
Mott metal-insulator transition on 
compressible lattices

Markus Garst  
Universität zu Köln

Mario Zacharias (Köln) 
Lorenz Bartosch (Frankfurt)

in collaboration with :

pressure ppc

Tc

Mott
insulator

T

metal

∆p∗

∆T ∗



ISSP, June 2014M. Garst

Outline

• Introduction: Mott transition 

• Universality of the Mott endpoint 

• Experiments 

• Theory: Mott endpoint on compressible lattices 

• Summary



ISSP, June 2014M. Garst

Introduction: Mott transition
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Mott metal-insulator transition

simplification: on-site repulsion  
(screened Coulomb interaction)

Hubbard model: H = �t
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Mott metal-insulator transition

simplification: on-site repulsion  
(screened Coulomb interaction)

Hubbard model: H = �t
X

�⇤ij⌅

c†i�cj� + U
X

i

c†i�ci�c
†
i⇥ci⇥

hopping on a lattice

at half-filling:

strong competition 
between kinetic energy 
and on-site repulsion

metal-insulator transition at 
a critical ratio t/U

metallic for t >> U 
(without nesting)

insulating for t << U
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Phase diagram
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t/U(t/U)c

line of 1st order 
Mott transition 
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Phase diagram

metal

Mott  
insulator

temperature

t/U

Mott endpoint

AF insulator

to release spin entropy: magnetic ordering at low T

0
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Tuning by pressure

applying pressure reduces lattice constant

increases overlap of electron wavefunctions, 
enhancement of hopping amplitude t
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Phase diagram with pressure tuning

metal

Mott  
insulator

temperature

pressure

Mott endpoint

AF insulator
0



ISSP, June 2014M. Garst

Phase diagram of V2O3

McWhan et al PRB (1973)
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Universality of the Mott end point
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metal

Mott  
insulator

T
Mott endpoint

0

Mott critical endpoint

p

What are the critical properties of the Mott endpoint?
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Liquid-gas end point

liquid

gas

solid

temperature

pressure

end point

line of first-order liquid-gas transitions terminates at second-order end point

line defines an emergent mirror symmetry Ising symmetry
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gas

solid

temperature

pressure

end point

Liquid-gas end point
line of first-order liquid-gas transitions terminates at second-order end point

line defines an emergent mirror symmetry Ising symmetry
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Ising criticality
Ising magnet in a field:

H

0

end point

TTc

L =
T � Tc

2Tc
M2 + (⇥M)2 +

u

4!
M4 �HM
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Ising criticality
Ising magnet in a field:

H

0

2nd order end point

TTc

1st order  
transition

hMi > 0

hMi < 0

L =
T � Tc

2Tc
M2 + (⇥M)2 +

u

4!
M4 �HM
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Ising criticality
Ising magnet in a field:

H

0
T

Ginzburg criterion

Landau  
mean-field criticality

critical behavior: non-trivial Ising exponents close to endpoint

Ising  
criticality

L =
T � Tc

2Tc
M2 + (⇥M)2 +

u

4!
M4 �HM
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Universality of the Mott end point: 
Experiments
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Mott critical endpoint

liquid

gas

solid

temperature

pressure

end point

metal

Mott  
insulator

T
Mott endpoint

0
p

Is the Mott endpoint analogous to the liquid-gas endpoint?
Is it in the Ising universality class?
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Mott end point of Cr-doped V2O3
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Mott end point of Cr-doped V2O3
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Mott end point of Cr-doped V2O3

non-trivial assumption of 
the scaling analysis: 

conductivity is the Ising 
order parameter!

Landau mean-field exponents

indications for Ising exponents  
close to the endpoint?
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Mott end point of κ-(BEDT-TTF)2X

conducting 2D layers of BEDT-TTF
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Mott end point of κ-(BEDT-TTF)2X
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Mott end point of κ-(BEDT-TTF)2X

exponents neither Landau nor Ising?

unconventional universality class?
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Mott end point of κ-(BEDT-TTF)2X

exponents neither Landau nor Ising?

unconventional universality class?

S. Papanikolaou et al. PRL (2008): NO!
conductivity NOT necessarily the Ising order parameter!

consistency with Ising criticality!

instead: conductivity ~ energy density (cf. Fisher-Langer scaling) 
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Mott end point of κ-(BEDT-TTF)2X

M. de Souza, A. Brühl, Ch. Strack, B. Wolf, D. Schweitzer, and M. Lang, PRL (2007)
L. Bartosch, M. de Souza, and M. Lang, PRL (2010)

thermal expansion as a function of T: 
consistent with 2d Ising critical behavior

Thermodynamics easier to interpret than transport:
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Universality of the Mott end point: 
Theory
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Mott transition on incompressible lattices
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Mott transition on incompressible lattices

metal

Mott  
insulator

T
Mott endpoint

0
t/U

eg. optical lattice

Mott endpoint ≙ liquid-gas endpointYES!

at least for the Hubbard model. Subtler: long-range Coulomb

Castellani et al. PRL (1979); Kotliar et al. PRL (2000); Papanikolaoou et al. PRL (2008)
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Mott transition on compressible lattices
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Mott transition on compressible lattices

Mott endpoint ≠ liquid-gas endpointNO!

metal

Mott  
insulator

T
Mott endpoint

0
pressure

i.e. for basically all solid state realizations!



ISSP, June 2014M. Garst

Mott transition on compressible lattices
T

Mott endpoint

0
pressure

at the first order transition:

1st order  
transition

�V

jump of conjugate quantity, i.e. volume �V
solid-to-solid isostructural transition

Mott endpoint ≙  solid-solid endpoint
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Mott transition on compressible lattices

Mott endpoint ≙  solid-solid endpoint ≠ liquid-gas endpoint

Difference between a solid and a liquid:
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Mott transition on compressible lattices

Mott endpoint ≙  solid-solid endpoint ≠ liquid-gas endpoint

Difference between a solid and a liquid:

finite shear modulus

G =
Fl

A�x

wikipedia
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liquid

gas

solid

temperature

pressure

end point

Liquid-gas critical point

order parameter: change in density �⇢

compressibility � = � 1

V

⇤V

⇤p
=

1

⇥

⇤⇥

⇤p

diverges at the endpoint

vanishing sound velocity at the liquid-gas endpoint

speed of sound  
vanishes

c2
sound

=
⇤p

⇤⇥
=

1

⇥�
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Solid-solid critical point
T

Mott endpoint

0 p

1st order  
transition

�V

order parameter: change in volume

compressibility 

diverges at the endpoint

�V

� = � 1

V

⇥V

⇥p
=

1

K

finite sound velocity at the solid-solid endpoint

longitudinal sound wavesIsotropic solid: 

c2s =
G

�

c2l =
K + 4

3G

�

shear sound waves

remain finite for K➔ 0 
due to shear modulus G!
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Macroscopic instability of a solid

elasticity theory: L =
1

2
✏ij Cijkl ✏kl

solid becomes unstable if a eigenvalue of Cijkl vanishes: detCijkl = 0

phonon velocities are determined by a different matrix: Dij = Cijklq̂k q̂l

BUT: detDij = 0detCijkl = 0 ;

phonon velocities generally stay finite!
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liquid

gas

solid

T

p Liquid-gas critical point:
vanishing sound velocity       critical microscopic fluctuations

Ising criticality

metal
Mott  

insulator

T

0 p

Solid-solid critical point:

finite sound velocity       absence of critical fluctuations

Landau (mean-field) criticality

applies to all crystal symmetries:

isostructural transition, no change in crystal symmetry

Cowley, PRB (1976), Folk, Iro, Schwabl, Z Physik B (1976) 

Universality classes
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Mott critical endpoint          Landau criticality
Two scenarios:

metal

Mott  
insulator

T

p

weak Mott-elastic coupling:

crossover from Mott-Landau to  
Mott-Ising to elastic Landau criticality

Mott-Landau  
criticalMott-Ising 
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Mott critical endpoint          Landau criticality
Two scenarios:

metal

Mott  
insulator

T

p

metal

Mott  
insulator

T

p

elastic 
Landau critical

Mott Landau  
critical

single crossover from Mott- to elastic 
Landau criticality

weak Mott-elastic coupling:

crossover from Mott-Landau to  
Mott-Ising to elastic Landau criticality

Mott-Landau  
criticalMott-Ising 

elastic- 
Landau

strong Mott-elastic coupling:
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Theory and relation to experiments
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Theory for the Mott endpoint

How does the Ising order parameter     couple to strain?

Lint = ��1"�+
1

2
�2"�

2

�

singlet irred. representation  
of crystal group

":

linear coupling allowed as Ising symmetry is emergent!

similar to critical piezoelectric ferroelectrics
Levanyuk and Sobyanin JETP Lett. (1970), Villain, SSC (1970)

Assumption: 
Mott endpoint without coupling to the lattice = Ising critical

Linear coupling only to singlet " no crystal symmetry breaking 
isostructural instability!
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Effective theory: neglect non-critical phonons
effective potential for macroscopic strain singlet

V(⇥) = K0

2
⇥2 � ⇥p+ fsing(t0 + �2⇥, h0 + �1⇥)

free energy density  
of the Ising model

bare modulus
pressure

Theory for the Mott endpoint

Lint = ��1"�+
1

2
�2"�

2

How does the Ising order parameter     couple to strain?�

T

p

Mott-Ising 

weak Mott-elastic coupling
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V(⇥) = K0

2
⇥2 � ⇥p+ fsing(t0 + �2⇥, h0 + �1⇥)

without coupling  
to crystal elasticity: γ1= γ2=0

with coupling to crystal elasticity: 
γ1 ≠ 0; γ2=0

Mott-Ising endpoint preempted by isostructural instability 
mean-field exponents!

Theory for the Mott endpoint

effective potential:
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Theory for the Mott endpoint

away from the critical point (blue regime):

perturbative minimization: � ⇡ p/K0

pressure dependence of tuning parameters

used by Bartosch et al. PRL (2010)

Fpert = � p2

2K0
+ fsing(t0 + �2p/K0, h0 + �1p/K0)

V(⇥) = K0

2
⇥2 � ⇥p+ fsing(t0 + �2⇥, h0 + �1⇥)effective potential:

T

p

Mott-Ising 
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yellow non-perturbative regime: elastic Landau-critical

expansion in �" = "� "̄

with      chosen such that cubic term vanishes"̄

renormalized modulus:

V(⇥) ⇥ K

2
�⇥2 � �⇥ (p� p̄) +

u

4!
�⇥4 + fsing(t̄, h̄)

K = K0 � �2
1⇥h̄h̄ � 2�1�2⇥h̄t̄ � �2

2⇥t̄t̄

h̄ = h0 + �1⇥̄ t̄ = t0 + �2⇥̄and and

�h̄h̄ = �⇥2
h̄fsing(t̄, h̄)most singular correction due to linear coupling:

diverges and drives  
bulk modulus to zero!For K ⇡ 0

�⇥ = (6(p� p̄)/u)1/3

minimization yields: 

breakdown of Hooke‘s law! with mean-field exponent

Theory for the Mott endpoint
T

p

Mott-Ising 



ISSP, June 2014M. Garst

Application to κ-(BEDT-TTF)2X 
breakdown of Hooke‘s law: smoking-gun criterion for elastic Landau critical regime  

with non-perturbative Mott-elastic coupling

pressure ppc

Tc

Mott
insulator

T

metal

∆p∗

∆T ∗

width of the elastic Landau regime:  �p⇤ ⇡ 45 bar = 4.5MPa

�T ⇤ ⇡ 2.5K

non-linear strain-stress relation
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pressure ppc

Tc
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Application to κ-(BEDT-TTF)2X 
using fitting parameters of Bartosch et al. PRL (2010):

�p⇤ ⇡ 45 bar = 4.5MPa

�T ⇤ ⇡ 2.5K

width of the elastic Landau regime:  

dotted line: perturbative; solid line: full solution
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Mott end point of Cr-doped V2O3

trigonal crystal symmetry

What is the critical singlet irred. representation of strain for V2O3?

C =

0

BBBBBB@

C11 C12 C13 C14 0 0
C12 C11 C13 �C14 0 0
C13 C13 C33 0 0 0
C14 �C14 0 C44 0 0
0 0 0 0 C44 C14

0 0 0 0 C14
C11�C12

2

1

CCCCCCA

determined elastic constant matrix 
by measureing various sound velocities

phonon velocities related to eigenvalues of Dij = Cijklq̂k q̂l
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Mott end point of Cr-doped V2O3

trigonal crystal symmetry

What is the critical singlet irred. representation of strain for V2O3?

C =

0

BBBBBB@

C11 C12 C13 C14 0 0
C12 C11 C13 �C14 0 0
C13 C13 C33 0 0 0
C14 �C14 0 C44 0 0
0 0 0 0 C44 C14

0 0 0 0 C14
C11�C12

2

1

CCCCCCA

crystal stability: eigenvalues must be positive

strong softening!  
Singlet!
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Mott end point of Cr-doped V2O3

metal

Mott  
insulator

T

p

elastic 
Landau critical

Mott Landau  
critical

probably no regime with non-trivial Ising criticality! 

strong softening close to critical temperature already in undoped V2O3! 

strong Mott-elastic coupling
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Summary
• Mott endpoint ≠ liquid-gas endpoint 

• Mott endpoint = solid-solid endpoint 

• Mott endpoint criticality: Landau (mean-field) not Ising 

• critical elasticity regime: breakdown of Hooke‘s law 

• two scenarios: 

 

 

!
• estimate for κ-(BEDT-TTF)2X: 

Phys. Rev. Lett. 109, 176401 (2012)

T

p

Mott-Ising T

p
κ-(BEDT-TTF)2X V2O3

�p⇤ ⇡ 45 bar = 4.5MPa

�T ⇤ ⇡ 2.5K


