lm with l(m) being the index
for negative (positive) λ . For g = 1, this is nothing but R for the free-fermion model in terms of fermionic CTQMC. However,
for finite a, eq. (127) is modified to

sin(x1−x2 +a)sin(x3−x4 +a)= sin(x1−x3 +a)sin(x2−x4 +a)−sin(x1−x4 +a)sin(x2−x3 +a)+sinasin(x1−x2 +x3−x4 +a).
(131)

One might wonder that the correction is in O(sina ∼ a), thus, it is negligible when a → 0 in numerical calculations. In actual
calculations, we have checked that even when a → 0, the two results differ. We observe that when a decreases, the average
perturbation order increases. This leads that a typical (or say, there are some sets of xi’s which gives small x1 − x2 ∼ a or
x3 − x4 ∼ a.) xi − x j decreases, and thus, the correction term cannot be neglected.

Our proposal is that we (should) always use expressions like eq. (130), i.e., those in terms of the detŜ even for finite a.
For evaluating the Green’s function GLL

λ , the following expression is derived.✓ ✏
G (2n)

i> j = −(−1)Pi j s
g
2
0i j

(
∏2n⊕i j

α>γ swα wγ
0αγ

∏2n
α>γ swα wγ

0αγ

)g

with wα ,wγ = sgn(λα), sgn(λγ) (132)

= −(−1)Pi j s
g
2
0i j

∣∣∣∣∣
detŜn⊕i j

detŜn

∣∣∣∣∣

g

. (133)

✒ ✑
For i < j, a similar expression is derived. As for RR part, the expressions are completely the same but in this time, the τi vertex
has +λ exponent while the τ j vertex does −λ exponent. This should be separately calculated and check after the calculations
GLL = GRR. For g = 1, the fermion Green’s function is given by s−g/2

0i j G (2n)
i> j = (−1)Pi j+1|detŜn⊕i j/detŜn| as it should be.

Note that the ratio of two determinants can be calculated by so-called fast-update algorithm. In the numerical calculations,
after long MC steps, sometimes Ŝ−1

n used in the fast-update processes becomes full of errors, and thus, one needs to recalculate
it directly after some MC steps. This is serious if the average perturbation order is high.
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The correlation function for the Φ− part is trivial,leading to

⟨V (−)
− 1√

2g
(τ)V (−)

1√
2g

(0)⟩− =
{vβ

π
sin

[ π
vβ

(|τ|+a)]
}− 1

2g
. (116)

In the following, we concentrate on the Φ+ part.

5.2.1 Direct sampling

Let us consider LL part and a correlation function of vertex operators with λ =
√

g/2: Vλ (z) ≡V (+)
λ (z) = a−λ 2/2eiλΦ+(z):

GLL
λ (z− z′) = −⟨Tτ FL(τ)V−λ (z)F†

L (τ ′)Vλ (z′)⟩ (117)

with z = τ > z′ = τ ′, and λ =
√

g/2 > 0.
The expectation value at each MC step at the 2nth order is evaluated as

G (2n)
i> j = −⟨Tτ FL(τi)V−λ (τi)F†(τ j)Vλ (τ j)P̂2n⟩/δZ2n (118)

= −
⟨Vλ1(τ1) · · ·V−λ (τi) · · ·Vλ (τ j) · · ·Vλ2n(τ2n)⟩+⟨F†

∗ F∗̄(τ1) · · ·FL(τi) · · ·F†
L (τ j) · · ·F†

∗ F∗̄(τ2n)⟩
⟨Vλ1(τ1) · · ·Vλ2n(τ2n)⟩+⟨F†

∗ F∗̄(τ1) · · · · · ·F†
∗ F∗̄(τ2n)⟩

. (119)

= −
⟨Vλ1(τ1) · · ·V−λ (τi) · · ·Vλ (τ j) · · ·Vλ2n(τ2n)⟩+⟨FL(τi)F†

L (τ j)F†
∗ F∗̄(τ1) · · · · · ·F†

∗ F∗̄(τ2n)⟩(−1)Pi j

⟨Vλ1(τ1) · · ·Vλ2n(τ2n)⟩+⟨F†
∗ F∗̄(τ1) · · · · · ·F†

∗ F∗̄(τ2n)⟩
. (120)

Here, Pi j is the number of vertices between τi and τ j in the MC snapshot. Since the products of the Klein factors gives unity in
both denominator and numerator, we obtain

G (2n)
i> j = −(−1)Pi j

∏2n⊕i j
α>γ sλα λγ

0αγ

∏2n
α ′>γ ′ s

λα ′λγ′
0α ′γ ′

, (121)

= −(−1)Pi j s−λ 2

0i j

2n

∏
γ

s−λλγ
0iγ

2n

∏
α

sλλα
0α j , (122)

= −(−1)Pi j

(
πT

vsin[πT (|τi j|+a/v)]

)λ 2

×
(

sin[πT (|τiα1− |+a/v)] · · ·sin[πT (|τiαn− |+a/v)]sin[πT (|τ jα1+ |+a/v)] · · ·sin[πT (|τ jαn+ |+a/v)]
sin[πT (|τiα1+ |+a/v)] · · ·sin[πT (|τiαn+ |+a/v)]sin[πT (|τ jα1− |+a/v)] · · ·sin[πT (|τ jαn− |+a/v)]

)2λ 2

, (123)

where τα± represents the vertex with ±|λα±|. Substituting λ =
√

g/2, we finally obtain for τi > τ j,✓ ✏
G (2n)

i> j = −(−1)Pi j

(
πT

vsin[πT (|τi j|+a/v)]

) g
2

×
(

sin[πT (|τiα1− |+a/v)] · · ·sin[πT (|τiαn− |+a/v)]sin[πT (|τ jα1+ |+a/v)] · · ·sin[πT (|τ jαn+ |+a/v)]
sin[πT (|τiα1+ |+a/v)] · · ·sin[πT (|τiαn+ |+a/v)]sin[πT (|τ jα1− |+a/v)] · · ·sin[πT (|τ jαn− |+a/v)]

)g

, (124)

✒ ✑
When τi < τ j, a similar analysis leads to✓ ✏

G (2n)
i< j = (−1)Pji

(
πT

vsin[πT (|τi j|+a/v)]

) g
2

×
(

sin[πT (|τiα1− |+a/v)] · · ·sin[πT (|τiαn− |+a/v)]sin[πT (|τ jα1+ |+a/v)] · · ·sin[πT (|τ jαn+ |+a/v)]
sin[πT (|τiα1+ |+a/v)] · · ·sin[πT (|τiαn+ |+a/v)]sin[πT (|τ jα1− |+a/v)] · · ·sin[πT (|τ jαn− |+a/v)]

)g

, (125)

✒ ✑
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Basic algorithm of CTQMC
To be specific, let us consider Anderson model [Werner (2006)]

H1 =
�

�

H1�, H1� = vc†�f� + h.c.

��f�(�1)f
†
�(�2)f�(� �

1) · · · �f

Only even-order terms survive (n=2k), and these are something like…  

(�)2k�H1(�1) · · · � = ±v2k�c†�(�1)c�(�2)c
†
�(�3) · · · c�(�n�)��,c�c†�(�

�
1)c�(�

�
2)c

†
�(�

�
3) · · · c�(� �

n�
)��,c

n� + n� = 2kwith

= ±v2kdetĜc�detĜc��f�(�1)f
†
�(�2)f�(�

�
1) · · · �f � W

c� =
1�
N

�

k

ck�

H0 = Hc + Hf Hf = �f

�

�

nf� + Unf�n�

Hc =
�

k,�

�kc
†
k�ck�

“Non-interacting” part:

“perturbation” part:

Wick’s theorem .
.. “weight” for the config.

nf�



Some details

�
Ĝc�

�
ij

= �c†�(�2i�1)c�(�2j)� = G0
c�(�2j � �2i�1)

Green’s function matrix:

: free electron Green’s function

�f�(�1)f
†
�(�2)f�(� �

1) · · · �f = exp{��f (l� + l�)� Uldoublon}/Zf

� = 0� = �

�
�
��

imaginary-time config.

f †
�f�

Z f = 1+2e��� f +e�� (2� f +U)

l� + l�

Matrix products for local degrees of freedom:

“Segment” representation:



max(R, 1) > r, 0 � r � 1

Update operations

(i) Insert a vertex pair 
(ii) Remove a vertex pair 
(iii) Shift a vertex

calculate ratio:  
Wnew

Wold

= empirically positive for Anderson model

accept if  min 
!
deny otherwise     (Metropolis)

R = F

F = 1 for (iii) 

F : config. dep.  
    for (i) and (ii) 

R

f †
�f�

f †
� f�

0β

0β
τ

τ(ii)(i) (iii)

old config.

new config.
(ii)

(i)


