Pairing Symmetry of Superfluid in Three-Component Repulsive Fermionic Atoms in Optical Lattices

Sei-ichiro Suga University of Hyogo

Collaborator: Kensuke Inaba NTT Basic Research Labs

Introduction

Cold atoms in optical lattices: high controallability

🔶 Quantum simulator

Repulsively interacting three-component fermionic atoms in optical lattices

Three-component fermionic gases realized in ⁶Li atoms. Ottenstein et al, PRL **101**, 203202 (2008); Huckans et al, PRL **102**, 165302 (2009)

Three kinds of internal degrees of freedom: Three kinds of repulsions:

Model

$$H = -t \sum_{\langle i,j \rangle} \sum_{\alpha=1,2,3} c_{i\alpha}^{\dagger} c_{j\alpha} + \frac{1}{2} \sum_{i} \sum_{\alpha \neq \beta} U_{\alpha\beta} n_{i\alpha} n_{i\beta} - \sum_{i,\alpha} \mu_{\alpha} n_{i\alpha}, \quad U_{\alpha\beta} > 0$$

According to the experiments for ⁶Li atoms

balanced population: $n_1 = n_2 = n_3 = n$,

Half filling: n=1/2, total atom number N=3/2

U"',U',U > 0

Properties at half Filling: N=3/2

Inaba, Miyatake, and Suga, PRA **80**, 051602(R) (2010) Miyatake, Inaba, and Suga, PRA **81**, 051602(R) (2010)

Two Mott states in 'color paramagnetic' sector

<u>For *U*'', *U*' ≫ *U*</u>

paired Mott insulator (PMI)

• the ground state

color-density wave (CDW)

<u>For *U''*, *U*'≪*U*</u>

color-selective Mott state (CSM)

color selective AF (CSAF)

Phase diagram for PMI, CSM, and FL at T=0

Superfluid is expected to appear there.

Superfluid state

Inaba and Suga, PRL 108, 255301 (2012)

•Half filling in 'color paramagnetic' sector

Self-energy functional approach

 $U''=U'\gg U$

FL: Fermi liquid SF: superfluid PMI: paired Mott insulator

SF at HF has been obtained with DMFT + CTQMC.

Okanami, Takemori, Koga, arXiv: 1401.5610

Prof. Koga's talk at 10:30 in June 23 (Mon.)

•Close to HF: DMFT + modified iterated-perturbation theory

Inaba and Suga, PRL 108, 255301 (2012)

PS: phase separation into paired atoms and unpaired atoms

Superfluid appears for

- *U/U*'<0.11: large difference in repulsions,
- •0.42<*n*≤0.5: close to HF (HF: *n*=0.5).

Effective attractive interaction is caused by density fluctuations of unpaired color-3 atoms.

Aim

Pairing symmetry of superfluid state in repulsively interacting three-component fermionic atoms in optical lattices.

Model

$$H = -t \sum_{\langle i,j \rangle} \sum_{\alpha=1,2,3} c_{i\alpha}^{+} c_{j\alpha} + \frac{1}{2} \sum_{i} \sum_{\alpha \neq \beta} U_{\alpha\beta} n_{i\alpha} n_{i\beta} - \sum_{i,\alpha} \mu_{\alpha} n_{i\alpha}, \quad U_{\alpha\beta} > 0$$

balanced population: $n_1 = n_2 = n_3 = n$, HF: n = 1/2 $U' \gg U > 0$

Cooper pairs: color-1 and 2 atoms

Eliashberg equation

Effective interaction $\widetilde{U}_{12}(\boldsymbol{q})$ between color-1 & 2 atoms

$$\widetilde{U}_{12}(\boldsymbol{q}) = \bigcup_{n=1}^{3} U^{2} \chi_{s}(\boldsymbol{q}) - \frac{1}{2} U^{2} \chi_{c}(\boldsymbol{q})$$

$$\begin{cases} \chi_{s}(\boldsymbol{q}) = \frac{\chi_{11}^{(0)}(\boldsymbol{q})}{1 - U\chi_{11}^{(0)}(\boldsymbol{q})} \\ \chi_{c}(\boldsymbol{q}) = \frac{R^{2} \chi_{11}^{(0)}(\boldsymbol{q}) + 2\chi_{33}^{(0)}(\boldsymbol{q}) - 2U\chi_{11}^{(0)}(\boldsymbol{q})\chi_{33}^{(0)}(\boldsymbol{q})}{1 + U\chi_{11}^{(0)}(\boldsymbol{q}) - 2U'^{2} \chi_{11}^{(0)}(\boldsymbol{q})\chi_{33}^{(0)}(\boldsymbol{q})} \end{cases}$$

 $\chi_{\rm s}(\boldsymbol{q})$ and $\chi_{\rm c}(\boldsymbol{q})$ have a possibility of divergence. \blacksquare competition

$$\lambda \Delta(\boldsymbol{k}) = -\frac{1}{N} \sum_{\boldsymbol{k}'} \widetilde{U}_{12}(\boldsymbol{k} - \boldsymbol{k}') \frac{\tanh(\beta \xi_{\boldsymbol{k}'}/2)}{2\xi_{\boldsymbol{k}'}} \Delta(\boldsymbol{k}')$$

$\Delta(\mathbf{k})$: SF order parameter

 λ : eigenvalue SF transition occurs at λ =1.

- Numerical diagonalization
- Iterative approximation

Results

 $\Delta(\mathbf{k})$ in square optical lattices 1

U/U'=0.1, *U'/t=0.8*, *T/t=0.01* at <u>n=0.49</u>

Extended s-wave SF, although SF is adjacent to PMI at HF.

 $\widetilde{U}_{12}(\boldsymbol{q})$ in square optical lattices

$$\widetilde{U}_{12}(\boldsymbol{q}) = U + \frac{3}{2} U^2 \chi_{\mathrm{s}}(\boldsymbol{q}) - \frac{1}{2} U^2 \chi_{\mathrm{c}}(\boldsymbol{q})$$

q=k-k'

Peak in χ_c at $q = (\pi, \pi)$: strong CDW fluctuations close to HF

Large attractive peak in $\widetilde{U}_{12}(\boldsymbol{q})$

$U' \gg U$: CDW ground state at HF

$\Delta(\mathbf{r})$: Fourier component of $\Delta(\mathbf{k})$

Local component Δ_0 is dominant, although the strong attractive peak caused by CDW fluctuations appears in $\widetilde{U}_{12}(q)$.

Local correlation effects play an important role in this extended s-wave SF.

$\Delta(\mathbf{k})$ and $\widetilde{U}_{12}(\mathbf{q})$ in triangular optical lattices

No large attractive peak in $\widetilde{U}_{12}(\boldsymbol{q})$

CDW fluctuations are suppressed due to geometrical frustration.

$\Delta(\mathbf{r})$: Fourier component of $\Delta(\mathbf{k})$

- •Local component $\Delta_0 \approx 3.12 \times 10^{-2}, r = (0,0)$
- Nonlocal components $\Delta_1 \approx -5.06 \times 10^{-4},$ $r = (\pm 2, \pm 1), (\pm 1, \mp 1), (\pm 1, \pm 2)$ $\Delta_2 \approx -1.85 \times 10^{-4},$ $r = (\pm 1, \pm 1), (\pm 1, 0), (0, \pm 1)$...

Triangular OL: $\Delta_0 / \Delta_1 \approx 61.7$ Square OL: $\Delta_0 / \Delta_1 \approx 7.78$ Local component Δ_0 is more dominant in triangular OL.

Local correlation effects in triangular OL are more dominant. **DMFT picture** can be adequate in triangular OL.

Ext. s-wave pairing symmetry for U/U' = 0.1

In three-component ⁶Li fermionic gases, U/U' can be (somewhat) controllable.

Next issue

What happens for SF pairing symmetry, when we change U/U' ?

 $\Delta(\mathbf{k})$ in square optical lattices 2

U/U'=0.2, *U'/t=*0.8, *T/t=*0.01 at <u>n=</u>0.45

Nodal *s*-wave pairing

CDW fluctuations are reduced.

<u>U'/t=1.2, T/t=0.01 at n=0.45</u>

 $(\pi, 0)$

(π,π)

q

(0,0)

0.5

(0,0)

Dominant color AF fluctuations

Largest λ as a function of U/U' and T/t

Extended *s*-wave pairing for **U/U'<0.1** $d_{x^2-y^2}$ -wave pairing for **U/U'>1.0**

can be observed in experiments.

Relation to experiments

Three-component fermionic atoms in optical lattices ⁶Li atoms in optical lattices, ¹⁷³Yb-¹⁷¹Yb mixture in optical lattices

Change in pairing symmetry can be probed with momentum-resolved one-particle excitation spectrums.

Stewart, Gaeber, and Jin, Nature 545, 744 (2008)

	k = (0,0)	$\boldsymbol{k}=(\pi,0)$	$\boldsymbol{k} = \left(\frac{\pi}{2}, \frac{\pi}{2}\right)$
extended s wave	gap	gap	gap
nodal s wave	gap	gap	node
d_{xy} wave	node	node	gap
$d_{x^2-y^2}$ wave	node	gap	node

Summary

Pairing symmetry of superfluid state in repulsively interacting three-component fermionic atoms in optical lattices.

Extended s-wave SF appears for U/U'<0.2 close to HF in square and triangular optical lattices.

Local correlation effects play an important role.

Pairing symmetry changes with increasing U/U':

ext. s-wave \Rightarrow nodal s-wave \Rightarrow d_{xy} -wave \Rightarrow $d_{x^2-y^2}$ -wave This phenomena can be probed in experiments.

Conclusion

Three-component repulsive fermionic atoms in optical lattices can be a quantum simulator for controlling SF pairing symmetry.