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Breakdown of fermion quasiparticles

A recurring theme: Fermi liquid theory breaks down at a quantum phase

transition.
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QCPs in metals: wide-open problem
especially in d=2+1.

NFL emanates from a critical
point at T=0.

NFL can give way to higher
Tc superconductivity.
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Example: Iron pnictides

BaFe2(Asi-xPx)2

200 T T T T I T T T T I T T T T

(98]

O f o o 1:01.21.41.61.82.0
“ - E - o
mgz'S: x=033

2 of

Z fr=033°

1770 50 100

(d) | | |
n = .
Maximum superconducting T 0108 = E
below the NFL. - i
~— I 1 —
L = 0.05- g %
Superconductivity forms out of a 2 2. i
non-Fermi liquid. ’ ‘:L-!_'l___i
0 ' | : l. ' ¢ | %
Talk by Prof. Shibauchi in the symposium. 2 0. 5 O 08

[PNAS 2009, PRB 2010]



Concrete model system

Ising nematic transition: breaking of point group symmetry.

Fermi liquids: Pomeranchuk instability
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Analogy with classical liquid crystals
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The nematic state preserves lattice translation symmetry.



Effective theory: Fermion-boson problem

Starting UV action: § — S¢ + S¢ + Sw_gb

S¢ Landau Fermi liquid

g Landau-Ginzburg-Wilson
¢ theory for order parameter.

S¢_¢ Fermion-boson “Yukawa” coupling

Obtaining such an action: Start with electrons strongly
interacting ("Hubbard model”). “Integrate out” high energy
modes from lattice scale down to a new UV cutoff A << Ef.

A\ = Scale below which we can linearize the fermion Kinetic energy.



Effective theory: Fermion-boson problem

Starting UV action (in imaginary time):
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Ising nematic theory: g(k,q) = g (cosk; —cosk,).

g=0: decoupled limit (Fermi liquid + ordinary critical point).

non-zero g: complex tug-of-war between bosons and fermions.



Tug-of-war between bosons and fermions

Non-zero g: Bosons can decay into particle-hole
continuum -> overdamped bosons.
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Non-zero g: Quasiparticle scattering enhanced due to bosons.

d.p. Scattering rate can exceed its energy.

Fermion propagators: poles become branch cuts.

Result: breakdown of Landau quasiparticle.

How to proceed???



Large N limits



Large N limits

Essence of the problem: dissipative coupling between bosons and
fermions.

Large N limits: particles with many (N) flavors act as a dissipative “bath”
while remaining degrees of freedom become overdamped.

e.g. Large number of fermion flavors (Nf). Boson can decay in many
channels -> Overdamped bosons (NFL is subdominant).
Mainstream (Hertz) theory captures the IR behavior in this regime.

e.g. Large number of boson flavors (N»). Fermion can decay in many
channels -> NFL is strongest effect (boson damping is subdominant).



Large N limits

Large NFr:
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Implementation of large N limits

b — Y, a=1---Ng
Y =Py i j=1---Np
¢ — ¢;

g&¢¢ — glzéw]a¢z (repeated indices summed).

I will consider the case: Np = 1, Np — oo.



Large Ng action
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Impose an SO(Ng?) symmetry: )‘gb ) =

This symmetry is softly broken: i.e., only atO(1/N3z).



Large Ng solution
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1 W
Properties of the solution: G(k, w) = f (—; NB)
1) Fermi velocity vanishes at infinite Nsg.
2) Green function has branch cut spectrum. W o
3) Damping of order parameter is a 1/Ng f (E? NB — OO) =1

effect.

The solution matches on to perturbation theory in the UV.

The theory can smoothly be extended to d=2. The theory
describes infinitely heavy, incoherent fermionic quasiparticles.

We are currently investigating the strong CDW and
superconducting instabilities of this system.



Scaling landscape

Np Our
theory
Real materials Hertz

Moral of the story: there may be several distinct asymptotic limits with
different scaling behaviors, dynamic crossovers in this problem.



Wilsonian RG analysis



Scaling near the upper-critical dimension

UV theory: decoupled Fermi liquid+ nearly free bosons (g=0).
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Fermions: low energy = Fermi surface. Scale to preserve kinetic

-> anisotropic scaling. terms.
Bosons: low energy = point in k-space. . 1
9] = 5(3—d)

-> isotropic scaling.

Result: d=3 is the upper
critical dimension.



Renormalization group analysis

Integrate out modes with energy Ae_t < B < A
Ak x A
Integrate out modes with momenta Ake_t < k< Ak

A = UV cutoff: scale below which fermion dispersion can be
linearized (with a well-defined Fermi velocity).

Following Wilson, we will integrate out only high-
energy modes to obtain RG flows.

This is a radical departure from the
standard approach to this problem.

K. G.Wilson



Renormalization group analysis

RG flows at one-loop:

Ao term : %

g term :
Fermi dv
velocity: E —

Naive fixed point:
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Properties of the naive fixed point

v/c: vanishes before the system reaches the fixed point!

This feature shuts down Landau damping.

Fermion 2-pt function takes the form:

1 W f0x) = scali
_ Il (x) = scaling
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Consistent with the large Ng solution.

Is this too much of a good thing?? Infinitely heavy, incoherent
fermions + non-mean-field critical exponents!



Introducing leading irrelevant couplings

e(k) — U = vl —+ w€2 -+ ... w ~ band curvature
RG flow equations
dv
— = —¢g~S(v) S(v) ~ sgn(v)
dw is d ly irrel t
— = —W w is dangerously irrelevan
dt

w cannot be neglected below an emergent energy scale:
. 2
pye ~ e owo/goj Q ~ O(l)

We don’t know what happens below this scale (Lifshitz transition?)



Current and future work...

There are log-squared divergences in the Cooper channel in the
vicinity of the quantum critical point. This reflects a much stronger
superconducting tendency!

Break inversion and time-reversal symmetry: these effects are gone.

More detailed, systematic treatment is in progress. @

Related work: Metlitski et al. 1403.3694.

Temperature

Goal: to demonstrate enhanced
superconductivity out of a non-Fermi liquid.

Control parameter



Summary and outlook

We studied a metal near a nematic quantum critical point and found
non-Fermi liquid phenomena via 1) large N and 2)RG methods.

Both methods produce consistent results.

The fixed point corresponds to an infinitely heavy incoherent soup of
fermions + order parameter fluctuations.

This fixed point is unstable, but it governs scaling laws over a broad
range of energy/temperature scales.

We are currently investigating experimental properties (eg. heat
capacity) and superconducting/CDW instabilities in this regime.
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Scaling analysis

Fermions: only momentum component normal to Fermi surface scale
with energy:
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Fermi surface
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BCS coupling: )\w — )\¢ kr

Bosons: all components of momentum scale with energy:
/ /
W =ew, k' =e'k

quartic term: )\¢ — 6(3 d>t)\¢



Scaling analysis

Boson-fermion coupling:

For small momentum transfer, the coupling is marginal in d=3.

Fermi surface

kAl k+¢q

This coupling becomes relevant when d < 3, as is true for boson
Interactions:

g/ p— 6%759 ¢ — 6(3 d)t)\

This results in non-trivial fixed points in d<3.



