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Breakdown of fermion quasiparticles

A recurring theme: Fermi liquid theory breaks down at a quantum phase 
transition.  

NFL emanates from a critical 
point at T=0.

NFL can give way to higher 
Tc superconductivity.  
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various probes, it remains unclear whether the long range
AFM order truly coexists microscopically with supercon-
ducting regions or whether there is microscopic phase
separation. So far the answer to this question seems to
depend strongly on the experimental technique used to
probe it. The type of coexistent we are referring to here
is fundamentally different to the type observed in com-
pounds such as the Chevrel phase, borocarbide, and some
heavy fermion compounds, such as UPd2Al3, in which
the magnetism occurs in a different electronic subsystem
to the main conduction electrons [71]. In the present
case the same electrons are responsible for both types of
behavior.
A major obstacle to probing the presence or absence of

a QCP inside the superconducting dome is the presence
of the superconductivity itself which makes most exper-
imental probes insensitive to its presence. Attempting
to remove the superconductivity, for example using high
magnetic field, is not straightforward either. Besides the
fact that very large fields (> 50T) that are required for
iron-pnictides, the presence of this field will affect the
original magnetic phase boundary in the zero tempera-
ture limit and may drastically change the nature of the
quantum critical fluctuations.
Figures 2(a), (b) and (c) illustrate several possible

generic temperature versus non thermal control param-
eter phase diagrams for heavy fermion compounds and
iron pnictides.

Case A: A repulsion between AFM and superconduct-
ing (SC) order: Quantum criticality is avoided
by the transition to the superconducting state
(Fig. 2(a)). A first-order phase transition be-
tween AFM and SC phases occurs. There is no
trace of a QCP in this case. This phase diagram
has been reported for CeIn3 and CePd2Si2 [65].

Case B: The magnetic order abruptly disappears at a
temperature where magnetic and superconduc-
tivity phase boundaries meet (Fig. 2(b)). A
first-order or a nearly first-order phase bound-
ary appears at a composition x1 and there is
no magnetic QCP. A nearly vertical first order
line at x1, which separates two phases, has been
reported in CeRhIn5 [48, 49].

Case C: A QCP lies beneath the superconducting dome
(Fig. 2(c)). The second order quantum phase
transition occurs at the QCP (xc) and the QCP
separates two distinct superconducting phases
(SC1 and SC2). The point at which magnetic
and superconductivity phase boundaries meet is
a tetracritical point. As shown later, this phase
diagram is realized in BaFe2(As1−xPx)2 [72].

Usually when looking for a mechanism of supercon-
ductivity we think of some form of boson mediating pair-
ing between two electrons to form a Cooper pair. The
strength and characteristic energy of the coupling then
determines Tc. However, more generally, the transition

FIG. 2. Three possible schematic phase diagrams with super-
conducting dome near a QCP. (a) The (magnetic) order com-
petes with and cannot coexist with superconductivity. The
boundary between the ordered phase and superconducting
phase is the first order phase transition. (b) Similar to the
case of (a) but the first-order nature of the boundary may
lead to a sizable region of phase separation. (c) The second
order phase transition line of the (magnetic) ordered phase
crosses the superconducting transition line, and the QCP ex-
ists inside the superconducting dome. There should be two
different phases inside the dome (SC1 and SC2). The SC2
phase is a microscopic coexistence phase of magnetic order
and superconductivity.

to the superconducting state will take place when the en-
ergy of the superconducting state is lower than that of the
normal state it replaces. Therefore we can view the mech-
anism in which quantum criticality causes superconduc-
tivity in two different ways. First, the quantum critical
fluctuations will enhance the bosonic coupling strength
and so produce strong Cooper pairing in the usual way.
i.e., similar to the enhancement which occurs in electron-
phonon coupled superconductors near a structural phase
transition where a phonon branch softens and becomes
strongly coupled to the electrons. Second, the increase in
the normal state energies caused by the quantum fluctua-
tions will mean that a transition to the superconducting
state, where such excitations are gapped out, is more
energetically favorable and therefore would occur at a
higher temperature than it normally would. The pairing
in this case need not necessarily be solely due to the quan-
tum fluctuations but may involve other channels such as
phonons. These two mechanisms are not be mutually ex-
clusive but it would be natural to associate the former
with case C and the latter with cases A and B. This is
because when the criticality is avoided in the supercon-
ducting state (cases A and B), the superconducting gap
formation surpresses the effect of quantum fluctuations
on the entropy, leading to a gain in the condensation en-
ergy.

III. 122 FAMILY

A. Parent compound

There have now been several different types of iron-
pnictide superconductors discovered. The families are
often abbreviated to the ratio of the elements in their

NFL  
QCPs in metals: wide-open problem 
especially in d=2+1.  
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parent compositions and are known as the 111, 122, 1111,
32522, 21311 types [6, 7]. In addition there are also iron-
chalcogenide materials of the 11 and most recently 122
types [73] which show much of the same physics as the
iron-pnictides.

Crudely the electronic and crystal structures and phase
diagrams of all iron-based superconductors are quite sim-
ilar. The crystals are composed of 2D Fe layer, which is
formed in a square lattice structure with an Fe-Fe dis-
tance of approximately 0.28 nm. The As (or P/Se/Te)
atoms reside above and below the Fe layer, alternatively,
and are located at the center of the Fe-atom squares,
forming a tetrahedron FeAs4 (Figs. 3(a)-(c)). Because of
the strong bonding between Fe-Fe and Fe-As sites, the
geometry of the FeAs4 plays a crucial role in determin-
ing the electronic properties of these systems. The Fermi
surface in these materials consists of well separated hole
pockets at the center of the Brillouin zone and electron
pockets at the zone corners (Fig. 3(d)). The parent com-
pound is an SDW metal. The SDW is suppressed either
by chemical substitution or by pressure. All the fami-
lies exhibit a tetragonal-to-orthorhombic structural tran-
sition (i.e., broken C4 symmetry) that either precedes or
is coincident with the SDW transition.

B. Magnetic structure

BaFe2As2 undergoes a tetragonal-orthorhombic struc-
tural transition at Ts = 135K and at the same temper-
ature it exhibits a paramagnetic to SDW phase transi-
tion. The magnetic structure of BaFe2As2 is collinear
with a small ordered moment (∼ 0.9µB per Fe) [74], in
which the arrangement consists of spins antiferromagnet-
ically arranged along one chain of nearest neighbors (a
axis) within the iron lattice plane, and ferromagnetically
arranged along the other direction (b axis) (Fig. 3(c)).
There is a small (0.7%) reduction in bond length along
the direction where the spins are ferromagnetic coupled
leading to a reduction in symmetry. A similar collinear
spin structure has also been reported in other pnictides,
such as AFe2As2 (A=Ca and Sr), AFeAsO (A=La, Ce,
Sm, Pr, etc.) and NaFeAs, while Fe1+yTe exhibits a bi-
collinear spin structure [75]. The inelastic neutron scat-
tering experiments have mapped out spin waves on single
crystals of CaFe2As2, SrFe2As2 and BaFe2As2 through-
out the Brillouin zone. It has been pointed out that
neither localized nor itinerant model can satisfactorily
describe these magnetic structure and excitation spec-
trum [38]. Recently, a possible orbital ordering has
been suggested to occur together with magnetic order-
ing, which lifts the degeneracy between dxz and dyz or-
bitals [17, 19]. Such an orbital ordered state has been
suggested to be important to understand not only the
magnetism [12, 13, 25, 38] but also the transport prop-
erties [14, 20, 21, 24, 26].

FIG. 3. Crystal and electronic structure in BaFe2As2. (a)
Schematic crystal structure. The dotted line represents the
unit cell. The Fe-As network forms the 2D planes (b,c). The
arrows in (c) illustrates the spin configuration in the antifer-
romagnetic state below TN . (d) The Fermi surface structure
of BaFe2As2 in the paramagnetic state. Three hole sheets
near the zone center and two electron sheets near the zone
corner are quasi nested when shifted by vector Q = (π,π, 0).
(e) For comparison the Fermi surface structure of BaFe2P2

is also shown. The number of hole sheets is two in BaFe2P2

instead of three in BaFe2As2, but in both cases it satisfies the
compensation condition that the total volume of hole Fermi
surface is the same as that of electron.

C. Superconductivity

High-temperature superconductivity develops when
the ‘parent’ AFM/orthorhombic phase is suppressed,
typically by introduction of dopant atoms. In most
of the iron-based compounds, the magnetic and struc-
tural transition temperatures split with doping [6, 7].
The hole doping is achieved by substitution of Ba2+

by K1+ in (Ba1−xKx)Fe2As2 and electron doping by
substitution of Fe by Co in Ba(Fe1−xCox)2As2 or Ni
in Ba(Fe1−xNix)2As2. High-Tc superconductivity ap-
pears even for the isovalent doping with phosphorous in
BaFe2(As1−xPx)2 or ruthenium in Ba(Fe1−xRux)2As2.
The magnetic and superconducting phase diagram of
the BaFe2As2-based systems is shown in Fig. 4. In the
hole doped (Ba1−xKx)Fe2As2, the structural/magnetic
phase transition crosses the superconducting dome at
x ∼ 0.3 and a maximum Tc of 38K appears at x ≃
0.45. Upon hole doping, the hole pocket expands and
the electron pocket shrinks and disappears at x ∼ 0.6
[76]. The superconductivity is observed even at the
hole-doped end material (x = 1), KFe2As2, which cor-

pnictogen height decrease linearly with x, as shown in Figs.
2!a" and 2!b".

Now we discuss the normal-state transport properties fo-
cusing on the nonmagnetic regime. At x=0.33 just beyond
the SDW end point, !xx!T" exhibits a nearly perfect T-linear
dependence in a wide T range above Tc as shown in Fig. 3!a"

!xx!T" = !0 + AT" !1"

with "=1.0, where A is a constant. Thus, the resistivity ex-
hibits a striking deviation from the standard Fermi-liquid
theory with "=2. Based on the two-dimensional !2D"
electron-gas model, the conductivity due to five Fermi sur-
faces is roughly estimated as #=5$ !e2 /h"kFlmfp, where kF is
Fermi wave number and lmfp is mean-free path of carriers.22

Thus the Ioffe-Regel limit, which corresponds to kFlmfp#1,
is roughly estimated as !#350 %&cm. This may be rel-
evant to the deviation from the T-linear behavior of !!T" at
high T !'150 K". With increasing x, " increases and the
Fermi-liquid behavior is recovered at x=0.71. The contour
plot of " in Fig. 2!c" demonstrates this evolution in the phase
diagram, indicating that the deviations continue to lower
temperatures as x→0.33. This sheds light on the V-shaped
region where anomalous T-linear behavior takes place,
which suggest a strong similarity to the non-Fermi-liquid
behaviors governed by quantum fluctuations in strongly cor-
related electron systems.23 For x=0.33, RH exhibits a marked
T dependence that is approximated as −RH!T"=C1 /T+C2,
where C1 and C2 are positive constants, as depicted in the
inset of Fig. 3!a". Similar anomalous behaviors of !xx and RH
are reported in other Fe pnictides.5–9 It is well known that
temperature dependent RH can be obtained in the Bloch
theory when multiple bands are involved. Then an important
question is whether the most fundamental transport proper-
ties described above can be accounted for by the conven-
tional multiband model or can be indicative of unconven-
tional transport properties inherent to the Fe-based systems.
We show that the former is highly unlikely for the following
reasons.

In the compensated two-band metal with equal number of
electrons and holes, the Hall coefficient is described simply
as

RH =
1
ne

$
#h − #e

#h + #e
, !2"

where #e !#h" is the conductivity of electron !hole" band.
The fact that RH is negative indicates that the electron band
dominates transport properties !#e'#h". Strong evidence
against the simple multiband explanation is obtained from
the amplitude of RH. From Eq. !2", $RH$ cannot exceed 1 /ne.
Band calculations reveal that BaFe2As2 has #0.15 electrons
per Fe !Ref. 8" and that the electron Fermi surface is not
seriously influenced by the P replacement !see below". This
electron density corresponds to 1 /ne%0.98$10−3 cm3 /C.
However, it is clear from the inset of Fig. 3!a" that the ob-
served magnitude of RH becomes considerably larger than
this value especially at low temperatures. These results lead
us to conclude that the simple multiband picture cannot ex-
plain the transport coefficients in the present system.

Another anomalous feature is also found in magnetoresis-
tance !MR". In the conventional Fermi-liquid state, the MR,
(!xx!H" /!xx&'!xx!H"−!xx!H=0"( /!xx, due to an orbital mo-
tion of carriers is simply scaled by the product of cyclotron
frequency )c and scattering time * as (!xx!H" /!xx=F!)c*".
This is so-called Kohler’s rule. Since )c+H and *+!xx

−1, the
Kohler’s rule is rewritten as (!xx!H" /!xx=F!%0H /!xx",
where F!y" is a function of y depending on the electronic
structure. Figure 3!b" is the transverse MR plotted against
%0H /!xx for x=0.33 in H )c. The data at different tempera-
tures are on distinctly different curves, indicating apparent
violation of the Kohler’s rule. The result means )c* is no
longer a scale parameter for MR due to an orbital motion of
carriers.

It has been proposed24,25 that the MR in the non-
Fermi-liquid regime may be scaled by the Hall angle
,H!&tan−1 !xy

!xx
" as (!xx!H" /!xx+ tan2 ,H !modified Kohler’s

rule". To examine this relation, we plot the MR as a function
of tan2 ,H in the inset of Fig. 3!b". Obviously, the MR data
at different temperatures collapse into the same curve, indi-
cating a distinct Hall-angle scaling of the MR.

It should be noted that the modified Kohler’s rule as well
as the T-linear !xx and the low-temperature enhancement of
$RH$!-1 /ne", distinct from the standard Fermi-liquid theory
of metals, have also been reported in other strongly corre-
lated electron systems including high-Tc cuprates26 and 2D
heavy-fermion compounds.27 The simultaneous understand-
ing of these anomalies has been a subject of intense
research.24,25,28,29 Among others, one may involve different
quasiparticle scattering times * at different parts of Fermi
surfaces.25,28 The effects of band curvature and Fermi veloc-
ity anisotropy on * can account for the enhancement of $RH$.
Another important effect is the vertex corrections to the lon-
gitudinal and transverse conductivities due to large antiferro-
magnetic fluctuations,24 which modify the current at the
Fermi-surface spots connecting with the nesting vectors, re-
sulting in enhanced $RH$.27 Although quantitative analysis of
these effects in the Fe-based superconductors deserves fur-
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FIG. 5. Evidence for the QCP in the superconducting dome in
BaFe2(As1−xPx)2. (a) Temperature dependence of in-plane
resistivity ρxx for 0.33 ≤ 0.71 [50]. The red lines are the fit
of normal-state ρxx(T ) to power-law dependence ρ0 + ATα

(Eq. (4)). (b) Temperature dependence of NMR 1/T1T mea-
sured for the 31P nuclei for several compositions [106]. The
lines are the fit to the Curie-Weiss temperature dependence
Eq. (5). (c) Phase diagram composed from a color plot of the
exponent α of the temperature dependence of the resistivity.
The effective mass m∗ and Fermi temperature TF extracted
from the quantum oscillation measurements are also plotted.
(d) The x dependence of the square of zero-temperature Lon-
don penetration depth λ2

L(0) [72] determined by the Al-coated
method (diamonds), surface impedance (circles), and slope of
the temperature dependence of δλL(T ) (squares, right axis).

gc along the tuning parameter axis in the phase diagram.
As x increases, the tuning parameter g increases.

A. Transport properties

As shown in Fig. 5(a), at x = 0.30 where the maximum
Tc is achieved, the in-plane resistivity ρ shows linear tem-
perature dependence, ρ = ρ0 + AT [50], which is a hall-
mark of non-Fermi liquid behavior. We note that along
with the T -linear resistivity, a striking enhancement of
Hall coefficient at low temperatures and apparent viola-
tion of Kohler’s law in magnetoresistance have been re-
ported [50], which are also indicative of non-Fermi liquid
behavior [105]. On the other hand, at x ! 0.6, the resis-
tivity follows the Fermi liquid relation of ρ = ρ0 + AT 2

(Fig. 5(a)). The color shading in Fig. 5(c) represents the
value of the resistivity exponent in the relation

ρ = ρ0 +ATα. (4)

A crossover from non-Fermi liquid to Fermi liquid with
doping is clearly seen. The region of the phase diagram,
which includes a funnel of T -linear resistivity centered
on x ≈ 0.3 shown by red, bears a striking resemblance
to the quantum critical regime shown in Fig. 1, although

the superconducting dome masks the low temperature
region. Thus the transport results suggest the presence
of QCP at x ≈ 0.3.

B. Magnetic properties

The nuclear magnetic resonance (NMR) experiments
give important information about the low-energy mag-
netic excitations of the system. The Knight shift K
and spin-lattice relaxation rate 1/T1 of BaFe2(As1−xPx)2
have been measured with various P concentrations [106].
K is almost T -independent for all x, indicating that the
density of states (DOS) does not change substantially
with temperature. The 31P relaxation rate 1/T1 is sen-
sitive to the AFM fluctuations: 1/T1T is proportional to
the average of the imaginary part of the dynamical sus-
ceptibility χ(q,ω0)/ω0, 1/T1T ∝ Σq|A(q)|2χ′′(q,ω0)/ω0,
where A(q) is the hyperfine coupling between 31P nu-
clear spin and the surrounding electrons and ω0 is the
NMR frequency. In the Fermi liquid state, the Korringa
relation T1TK2 = const. holds, but it fails in the pres-
ence of strong magnetic fluctuations. In particular, AFM
correlations enhance 1/T1 through the enhancement of
χ(q ̸= 0), without appreciable change of K.
At x = 0.64, 1/T1T is nearly temperature independent

(Fig. 5(b)), indicating the Korringa relation T1TK2 =
const. This Fermi liquid behavior in the magnetic prop-
erties is consistent with the transport properties. As x
is varied towards the optimally doping, 1/T1T shows a
strong temperature dependence, indicating a dramatic
enhancement of the AFM fluctuations. It has been re-
ported that in the paramagnetic regime T1 is well fitted
with the 2D AFM spin fluctuation theory of a nearly
AFM metal,

1

T1T
= a+

b

T + θ
, (5)

where a and b are fitting parameters and θ is the Curie-
Weiss temperature (Fig. 5(b)). Nakai et al. [106] re-
ported that while a and b change little with x, θ exhibits a
strong x dependence. With decreasing x, θ decreases and
goes to zero at the critical concentration x ≈ 0.3, where
non-Fermi liquid behavior in the resistivity is observed.
At a second order AFM critical point, the singular part
of 1/T1T is expected to vary 1/T , i.e. θ = 0 because
the dynamical susceptibility diverges at T = 0K, or the
magnetic correlation length continue to increases down
to 0K. Therefore the NMR results also suggest a QCP
at x ≈ 0.3.

C. Fermi surface and mass renormalization

Discovering how the Fermi surface evolves as the ma-
terial is tuned from a non-superconducting conventional
metal (right-hand side of the phase diagram) toward the
non-Fermi liquid regime near the SDW phase boundary is
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Maximum superconducting Tc  
below the NFL.  

Superconductivity forms out of a 
non-Fermi liquid. 

[PNAS 2009, PRB 2010]

BaFe2(As1-xPx)2

Talk by Prof. Shibauchi in the symposium.



thermal melting of a stripe state to form a nematic fluid is readily understood theoretically

(9, 18, 29–31) and, indeed, the resulting description is similar to the theory of the nearly

smectic nematic fluid that has been developed in the context of complex classical fluids

(2, 32). Within this perspective, the nematic state arises from the proliferation of disloca-

tions, the topological defects of the stripe state. This can take place either via a thermal

phase transition (as in the standard classical case) or as a quantum phase transition.

Whereas the thermal phase transition is well understood (2, 32), the theory of the quantum

smectic-nematic phase transition by a dislocation proliferation mechanism is largely an

open problem. Two notable exceptions are the work of Zaanen et al. (31) who studied this

phase transition in an effectively insulating system, and the work of Wexler & Dorsey (33)

who estimated the core energy of the dislocations of a stripe quantum Hall phase.

Nevertheless, the microscopic (or position-space) picture of the quantum nematic phase

that results consists of a system of stripe segments, the analog of nematogens, whose

typical size is the mean separation between dislocations. The system is in a nematic state

if the nematogens exhibit long-range orientational order on a macroscopic scale (8, 9).

However, since the underlying degrees of freedom are the electrons from which these nano-

structures form, the electron nematic is typically an anisotropic metal. Similarly, nematic

order can also arise from thermal or quantum melting a frustrated quantum antiferromag-

net (34–36).

An alternative picture of the nematic state (and of the mechanisms that may give rise to

it) can be gleaned from a Fermi-liquid-like perspective. In this momentum space picture

one begins with a metallic state consisting of a system of fermions with a Fermi surface (FS)

and well-defined quasiparticles (QP). In the absence of any sort of symmetry breaking, the

shape of the FS reflects the underlying symmetries of the system. There is a classic result

Nematic phases

Via Pomeranchuk
instability

Via melting
stripes

Fermi
liquid

Smectic
or stripe

phase

Figure 1

Two different mechanisms for producing a nematic phase with point particles: The gentle melting of a
stripe phase can restore long-range translational symmetry while preserving orientational order (8).
Alternatively, a nematic Fermi fluid can arise through the distortion of the Fermi surface of a metal via
a Pomeranchuk instability (27, 28). (After, in part, Reference 8.)
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Isotropic Nematic

Pomeranchuk instability

thermal melting of a stripe state to form a nematic fluid is readily understood theoretically

(9, 18, 29–31) and, indeed, the resulting description is similar to the theory of the nearly

smectic nematic fluid that has been developed in the context of complex classical fluids

(2, 32). Within this perspective, the nematic state arises from the proliferation of disloca-

tions, the topological defects of the stripe state. This can take place either via a thermal

phase transition (as in the standard classical case) or as a quantum phase transition.

Whereas the thermal phase transition is well understood (2, 32), the theory of the quantum

smectic-nematic phase transition by a dislocation proliferation mechanism is largely an

open problem. Two notable exceptions are the work of Zaanen et al. (31) who studied this

phase transition in an effectively insulating system, and the work of Wexler & Dorsey (33)

who estimated the core energy of the dislocations of a stripe quantum Hall phase.

Nevertheless, the microscopic (or position-space) picture of the quantum nematic phase

that results consists of a system of stripe segments, the analog of nematogens, whose

typical size is the mean separation between dislocations. The system is in a nematic state

if the nematogens exhibit long-range orientational order on a macroscopic scale (8, 9).

However, since the underlying degrees of freedom are the electrons from which these nano-

structures form, the electron nematic is typically an anisotropic metal. Similarly, nematic

order can also arise from thermal or quantum melting a frustrated quantum antiferromag-

net (34–36).

An alternative picture of the nematic state (and of the mechanisms that may give rise to

it) can be gleaned from a Fermi-liquid-like perspective. In this momentum space picture

one begins with a metallic state consisting of a system of fermions with a Fermi surface (FS)

and well-defined quasiparticles (QP). In the absence of any sort of symmetry breaking, the

shape of the FS reflects the underlying symmetries of the system. There is a classic result

Nematic phases

Via Pomeranchuk
instability

Via melting
stripes

Fermi
liquid

Smectic
or stripe

phase

Figure 1

Two different mechanisms for producing a nematic phase with point particles: The gentle melting of a
stripe phase can restore long-range translational symmetry while preserving orientational order (8).
Alternatively, a nematic Fermi fluid can arise through the distortion of the Fermi surface of a metal via
a Pomeranchuk instability (27, 28). (After, in part, Reference 8.)
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Fermi liquids:

Analogy with classical liquid crystals

The nematic state preserves lattice translation symmetry.  

Ising nematic transition: breaking of point group symmetry.  

Concrete model system
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“spin” up “spin” down

2 possible  
ground states
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order 
parameter:�



Effective theory: Fermion-boson problem

Landau Fermi liquid
Landau-Ginzburg-Wilson 
theory for order parameter.

Fermion-boson “Yukawa” coupling

Starting UV action: S = S + S� + S ��

S 

S�

S ��

Obtaining such an action: Start with electrons strongly 
interacting (“Hubbard model”).  “Integrate out”  high energy 
modes from lattice scale down to a new UV cutoff ⇤ << EF .

= Scale below which we can linearize the fermion Kinetic energy.    ⇤



Effective theory: Fermion-boson problem

Fermions

bosons

“Yukawa” coupling

The lesson I will take from this is the following: it will be 
useful to find controlled approaches to non-Fermi liquid 

fixed points using toy models, even unrealistic toy models.

II.  Our toy model & RG philosophy

We will study the theory with UV action:

Fermi interactions. We describe the correlation functions
of both the boson and fermion degrees of freedom at the
non-Fermi liquid fixed point; they di⇥er from the results
obtained in alternative treatments. In §4, we re-introduce
the four-Fermi interactions and describe subtleties associ-
ated with log2 divergences that arise in their presence. In
§5, we discuss controlled large N theories where the sub-
tleties of §4 do not arise, and we find fixed points which
generalize those of §3 to include four-Fermi interactions.
We show that these fixed points have no superconducting
instabilities. We close with a discussion of open issues in
§6. Explicit calculations which we refer to in the main
body are presented in several appendices.

II. EFFECTIVE ACTION AND SCALING
ANALYSIS

Let ⌥� denote a fermion field with spin ⌅ =⇤, ⌅, and
dispersion �(k), defined relative to the Fermi level. Let ⌃
be the scalar boson field corresponding to the order pa-
rameter for the quantum phase transition. The e⇥ective
low energy Euclidean action consists of a purely fermionic
term, a purely bosonic term and a Yukawa coupling be-
tween bosons and fermions:

S =

⇤
d⇧

⇤
ddx L = S⌅ + S⇤ + S⌅�⇤

L⌅ = ⌥̄� [�⇥ + µ� �(i⇧)]⌥� + ⇥⌅⌥̄�⌥̄��⌥��⌥�

L⇤ = m2
⇤⌃

2 + (�⇥⌃)
2 + c2

�
 ⇧⌃

⇥2
+

⇥⇤

4!
⌃4

S⌅,⇤ =

⇤
dd+1kdd+1q

(2⇤)2(d+1)
g(k, q)⌥̄(k)⌥(k + q)⌃(q), (1)

where repeated spin indices are summed. The first term,
L⌅, represents a Landau Fermi liquid, with weak residual
self-interactions incorporated in forward and BCS scat-
tering amplitudes. The second term represents an in-
teracting scalar boson field with speed c and mass m⇤

(which corresponds to the inverse correlation length that
vanishes as the system is tuned to the quantum criti-
cal point). The third term is the Yukawa coupling be-
tween the fermion and boson fields and is more naturally
described in momentum space. The quantity g(k, q) is
a generic coupling function that depends both on the
fermion momentum k, as well as the momentum trans-
fer q (we have suppressed spin indices for clarity). For a
spherically symmetric Fermi system, the angular depen-
dence of g(k, q) for |k| = kF can be decomposed into dis-
tinct angular momentum channels, each of which marks
a di⇥erent broken symmetry. Familiar examples include
ferromagnetism (angular momentum zero) and nematic
order (angular momentum 2). More generally, the cou-
pling can be labelled by the irreducible representation of
the crystal point group and it respects symmetry trans-
formations under which ⌃ and ⌥̄⌥ both change sign.

Before proceeding, we make a few comments on the ori-
gins of the e⇥ective action above. One starts with a the-
ory involving fermions interacting at short distances with

qx

qy

qx

qy

(a) (b)

(c)

�k

�k + �q

�q

empty states

filled states

empty states

filled states

FIG. 1. Summary of tree-level scaling. High energy modes
(blue) are integrated out at tree level and remaining low en-
ergy modes (red) are rescaled so as to preserve the boson and
fermion kinetic terms. The boson modes (a) have the low
energy locus at a point whereas the fermion modes (b) have
their low energy locus on the Fermi surface. The most rele-
vant Yukawa coupling (c) connects particle-hole states nearly
perpendicular to the Fermi surface; all other couplings are
irrelevant under the scaling.

strong repulsive forces. These interactions are decoupled
by an auxiliary boson field ⌃ representing a fermion bilin-
ear, and the partition function is obtained by averaging
over all possible values of both the fermion and boson
fields. Initially, the auxiliary field has no dynamics and
is massive. However, as high energy modes of the ma-
terial of interest are integrated out, radiative corrections
induce dynamics for the bosons. In a Wilsonian theory,
the dynamics are encapsulated only in local, analytic cor-
rections to the bare action. This mode elimination is con-
tinued until eventually, the UV cuto⇥ � ⇥ EF represents
the scale up to which the quasiparticle kinetic energy can
be linearized about the Fermi level. At these low ener-
gies, and in the vicinity of the quantum critical point
where the field ⌃ condenses, it is legitimate to view ⌃
as an independent, emergent fluctuating field that cou-
ples to the low energy fermions via a Yukawa coupling as
written above23. This will be the point of departure of
our analysis below.
We first describe a consistent scaling procedure for the

action in Eq. 1. The key challenge stems from the
fact that the boson and fermion fields have vastly dif-
ferent kinematics. Our bosons have dispersion relation
k20 = c2k2+m2

⇤, so that low energies correspond as usual
to low momentum, and their scaling is that of a standard
relativistic field theory where all components of momen-
tum scale the same way as k0. By contrast, the fermion
dispersion relation is k0 = �(k) � µ, so their low en-
ergy states occur close to the Fermi surface (Fig. 1).
Moreover, the Yukawa coupling between the two sets of
fields must conserve energy and momentum in a coarse-

2
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Starting UV action (in imaginary time): 

g=0: decoupled limit (Fermi liquid + ordinary critical point).  

non-zero g: complex tug-of-war between bosons and fermions.  

Ising nematic theory: g(k, q) = g (cos k
x

� cos k
y

) .



Tug-of-war between bosons and fermions

Non-zero g: Bosons can decay into particle-hole 
continuum -> overdamped bosons.  

(a)
ab

a

ab

b

(b)
a b

ab

a

(c)
ab

a

a

b

ab

b

Non-zero g: Quasiparticle scattering enhanced due to bosons.  

(a)
ab

a

ab

b

(b)
a b

ab

a

(c)
ab

a

a

b

ab

b

+ · · ·

+ · · ·
q.p. Scattering rate can exceed its energy.

Fermion propagators: poles become branch cuts.

Result: breakdown of Landau quasiparticle.  

How to proceed???



Large N limits



Large N limits

Essence of the problem: dissipative coupling between bosons and 
fermions.  

Large N limits: particles with many (N) flavors act as a dissipative “bath” 
while remaining degrees of freedom become overdamped.   

e.g. Large number of fermion flavors (Nf).  Boson can decay in many 
channels -> Overdamped bosons (NFL is subdominant).  
Mainstream (Hertz) theory captures the IR behavior in this regime.  

e.g. Large number of boson flavors (Nb).  Fermion can decay in many 
channels -> NFL is strongest effect (boson damping is subdominant).



Large N limits

Large NB:

O(1/NB) :

Large NF:

O(1/NF ) :



Implementation of large N limits

I will consider the case: NF = 1, NB ! 1.

(repeated indices summed).

↵ = 1 · · ·NF

i, j = 1 · · ·NB

g ̄ �! g ̄i
↵ 

↵
j �

j
i

 ̄ !  ̄i
↵

 !  ↵
i

� ! �j
i



! !⇤

e�s⇤ ⇤

e�s⇤

! ⇤

e�s⇤

a) b)

c)

kk

k

FIG. 4. Examples of possible schemes for decimating high energy modes. Scheme a), which we adopted in ? , integrates out
shells in ! but integrates out all momenta in a given frequency shell. Scheme b), which integrates out both frequencies and
momenta, is better for our purposes (as explained below and in §6), and we adopt it in this paper. Scheme c) is recommended
as an assignment for graduate students one wishes to avoid.

L =  ̄i [@⌧ + µ � ✏(ir)] i +
� 
NB

 ̄i i ̄
j j

L� = tr

✓
m2

��
2 + (@⌧�)2 + c2

⇣
~r�

⌘
2

◆

+
�

(1)

�

8NB
tr(�4) +

�
(2)

�

8N2

B

(tr(�2))2

L ,� =
gp
NB

 ̄i j�
j
i (II.1)

The (spinless) fermions are in an NB-vector  i, while the scalar �j
i is an NB ⇥ NB complex matrix. We take the

global symmetry group to be SU(NB), and as in ? , we will set �(1)

� = 0. This choice is technically natural (as there

is an enhanced SO(N2

B) symmetry broken softly by the Yukawa coupling), and makes the analysis far more tractable.
In this section, we describe the perturbative RG approach to studying this system, following ? . We start with

the same RG scaling as in that paper, scaling boson and fermion momenta di↵erently as in Figure 3 (in a way that
is completely determined by the scaling appropriate to the relevant decoupled fixed points at g = 0). However, we
depart in one important way from the philosophy of ? - instead of decimating in ! between ⇤ and ⇤ � d⇤ at each
RG step, but integrating out all momenta (as in Figure 4 a)), we instead do a more ‘radial’ decimation, integrating
out shells in both ! and k (as in Figure 4 b)). This introduces two UV cuto↵s in the problem, ⇤ and ⇤k. We find
this procedure superior because it avoids the danger of retaining very high energy modes (at large k) at late steps
of the RG. While of course observables will agree in the di↵erent schemes, aspects of the physics which are obscure
in the scheme of Figure 4 a) become manifest in the scheme we have chosen here. This elementary (but sometimes
confusing) point is discussed in more detail in §6, which can be read more or less independently of the rest of the
paper.

The large NB RG equations are quite simple. The Yukawa vertex renormalization and the boson wave-function
renormalization due to fermion loops are both O(1/NB) e↵ects. Therefore, at leading order, the boson is governed
by an O(N2

B) Wilson-Fisher fixed point, while the fermion wave-function renormalization governs the non-trivial beta
functions. Here and throughout the paper we will use the notation ‘`’ to represent the component of the fermion
momentum perpendicular to the fermi surface and ‘!’ to represent fermion energies. Writing

L� = �2(!2 + c2k2),

L = (1 + �Z) †i! � (v + �v) †` ,

L � = (g + �g)� † ,

�Z ⌘ Z � 1, �v ⌘ v
0

Z � v, �g ⌘ g
0

Z � g , (II.2)

we simply need to compute the logarithmic divergences in �Z and �v to find the one-loop running. �Z and �v are

4

Large NB action

i, j = 1 · · ·NB

Impose an SO(NB2) symmetry: �(1)
� = 0

This symmetry is softly broken: i.e., only at O(1/N2
B).



Large NB solution

NB ! 1 : ⌃ =

1) Fermi velocity vanishes at infinite NB.   
2) Green function has branch cut spectrum. 
3) Damping of order parameter is a 1/NB 

effect.  

Properties of the solution: G(k,!) =
1

!1�✏/2
f
⇣!
k
;NB

⌘
✏ = 3� d

f
⇣!
k
;NB ! 1

⌘
= 1

The theory can smoothly be extended to d=2.  The theory 
describes infinitely heavy, incoherent fermionic quasiparticles.  

We are currently investigating the strong CDW and 
superconducting instabilities of this system.  

The solution matches on to perturbation theory in the UV.  



NF

NB

Hertz

Our 
theory

??

Real materials

Scaling landscape

Moral of the story: there may be several distinct asymptotic limits with 
different scaling behaviors, dynamic crossovers in this problem.    



Wilsonian RG analysis



Scaling near the upper-critical dimension
The unconventional large N we use here is in part inspired 

by AdS/CFT examples.

What scaling do we use?

Fermi interactions. We describe the correlation functions
of both the boson and fermion degrees of freedom at the
non-Fermi liquid fixed point; they di⇥er from the results
obtained in alternative treatments. In §4, we re-introduce
the four-Fermi interactions and describe subtleties associ-
ated with log2 divergences that arise in their presence. In
§5, we discuss controlled large N theories where the sub-
tleties of §4 do not arise, and we find fixed points which
generalize those of §3 to include four-Fermi interactions.
We show that these fixed points have no superconducting
instabilities. We close with a discussion of open issues in
§6. Explicit calculations which we refer to in the main
body are presented in several appendices.

II. EFFECTIVE ACTION AND SCALING
ANALYSIS

Let ⌥� denote a fermion field with spin ⌅ =⇤, ⌅, and
dispersion �(k), defined relative to the Fermi level. Let ⌃
be the scalar boson field corresponding to the order pa-
rameter for the quantum phase transition. The e⇥ective
low energy Euclidean action consists of a purely fermionic
term, a purely bosonic term and a Yukawa coupling be-
tween bosons and fermions:
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S⌅,⇤ =

⇤
dd+1kdd+1q

(2⇤)2(d+1)
g(k, q)⌥̄(k)⌥(k + q)⌃(q), (1)

where repeated spin indices are summed. The first term,
L⌅, represents a Landau Fermi liquid, with weak residual
self-interactions incorporated in forward and BCS scat-
tering amplitudes. The second term represents an in-
teracting scalar boson field with speed c and mass m⇤

(which corresponds to the inverse correlation length that
vanishes as the system is tuned to the quantum criti-
cal point). The third term is the Yukawa coupling be-
tween the fermion and boson fields and is more naturally
described in momentum space. The quantity g(k, q) is
a generic coupling function that depends both on the
fermion momentum k, as well as the momentum trans-
fer q (we have suppressed spin indices for clarity). For a
spherically symmetric Fermi system, the angular depen-
dence of g(k, q) for |k| = kF can be decomposed into dis-
tinct angular momentum channels, each of which marks
a di⇥erent broken symmetry. Familiar examples include
ferromagnetism (angular momentum zero) and nematic
order (angular momentum 2). More generally, the cou-
pling can be labelled by the irreducible representation of
the crystal point group and it respects symmetry trans-
formations under which ⌃ and ⌥̄⌥ both change sign.

Before proceeding, we make a few comments on the ori-
gins of the e⇥ective action above. One starts with a the-
ory involving fermions interacting at short distances with
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FIG. 1. Summary of tree-level scaling. High energy modes
(blue) are integrated out at tree level and remaining low en-
ergy modes (red) are rescaled so as to preserve the boson and
fermion kinetic terms. The boson modes (a) have the low
energy locus at a point whereas the fermion modes (b) have
their low energy locus on the Fermi surface. The most rele-
vant Yukawa coupling (c) connects particle-hole states nearly
perpendicular to the Fermi surface; all other couplings are
irrelevant under the scaling.

strong repulsive forces. These interactions are decoupled
by an auxiliary boson field ⌃ representing a fermion bilin-
ear, and the partition function is obtained by averaging
over all possible values of both the fermion and boson
fields. Initially, the auxiliary field has no dynamics and
is massive. However, as high energy modes of the ma-
terial of interest are integrated out, radiative corrections
induce dynamics for the bosons. In a Wilsonian theory,
the dynamics are encapsulated only in local, analytic cor-
rections to the bare action. This mode elimination is con-
tinued until eventually, the UV cuto⇥ � ⇥ EF represents
the scale up to which the quasiparticle kinetic energy can
be linearized about the Fermi level. At these low ener-
gies, and in the vicinity of the quantum critical point
where the field ⌃ condenses, it is legitimate to view ⌃
as an independent, emergent fluctuating field that cou-
ples to the low energy fermions via a Yukawa coupling as
written above23. This will be the point of departure of
our analysis below.
We first describe a consistent scaling procedure for the

action in Eq. 1. The key challenge stems from the
fact that the boson and fermion fields have vastly dif-
ferent kinematics. Our bosons have dispersion relation
k20 = c2k2+m2

⇤, so that low energies correspond as usual
to low momentum, and their scaling is that of a standard
relativistic field theory where all components of momen-
tum scale the same way as k0. By contrast, the fermion
dispersion relation is k0 = �(k) � µ, so their low en-
ergy states occur close to the Fermi surface (Fig. 1).
Moreover, the Yukawa coupling between the two sets of
fields must conserve energy and momentum in a coarse-
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UV theory: decoupled Fermi liquid+ nearly free bosons (g=0).  

Scaling must contend with vastly 
different kinematics of bosons and 
fermions.  

Fermions: low energy = Fermi surface.

Bosons: low energy = point in k-space.

-> anisotropic scaling.

-> isotropic scaling.  

Result: d=3 is the upper 
critical dimension.  

} Scale to preserve kinetic 
terms.  

[g] =
1

2
(3� d)



Renormalization group analysis

Integrate out modes with energy ⇤e�t < E < ⇤

Following Wilson, we will integrate out only high-
energy modes to obtain RG flows.  

K. G. Wilson

This is a radical departure from the 
standard approach to this problem.

UV cutoff: scale below which fermion dispersion can be 
linearized (with a well-defined Fermi velocity). 

⇤ =

Integrate out modes with momenta
⇤k / ⇤

⇤ke
�t < k < ⇤k



Renormalization group analysis

��4 term :

g ̄ � term :

a > 0

b > 0
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Naive fixed point: 

RG flows at one-loop:

Fermi  
velocity: 

dv

dt
= �cg2S(v) S(v) ⇠ sgn(v)

v⇤ = 0

✏ = 3� d



Properties of the naive fixed point

Fermion 2-pt function takes the form:

f(x) = scaling 
functionG(!, k) =

1

!1�2� 
f

✓
!

k?

◆

v/c: vanishes before the system reaches the fixed point!

This feature shuts down Landau damping.  

Is this too much of a good thing??  Infinitely heavy, incoherent 
fermions + non-mean-field critical exponents!

Consistent with the large NB solution.  



Introducing leading irrelevant couplings

w ~ band curvature✏(k)� µ = v`+ w`2 + · · ·

dv

dt
= �cg2S(v) S(v) ⇠ sgn(v)

RG flow equations

dw

dt
= �w

w cannot be neglected below an emergent energy scale:

µ⇤ ⇠ ⇤e�↵v0/g
2
0 , ↵ ⇠ O(1)

We don’t know what happens below this scale (Lifshitz transition?)

w is dangerously irrelevant



Current and future work…

There are log-squared divergences in the Cooper channel in the 
vicinity of the quantum critical point.  This reflects a much stronger 
superconducting tendency!   

Break inversion and time-reversal symmetry: these effects are gone.

More detailed, systematic treatment is in progress.  
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various probes, it remains unclear whether the long range
AFM order truly coexists microscopically with supercon-
ducting regions or whether there is microscopic phase
separation. So far the answer to this question seems to
depend strongly on the experimental technique used to
probe it. The type of coexistent we are referring to here
is fundamentally different to the type observed in com-
pounds such as the Chevrel phase, borocarbide, and some
heavy fermion compounds, such as UPd2Al3, in which
the magnetism occurs in a different electronic subsystem
to the main conduction electrons [71]. In the present
case the same electrons are responsible for both types of
behavior.
A major obstacle to probing the presence or absence of

a QCP inside the superconducting dome is the presence
of the superconductivity itself which makes most exper-
imental probes insensitive to its presence. Attempting
to remove the superconductivity, for example using high
magnetic field, is not straightforward either. Besides the
fact that very large fields (> 50T) that are required for
iron-pnictides, the presence of this field will affect the
original magnetic phase boundary in the zero tempera-
ture limit and may drastically change the nature of the
quantum critical fluctuations.
Figures 2(a), (b) and (c) illustrate several possible

generic temperature versus non thermal control param-
eter phase diagrams for heavy fermion compounds and
iron pnictides.

Case A: A repulsion between AFM and superconduct-
ing (SC) order: Quantum criticality is avoided
by the transition to the superconducting state
(Fig. 2(a)). A first-order phase transition be-
tween AFM and SC phases occurs. There is no
trace of a QCP in this case. This phase diagram
has been reported for CeIn3 and CePd2Si2 [65].

Case B: The magnetic order abruptly disappears at a
temperature where magnetic and superconduc-
tivity phase boundaries meet (Fig. 2(b)). A
first-order or a nearly first-order phase bound-
ary appears at a composition x1 and there is
no magnetic QCP. A nearly vertical first order
line at x1, which separates two phases, has been
reported in CeRhIn5 [48, 49].

Case C: A QCP lies beneath the superconducting dome
(Fig. 2(c)). The second order quantum phase
transition occurs at the QCP (xc) and the QCP
separates two distinct superconducting phases
(SC1 and SC2). The point at which magnetic
and superconductivity phase boundaries meet is
a tetracritical point. As shown later, this phase
diagram is realized in BaFe2(As1−xPx)2 [72].

Usually when looking for a mechanism of supercon-
ductivity we think of some form of boson mediating pair-
ing between two electrons to form a Cooper pair. The
strength and characteristic energy of the coupling then
determines Tc. However, more generally, the transition

FIG. 2. Three possible schematic phase diagrams with super-
conducting dome near a QCP. (a) The (magnetic) order com-
petes with and cannot coexist with superconductivity. The
boundary between the ordered phase and superconducting
phase is the first order phase transition. (b) Similar to the
case of (a) but the first-order nature of the boundary may
lead to a sizable region of phase separation. (c) The second
order phase transition line of the (magnetic) ordered phase
crosses the superconducting transition line, and the QCP ex-
ists inside the superconducting dome. There should be two
different phases inside the dome (SC1 and SC2). The SC2
phase is a microscopic coexistence phase of magnetic order
and superconductivity.

to the superconducting state will take place when the en-
ergy of the superconducting state is lower than that of the
normal state it replaces. Therefore we can view the mech-
anism in which quantum criticality causes superconduc-
tivity in two different ways. First, the quantum critical
fluctuations will enhance the bosonic coupling strength
and so produce strong Cooper pairing in the usual way.
i.e., similar to the enhancement which occurs in electron-
phonon coupled superconductors near a structural phase
transition where a phonon branch softens and becomes
strongly coupled to the electrons. Second, the increase in
the normal state energies caused by the quantum fluctua-
tions will mean that a transition to the superconducting
state, where such excitations are gapped out, is more
energetically favorable and therefore would occur at a
higher temperature than it normally would. The pairing
in this case need not necessarily be solely due to the quan-
tum fluctuations but may involve other channels such as
phonons. These two mechanisms are not be mutually ex-
clusive but it would be natural to associate the former
with case C and the latter with cases A and B. This is
because when the criticality is avoided in the supercon-
ducting state (cases A and B), the superconducting gap
formation surpresses the effect of quantum fluctuations
on the entropy, leading to a gain in the condensation en-
ergy.

III. 122 FAMILY

A. Parent compound

There have now been several different types of iron-
pnictide superconductors discovered. The families are
often abbreviated to the ratio of the elements in their

Goal: to demonstrate enhanced 
superconductivity out of a non-Fermi liquid.  

Related work: Metlitski et al. 1403.3694.  



Summary and outlook

We studied a metal near a nematic quantum critical point and found 
non-Fermi liquid phenomena via 1) large N and 2)RG methods.    

The fixed point corresponds to an infinitely heavy incoherent soup of 
fermions + order parameter fluctuations. 

This fixed point is unstable, but it governs scaling laws over a broad 
range of energy/temperature scales.  

We are currently investigating experimental properties (eg. heat 
capacity) and superconducting/CDW instabilities in this regime.  

Both methods produce consistent results.  



Appendix



Scaling analysis

Fermions: only momentum component normal to Fermi surface scale 
with energy: 

~k

~kF

~̀
Fermi surface

Bosons: all components of momentum scale with energy: 

~q

!0 = et!,k0
F = kF , `

0 = et`

!0 = et!,k0 = etk

quartic term:

BCS coupling:   

�0
� = e(3�d)t��

�0
 = � 



Scaling analysis

Boson-fermion coupling: 

For small momentum transfer, the coupling is marginal in d=3.

Fermi surface
~q

~k ~k + ~q

This coupling becomes relevant when d < 3, as is true for boson 
interactions:  

g0 = e
3�d
2 tg �0

� = e(3�d)t��

This results in non-trivial fixed points in d<3.  


