Crossover between BCS Superconductor and doped Mott ins.

Possible normal state in the two-dimensional Hubbard model

Masao Ogata (Univ. of Tokyo) Hisatoshi Yokoyama (Tohoku Univ.)

> K. Kobayashi, H. Tsuchiura, S. Tamura (Tohoku)

Variational Monte Carlo (VMC) study (cf. BCS variational theory)

Yokoyama, et al, J. Phys. Soc. Japan 82, 014707 (2013)

Crossover between BCS Superconductor and doped Mott ins.

Possible normal state in the two-dimensional Hubbard model

Mott transition (Brinkman-Rice-like transition)

*t-t'-U*Hubbard model at half-filling First order phase transition: doublon-holon bound state (RVB-Insulator)

• Superconductivity in the doped case

Weak coupling U<W</th>BCS-likeStrong coupling U>Wt-J like = doped Mott insulator

Relation between Hubbard model and t-J model

• Staggered flux state as a possible normal state

Energy: d-wave < SF < projected FS Properties: gap in spin sector, Fermi arc...

Yokoyama, et al, J. Phys. Soc. Japan 82, 014707 (2013)

Hubbard model

$$H = -t \sum_{\langle ij \rangle \sigma} c^+_{i\sigma} c_{j\sigma} + U \sum_j n_{j\uparrow} n_{j\downarrow} \quad (U \ge 0)$$

A typical model for strongly correlated electron systems

In Hubbard model, we expect a metal-insulator transition at a critical value of Uc when n=1.

Insulator in large U/t-region (t-J like) Metal in small U/t-region Mott transition as a first-order phase transition (similar to gas-liquid)

Variational wave function at T=0

$$\Psi_{\rm SC} = \mathcal{P}_Q \mathcal{P}_{\rm G} \big| {\rm BCS}(\Delta) \big\rangle$$

- P_G : projection operator controlling doublon number (
- P_{Q} : projection operator controlling
 - the correlation between doublons and holons is Essential

Mott transition as a first-order transition

Density of doublons

Phase diagram

half filling ($\delta=0$) T=0 Variational Theory

t-t'-U Hubbard model

Yokoyama, Ogata et al, J. Phys. Soc. Japan **75**, 114706 (2006) J. Phys. Soc. Japan **82**, 014707 (2013) Phase diagram

half filling (δ =0) T=0 Variational Theory

Yokoyama, Ogata et al, J. Phys. Soc. Japan **75**, 114706 (2006) J. Phys. Soc. Japan **82**, 014707 (2013) Phase diagram

half filling $(\delta=0)$ T=0 Varia

T=0 Variational Theory

t-t'-U Hubbard model

High-Tc will appear when holes are doped in such a Mott insulator.

We need phase diagram at n<1

Yokoyama, et al, J. Phys. Soc. Japan **82**, 014707 (2013)

Finite doping (n < 1)

Crossover (not phase transition), but physical picture is different !

Correlation function for d-wave superconductivity

• Large $U (U > U_{co})$

bound state + free holons

"**Doped Mott insulator**" = High-Tc

doublon-holon bound state = n.n. doublon-holon

= virtual process inducing J-term

Doping dependence

Variation parameter Δ ----- excitation gap near (π ,0) & singlet formation

Kinetic energy gain !

Kinetic energy gain in the Large *U* region (*t*-*J* region)

Yokoyama, et al, J. Phys. Soc. Japan 82, 014707 (2013)

t'-dependence

t-t'-U Hubbard model

Doping-dependence of d-wave correlation function

t-t'-U Hubbard model

Doping-dependence of d-wave correlation function

Staggered Flux state (possible anomalous metallic state)

This is not the lowest variational state. But lower than the projected FS.

A candidate of "Symmetry-broken" normal state

 $\Phi_{\rm SF}$

Staggered Flux state (possible anomalous metallic state)

For the t-J model, flux state was discussed. (mainly for the condensation energy)

Ivanov and Lee: PRB 68 (2003) 132501.

For the Hubbard model, flux state was not stabilized.

Also what is the property of this state?

$\mathcal{P}_Q \mathcal{P}_G \ \Phi_{SF}$

We find that another Projection operator which introduces "configuration-dependent phase factor" is important.

Staggered Flux state (possible anomalous metallic state)

0

 $e^{i\phi}$

$$\mathcal{P}_Q \mathcal{P}_{\mathrm{G}} \, \, \Phi_{\mathrm{SF}}$$

This state is not stabilized In the Hubbard model.

 $\mathcal{P}_{\phi}(\phi)\mathcal{P}_{Q}\mathcal{P}_{\mathrm{G}} \Phi_{\mathrm{SF}}$

----- stabilized !

R

D

н

o-iø

$$\mathcal{P}_{\phi} = \exp\left[i\phi\sum_{\lambda=1}^{2}(-1)^{\lambda+1}\sum_{j}d_{\lambda,j}\right]$$

$$\times (h_{\lambda,j+\mathbf{x}} + h_{\lambda,j-\mathbf{x}} - h_{\lambda,j+\mathbf{y}} - h_{\lambda,j-\mathbf{y}})$$

This phase factor appears in the D-H creation processes.

2. Doping case (t'/t=0)

Phase diagram: SF state is a candidate for under-doped region.

 ϕ is larger than θ

Staggered Flux

2. Doping case (t'/t=0)

There is a sharp crossover near the Mott transition at $\delta = 0$

Very close to d-wave SC.

But the variational enegies are d-wave SC < SF < projected FS

2. Doping case (t'/t=0)

Staggered Flux

3. Doping case (finite t'/ t)

SF state is favorable for t'/t < 0 (hole-doped case)

4. Kinetic energy gain

Kinetic energy d-wave SC < SF < projected FS

Conclusions

Yokoyama, Ogata et al, J. Phys. Soc. Japan **75**, 114706 (2006) J. Phys. Soc. Japan **82**, 014707 (2013)

• Modified variational state doublon-holon bound state is important

small U (BCS-like) (weak-coupling region)

Iarge U (non-BCS) (t-J region)

"Doped Mott insulator"

doublon-holon bound state + free holons

• Flux state as a possible anomalous metallic state

Energy: d-wave SC < SF < projected FS

Gap-like behavior in the spin sector !

~ pseudo-gap

Fermi arc Kinetic energy gain

Staggered flux state is a typical sym. breaking state in strongly correlated region.

