Tensor Renormalization of Quantum Spin Liquid States

Tao Xiang

Institute of Physics Chinese Academy of Sciences txiang@iphy.ac.cn

Outline

1. Brief introduction to the tensor renormalization

- 2. S=1/2 Heisenberg model on the Kagome lattice
 - ✓ Tensor network representation of ground state wavefunctions
 - ✓ Preliminary results on the ground state energy of the Kagome Heisenberg model

Tensor Renormalization: A new method to solve quantum many-body problems

Strongly Correlated Systems

To represent the "elephant" using the tensor-network state

To determine and detect this wave function using tensor renormalization

Road Map of Renormalization Group Theory

Numerical Renormalization Group

White

Phase Transition and Critical Phenomena

Quantum Field Theory

Numerical Renormalization Group

Wilson NRG 1975 -

0 Dimensional problems (single impurity Kondo model)

most powerful method for 1D quantum lattice models

S R White

Renormalization of Tensor Network States

2D or higher dimensional quantum/classical models

No minus sign problem & lattice size can be infinite

1. All classical and quantum lattice models are or can be represented as tensor network models

$$Z = Tr \prod_{i} T_{x_i x_i' y_i y_i'}$$

2. Ground state wave functions of quantum lattice models can be represented as tensor-network states

$$|\Psi\rangle = Tr \prod T_{x_i x'_i y_i y'_i} [m_i] |m_i\rangle$$

Example: Tensor Representation of Ising model

Lars Onsager

 $H = -J \sum_{\langle ii \rangle} \sigma_i^z \sigma_j^z$

 $\sigma_i^z = -1, 1$

$$Z = \operatorname{Tr} \exp(-\beta H)$$
$$= \operatorname{Tr} \prod_{\bullet} \exp(-\beta H_{\bullet})$$
$$= \operatorname{Tr} \prod_{\{S\}} T_{S_i S_j S_k S_l}$$

$$S_{i} = T_{S_{i}S_{j}S_{k}S_{l}} = \exp(-\beta H_{\bullet})$$

How to renormalize tensor: HOTRG

Scaling transformation

Magnetization of 3D Ising model

Relative difference is less than 10⁻⁵

MC data: A. L. Talapov, H. W. J. Blote, J. Phys. A: Math. Gen. 29, 5727 (1996).

Critical Temperature of 3D Ising model

Critical Temperature of 3D Ising model

method	year	T _c
HOTRG $D = 16$	2012	4.511544
D = 23	2013	4.51152469(1)
NRG of Nishino et al	2005	4.55(4)
Monte Carlo Simulation	2010	4.5115232(17)
	2003	4.5115248(6)
	1996	4.511516
High-temperature expansion	2000	4.511536

Application: search for quantum spin liquid states

Is there a Mott insulator without AFM order --- spin liquid state?

What is Mott insulator?

Mott Picture

One electron per unit cell. Charge gap is due to correlation. AFM is secondary effect.

It is not a band insulator

Slater Picture

Antiferromagnetic ground state.

Unit cell is doubled. Then there are

2 electrons per unit cell

It is a band insulator

JC Slater, PR 82, 538 (1951)

Routes to Spin Liquid States

Requirements: insulator \checkmark odd number of electrons per unit cell \checkmark no long range order \checkmark Route I Route II Geometrical frustration Proximity to Mott transition High-Tc cuprates Heisenberg model on Kagome

Valence bond crystal

J. B. Marston and C. Zeng, J Appl Phys **69**, 5962 (1991)
P. Nikolic and T. Senthil, PRB **68**, 214415 (2003)
R. R. P. Singh and D. A. Huse, PRB **76**, 180407 (2007) cluster expansion
R. R. P. Singh and D. A. Huse, PRB **77**, 144415 (2008) cluster expansion
G. Evenbly and G. Vidal, PRL **104**, 187203 (2010) MERA
Y. Iqbal, F. Becca, and D. Poilblanc, PRB **83**, 100404 (2011) variational MC

Z2 quantum spin liquid

S. Sachdev, PRB 45, 12377 (1992) Large N expansion
H. C. Jiang, Z. Y. Weng, and D. N. Sheng, PRL 101, 117203 (2008) DMRG
S. Yan, D. A. Huse, and S. R. White, Science 332, 1173 (2011) DMRG
Depenbrock, McCulloch, Schollwock, PRL 109, 067201 (2012) DMRG
D. Poilblanc, N. Schuch, D. Perez-Garcia, and J. I. Cirac, PRB 86, 014404 (2012)
D. Poilblanc and N. Schuch, PRB 87, 140407 (2013) variational

Gapless quantum spin liquid

Y. Ran, M. Hermele, P. A. Lee, and X.-G. Wen, PRL **98**, 117205 (2007) variational Y. Iqbal, F. Becca, S. Sorella, and D. Poilblanc, PRB 87, 060405 (2013) variational

Experiment: difficult to rule out all possibilities of orders

Theory: Lack of good analytic/numerical methods

- ✓ Mean field or variational approach:
 need accurate guess of the wavefunction
- ✓ Quantum Monte Carlo: minus sign problem
- ✓ Density Matrix Renormalization Group (DMRG):
 finite size effect

the number of states need to be retained grows exponentially with the circumference (area law of entanglement entropy)

Ground state energy of the S=1/2 Kagome Heisenberg model

Depenbrock et al, PRL 109, 067201 (2012)

Ground state energy obtained with different methods

Projected Entangled Pair State (PEPS)

Takes account the pair entanglement accurately

Projected Entangled Pair State (PEPS)

$$|\Psi
angle = Tr \prod T_{x_i x_i' y_i y_i'} [m_i] |m_i
angle$$

Virtual basis state Physical state

- Successfully applied to the quantum spin models on honeycomb and square lattices
- But, difficult to obtain a converged result if applied to the AFM Heisenberg on the Kagome or other frustrated lattices

Kagome Lattice

Projected Entangled Simplex States (PESS)

Projection tensor

Simplex tensor

- Virtual spins at each simplex (here triangle), instead of at each pair, form a maximally entangled state
- Remove the geometry frustration: The PESS wavefunction on the Kagome lattice is defined on the decorated honeycomb lattice (no frustration)

Simplex Solid States

D. P. Arovas, Phys. Rev. B 77, 104404 (2008)

Example: S = 2 spin model on the Kagome lattice

A S = 2 spin is a symmetric superposition of two virtual S = 1 spins

Three virtual spins at each triangle form a spin singlet

Ground state energy of the S=1/2 Kagome Heisenberg model

Summary

Tensor renormalization provides a powerful tool for studying classical/quantum lattice models

Tensor renormalization with the PESS wave function provides a good framework for studying quantum spin liquid states

> But there are still many problems need to be solved

Is the phase space of quantum many-body system compressible?

 $N_{total} = 2^{L^2}$

Area Law of Entanglement Entropy

Entanglement between A and B $S \propto L \propto \ln N$ $N \sim 2^L \ll 2^{L^2} = N_{total}$

Minimal Number of Basis States Needed

$$|\psi\rangle = \sum_{k=1}^{N \ll N_{total}} a_k |k\rangle$$

basis states

Area Law of Entanglement Entropy

Is there any wave function automatically satisfying this area law

The Answer: Tensor Network State (Tensor Product State)

Verstraete, Cirac, arXiv:0407066

PESS on other lattices

References

> Entanglement mean field theory

H.C. Jiang, et al, PRL 101, 090603 (2008)

Second renormalization

Z. Y. Xie et al, PRL **103**, 160601 (2009)

> Tensor representation of statistical models

H. H. Zhao, et al, PRB **81**, 174411 (2010)

Tensor renormalization using higher-order singular value decomposition

Z. Y. Xie et al, PRB 86, 045139 (2012)

Projected entangled simplex states

Z. Y. Xie et al, PRX 4, 011025 (2014)

S=2 Simplex Solid State on the Kagome Lattice

Projected Entangled Simplex State (PESS) on the Kagome lattice

3-PESS: a decorated honeycomb lattice

5-PESS: a decorated square lattice

(b) 5-PESS

9-PESS: a honeycomb lattice

(c) 9-PESS

What Is Renormalization Group?

Physics :compression of basis space (phase space)Mathematics:low rank approximation of matrix or tensor