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Topological superconductors (full gap)

Superconductor = Cooper pairs (boson) + Bogoliubov quasiparticles (fermions)

I. INTRODUCTION

BdG Hamiltonian

HBdG =

⎛

⎝

H0 ∆

∆∗ −H0

⎞

⎠ (1.1)

and

HBdG =

⎛

⎝

h0 ∆

∆† −hT
0

⎞

⎠ , (1.2)

and

H =
1

2

∑

k

(

c† c
)

HBdG

⎛

⎝

c

c†

⎞

⎠ (1.3)

chiral p-wave superconductor:

HBdG(k) = [2t(cos kx + cos ky) − µ] σz + ∆ (sin kx σx + sin ky σy) (1.4)

time-reversal acts as

UT H
∗(k)U †

T = +H(−k) (1.5)

particle hole acts as

UCH
∗(k)U †

C = −H(−k) (1.6)

sublattice symmetric

S ∝ UT UC S†
H(k) + SH = 0 (1.7)

Control q T2 = −1 w(K) = −wT (K)

∆t,k =
1

q + 1
∆ (1.8)

∆± = ∆s ± ∆p

∣

∣

∣⃗
l(k)

∣

∣

∣
(1.9)

quasiclassics∆(r) over k−1
F k/k̃
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Bogoliubov-de Gennes!
Hamiltonian 

BCS mean field theory:
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mean field

c†c c†c ⇒ ⟨c†c†⟩c c = ∆∗c c (1)

weak vs strong

|µ| < 4t (2)

n = 1 (3)

Lattice BdG Hamiltonian

m̂(k) =
m(k)

|m(k)|
m̂(k) : m̂(k) ∈ S2 π2(S

2) = (4)

HBdG = (2t [cos kx + cos ky] − µ) τz + ∆0 (τx sin kx + τy sin ky) = m(k) · τ (5)

mx my mz (6)

homotopy

n = # kx (7)

∆±
k

= ∆s ± ∆t |dk| (8)

∆s > ∆t ∆s ∼ ∆t ν = ±1 for ∆t > ∆s (9)

and

π3[U(2)] = q(k) :∈ U(2) (10)

Lattice BdG HBdG

h(k) = εkσ0 + αgk · σ (11)

∆(k) = (∆sσ0 + ∆tdk · σ) iσy (12)

hex Iy ≃
e

!

∫ kF,−

kF,+

dky

2π
sgn

[

∑

µ

Hµ
exρ

µ
1 (0, ky)

]

(

− t sin ky + λ
Lx/2
∑

n=1

ρx
n(0, ky) cos ky

)

.(13)

and

jn,ky = −t sin ky

(

c†nky↑cnky↑ + c†nky↓cnky↓

)

(14)

+ λ cos ky

(

c†nky↓
cnky↑ + c†nky↑

cnky↓

)

(15)

� BCS Superconductors are similar to insulators 

� Superconducting gap plays the role of insulating gap 

� Similar to TI, there are various different topological 
superconductors with robust surface states 

� T-breaking superconductor (Moore&Read 2000), T-
invariant superconductor (
��
�����	��������Schnyder et al 
	����������������� 

From topological insulators to topological 
superconductors 

Ek 

k 

Ek 

k 

Fermi liquid (normal state) Superconducting state 

2��

normal state

Topological equivalence:
BdG band structures are equivalent if they can be continuously !
deformed into one another without closing the energy gap !
and without breaking the symmetries of the SC.

gap in spectrum          can define top. invariant 

Built-in particle-hole symmetry:

6

How$about$the$Majorana condition$?$$$

The%Majorana condition is%imposed%by%superconductivity%

[Wilczek ,%Nature%(09)]

Majorana condition

quasiparticle antiDquasiparticlequasiparticle in%Nambu rep.

Cooper pair

Symmetries to consider: !
         particle-hole symmetry, time-reversal, reflection symmetry, etc.
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Chern number

n =
i

2π

∫

F dk filled states (1)

Gauss:
∫

S

κ dA = 4π(1 − g) (2)

Thermal Halll

κxy

T
=

π2k2
B

6h
n (3)

start labels

4s 3p 3s Egap − π/a + π/a (4)

end labels

H(k) (5)

and

W (k∥) = (6)

HBdG =

⎛

⎜

⎜

⎝

εk − gz
k

+∆s,k + ∆t,k ε∗⊥k
0

+∆s,k + ∆t,k −εk + gz
k

0 −ε∗⊥k

ε⊥k
0 εk + gz

k
−∆s,k + ∆t,k

0 −ε⊥k
−∆s,k + ∆t,k −εk − gz

k

⎞

⎟

⎟

⎠

, (7)

and

λL ≫ ξ0 ξ0 = !vF /(π∆0) (8)

(9)

λL > L ≫ ξ0 (10)

charge current operator

jy(x) =
iekF /β

2π!

√

λ̃2 + 1

∑

iωn,ν

+π/2
∫

−π/2

dθν sin θν ×

{

E

Ων
uνvν

(

ahe
ν,ν + aeh

ν,ν

)

e−2iqνx

}∣

∣

∣

∣

E→iωn

,

jl,y = +
e

!
t
∑

ky ,σ

sin ky c†lkyσclkyσ −
e

!
α

∑

ky

cos ky

(

c†lky↓clky↑ + c†lky↑clky↓

)

(10)

(11)

states 	


with E<0
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this is the topological number

�†
+E = ��E (1)

⇥t > ⇥s : ⇥ = +1 (2)

⇥t < ⇥s : ⇥ = 0 (3)

Z2 number 2:

NK⇥ =
Pf [i⌃2 q(K⇤,1)]

Pf [i⌃2 q(K⇤,2)]
e�

1
2

R
dk�Tr[q†(k�)�k�q(k�)] K⌅ (4)

Winding no 2

Wk⇥ =
1

2⌅

⇤
dk⇤ ⌥k�

�
arg(⇤�k + i⇥�

k )
⇥

(5)

WC = ±1 (6)

WC =
1

2⌅

⇤

C
dkl ⌥kl

�
arg(⇤�k + i⇥�

k )
⇥

(7)

Wk⇥ =
1

2⌅i

⇧
dk⇤Tr [⌥k� ln Dk] (8)

g(k) = kxx̂ + kyŷ + kzẑ (9)

and ⇥s > ⇥t ⇥s ⇤ ⇥t ⇥s < ⇥t

Iy =
e

2~
1

Ny

⌅

ky

Lx/2⌅

n=1

⇧ 0

�⇥
dE

⇥ {2t sin ky ⇧n(E, ky)� � cos ky ⇧x
n(E, ky)} (10)

and

⇥(k) = f(k) (⇥s⌃0 + ⇥tdk · �) i⌃y k1 k2

SHBdG(k) +HBdG(k)S = 0 (11)

⇤HBdG(k)⇤�1 = +HBdG(�k) (12)

sym

⇥C =
1

2⌅

⇤

C
F(k)dkl C (13)



Sr2RuO4 (n=2)

[Read & Green 00] 
edge band structure !
of chiral p-wave SC

Majorana state

Lattice BdG model:
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Lattice BdG Hamiltonian

m̂(k) =
m(k)

|m(k)|
m̂(k) : m̂(k) ∈ S2 π2(S

2) = (1)

HBdG = (2t [cos kx + cos ky] − µ) τz + ∆0 (τx sin kx + τy sin ky) = m(k) · τ (2)

mx my mz (3)

homotopy

n = # kx (4)

∆±
k

= ∆s ± ∆t |dk| (5)

∆s > ∆t ∆s ∼ ∆t ν = ±1 for ∆t > ∆s (6)

and

π3[U(2)] = q(k) :∈ U(2) (7)

Lattice BdG HBdG

h(k) = εkσ0 + αgk · σ (8)

∆(k) = (∆sσ0 + ∆tdk · σ) iσy (9)

hex Iy ≃
e

!

∫ kF,−

kF,+

dky

2π
sgn

[

∑

µ

Hµ
exρ

µ
1 (0, ky)

]

(

− t sin ky + λ
Lx/2
∑

n=1

ρx
n(0, ky) cos ky

)

.(10)

and

jn,ky = −t sin ky

(

c†nky↑
cnky↑ + c†nky↓

cnky↓

)

(11)

+ λ cos ky

(

c†nky↓
cnky↑ + c†nky↑

cnky↓

)

(12)

The contribution j(1)
n,ky

corresponds to nearest-neighbor hopping, whereas j(2)
n,ky

is due to
SOC. We calculate the expectation value of the edge current at zero temperature from
the spectrum El,ky and the wavefunctions

∣

∣ψl,ky

〉

of H(10)
ky

,

Iy = −
e

!

1

Ny

∑

ky

Lx/2
∑

n=1

∑

l,El<0

⟨ψl,ky |jn,ky
|ψl,ky⟩ (13)

We observe that the current operators presence of the superconducting gaps or the edge;
these only enter through the eigenstates |ψl,ky⟩.

Chiral p-wave superconductor (full gap)

  classified by !
Chern number:
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1 frist chapter

Thermal Hall

n =
1

8π

∫

BZ

d2k ϵµνm ·
[

∂kµm × ∂kνm
]

(1)

κxy

T
=

πk2
B

48h

∫

BZ

d2k ϵµνm ·
[

∂kµm × ∂kνm
]

(2)

m =
1

√

ε2
k + |∆k|2

⎛

⎝

εk

Re∆k

Im∆k

⎞

⎠ (3)

WCγ = ±1 for ∆p ∼ ∆s

ν = ±1 for ∆p > ∆s

These are the gaps

∆±
k = ∆s ± ∆p |dk| (4)

Particle-hole redundancy:

κxy/T
κxy

T
(5)

ϕ−E = ΞϕE , γ†
E = γ−E ⇒ Majorana state at E = 0 (6)

BdG Hamiltonian

H =
1

2

∑

k

(

c† c
)

HBdG

(

c
c†

)

, HBdG =

(

εk ∆k

∆∗
k −εk

)

(7)

∆k = ∆0(sin kx + i sin ky) (8)

and

Ξϕ = τxϕ
∗ (9)

ν =
1

2π

[
∮

∂(EBZ)

dk · A−
∫

EBZ

d2kF
]

mod 2 (10)

tages

ΞHBdG(k) Ξ−1 = −HBdG(−k) %−→ (11)

Brillouin zone
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1 frist chapter

Ξ HBdG(k) Ξ−1 = −HBdG(−k) "−→ (1)

∆n

Chern number g = 0, g = 1

n =
∑

bands

i

2π

∫

Fdk2 (2)

γC =

∮

C

A · dk (3)

First Chern number n = 0

n =
∑

bands

i

2π

∫

dk2

[〈

∂u

∂k1

∣

∣

∣

∣

∂u

∂k2

〉

−
〈

∂u

∂k2

∣

∣

∣

∣

∂u

∂k1

〉]

(4)

H(k) :

H(k, k′)

kF > 1/ξ0

sgn(∆+
K) = − sgn(∆−

K) and lk antiparallel to lek

sgn(∆+
k ) = − sgn(∆−

k )

σxy = ne2

h

ρxy = 1
n

h
e2

n ∈

Jy = σxyEx

Symmetry Operations: Egap = !ωc

ΘH(k)Θ−1 = +H(−k); Θ2 = ±1 (5)

ΞH(k)Ξ−1 = −H(−k); Ξ2 = ±1 (6)

ΠH(k)Π−1 = −H(k); Π ∝ ΘΞ (7)

Θ2 Ξ2 Π2 (8)

Mapping 
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Lattice BdG Hamiltonian

m̂(k) =
m(k)

|m(k)|
m̂(k) : m̂(k) ∈ S2 (1)

HBdG = εkτz + ∆0 (τx sin kx + τy sin ky) = m(k) · τ(2)

mx my mz (3)

homotopy

ν = # kx (4)

∆±
k

= ∆s ± ∆t |dk| (5)

∆s > ∆t ∆s ∼ ∆t ν = ±1 for ∆t > ∆s (6)

and

π3[U(2)] = q(k) :∈ U(2) (7)

Lattice BdG HBdG

h(k) = εkσ0 + αgk · σ (8)

∆(k) = (∆sσ0 + ∆tdk · σ) iσy (9)

hex Iy ≃
e

!

∫ kF,−

kF,+

dky

2π
sgn

[

∑

µ

Hµ
exρ

µ
1 (0, ky)

]

(

− t sin ky + λ
Lx/2
∑

n=1

ρx
n(0, ky) cos ky

)

.(10)

and

jn,ky = −t sin ky

(

c†nky↑
cnky↑ + c†nky↓

cnky↓

)

(11)

+ λ cos ky

(

c†nky↓
cnky↑ + c†nky↑

cnky↓

)

(12)

The contribution j(1)
n,ky

corresponds to nearest-neighbor hopping, whereas j(2)
n,ky

is due to
SOC. We calculate the expectation value of the edge current at zero temperature from
the spectrum El,ky and the wavefunctions

∣

∣ψl,ky

〉

of H(10)
ky

,

Iy = −
e

!

1

Ny

∑

ky

Lx/2
∑

n=1

∑

l,El<0

⟨ψl,ky |jn,ky
|ψl,ky⟩ (13)

We observe that the current operators presence of the superconducting gaps or the edge;
these only enter through the eigenstates |ψl,ky⟩.
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Lattice BdG Hamiltonian

m̂(k) =
m(k)

|m(k)|
m̂(k) : m̂(k) ∈ S2 (1)

HBdG = εkτz + ∆0 (τx sin kx + τy sin ky) = m(k) · τ(2)

mx my mz (3)

homotopy

ν = # kx (4)

∆±
k

= ∆s ± ∆t |dk| (5)
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and

π3[U(2)] = q(k) :∈ U(2) (7)
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h(k) = εkσ0 + αgk · σ (8)

∆(k) = (∆sσ0 + ∆tdk · σ) iσy (9)

hex Iy ≃
e

!

∫ kF,−

kF,+

dky

2π
sgn

[

∑

µ

Hµ
exρ

µ
1 (0, ky)

]

(

− t sin ky + λ
Lx/2
∑

n=1

ρx
n(0, ky) cos ky

)

.(10)

and

jn,ky = −t sin ky

(

c†nky↑
cnky↑ + c†nky↓

cnky↓

)

(11)

+ λ cos ky

(

c†nky↓
cnky↑ + c†nky↑

cnky↓

)

(12)

The contribution j(1)
n,ky

corresponds to nearest-neighbor hopping, whereas j(2)
n,ky

is due to
SOC. We calculate the expectation value of the edge current at zero temperature from
the spectrum El,ky and the wavefunctions

∣

∣ψl,ky

〉

of H(10)
ky

,

Iy = −
e

!

1

Ny

∑

ky

Lx/2
∑

n=1

∑

l,El<0

⟨ψl,ky |jn,ky
|ψl,ky⟩ (13)

We observe that the current operators presence of the superconducting gaps or the edge;
these only enter through the eigenstates |ψl,ky⟩.
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Lattice BdG Hamiltonian

m̂(k) =
m(k)

|m(k)|
m̂(k) : m̂(k) ∈ S2 π2(S

2) =

HBdG = εkτz + ∆0 (τx sin kx + τy sin ky) = m(k

mx my mz

homotopy

ν = # kx (4)

∆±
k

= ∆s ± ∆t |dk| (5)

∆s > ∆t ∆s ∼ ∆t ν = ±1 for ∆t > ∆s (6)

and

π3[U(2)] = q(k) :∈ U(2) (7)

Lattice BdG HBdG

h(k) = εkσ0 + αgk · σ (8)

∆(k) = (∆sσ0 + ∆tdk · σ) iσy (9)

hex Iy ≃
e

!

∫ kF,−

kF,+

dky

2π
sgn

[

∑

µ

Hµ
exρ

µ
1 (0, ky)

]

(

− t sin ky + λ
Lx/2
∑

n=1

ρx
n(0, ky) cos ky

)

.(10)

and

jn,ky = −t sin ky

(

c†nky↑
cnky↑ + c†nky↓

cnky↓

)

(11)

+ λ cos ky

(

c†nky↓
cnky↑ + c†nky↑

cnky↓

)

(12)

The contribution j(1)
n,ky

corresponds to nearest-neighbor hopping, whereas j(2)
n,ky

is due to
SOC. We calculate the expectation value of the edge current at zero temperature from
the spectrum El,ky and the wavefunctions

∣

∣ψl,ky

〉

of H(10)
ky

,

Iy = −
e

!

1

Ny

∑

ky

Lx/2
∑

n=1

∑

l,El<0

⟨ψl,ky |jn,ky
|ψl,ky⟩ (13)

We observe that the current operators presence of the superconducting gaps or the edge;
these only enter through the eigenstates |ψl,ky⟩.

Spectrum flattening:
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Lattice BdG Hamiltonian

m̂(k) =
m(k)

|m(k)|
(1)

HBdG = εkτz + ∆0 (τx sin kx + τy sin ky) = m(k) · τ (2)

mx my mz (3)

homotopy

ν = # kx (4)

∆±
k

= ∆s ± ∆t |dk| (5)

∆s > ∆t ∆s ∼ ∆t ν = ±1 for ∆t > ∆s (6)

and

π3[U(2)] = q(k) :∈ U(2) (7)

Lattice BdG HBdG

h(k) = εkσ0 + αgk · σ (8)

∆(k) = (∆sσ0 + ∆tdk · σ) iσy (9)

hex Iy ≃
e

!

∫ kF,−

kF,+

dky

2π
sgn

[

∑

µ

Hµ
exρ

µ
1 (0, ky)

]

(

− t sin ky + λ
Lx/2
∑

n=1

ρx
n(0, ky) cos ky

)

.(10)

and

jn,ky = −t sin ky

(

c†nky↑
cnky↑ + c†nky↓

cnky↓

)

(11)

+ λ cos ky

(

c†nky↓
cnky↑ + c†nky↑

cnky↓

)

(12)

The contribution j(1)
n,ky

corresponds to nearest-neighbor hopping, whereas j(2)
n,ky

is due to
SOC. We calculate the expectation value of the edge current at zero temperature from
the spectrum El,ky and the wavefunctions

∣

∣ψl,ky

〉

of H(10)
ky

,

Iy = −
e

!

1

Ny

∑

ky

Lx/2
∑

n=1

∑

l,El<0

⟨ψl,ky |jn,ky
|ψl,ky⟩ (13)

We observe that the current operators presence of the superconducting gaps or the edge;
these only enter through the eigenstates |ψl,ky⟩.
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and time-reversal symmetry

E = ± |m(k)| (1)

⇤ ⇥i (2)

k = �1 k = �2 (3)

⇥ = e+i�Sy/~K ⇥2 = �1 2e2/h ⇤i ⇤1 ⇤2 ⇤3 ⇤4 (4)

E0 ky (5)

2�C = solid angle swept out by d̂(k) (6)
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Lattice BdG Hamiltonian

HBdG = εkτz + ∆0 (τx sin kx + τy sin ky) = m(k) · τ (1)
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homotopy
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and

π3[U(2)] = q(k) :∈ U(2) (6)

Lattice BdG HBdG

h(k) = εkσ0 + αgk · σ (7)

∆(k) = (∆sσ0 + ∆tdk · σ) iσy (8)

hex Iy ≃
e

!

∫ kF,−

kF,+

dky

2π
sgn

[

∑

µ

Hµ
exρ

µ
1 (0, ky)

]

(

− t sin ky + λ

Lx/2
∑

n=1

ρx
n(0, ky) cos ky

)

.(9)

and

jn,ky = −t sin ky

(

c†nky↑
cnky↑ + c†nky↓

cnky↓

)

(10)

+ λ cos ky

(

c†nky↓cnky↑ + c†nky↑cnky↓

)

(11)

The contribution j(1)
n,ky

corresponds to nearest-neighbor hopping, whereas j(2)
n,ky

is due to
SOC. We calculate the expectation value of the edge current at zero temperature from
the spectrum El,ky and the wavefunctions

∣

∣ψl,ky

〉

of H(10)
ky

,

Iy = −
e

!

1

Ny

∑

ky

Lx/2
∑

n=1

∑

l,El<0

⟨ψl,ky |jn,ky
|ψl,ky⟩ (12)

We observe that the current operators presence of the superconducting gaps or the edge;
these only enter through the eigenstates |ψl,ky⟩.
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weak vs strong

|µ| > 4t (1)

n = 0 (2)

Lattice BdG Hamiltonian

m̂(k) =
m(k)

|m(k)|
m̂(k) : m̂(k) ∈ S2 π2(S

2) = (3)

HBdG = (2t [cos kx + cos ky] − µ) τz + ∆0 (τx sin kx + τy sin ky) = m(k) · τ (4)
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cnky↓
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The contribution j(1)
n,ky

corresponds to nearest-neighbor hopping, whereas j(2)
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is due to
SOC. We calculate the expectation value of the edge current at zero temperature from
the spectrum El,ky and the wavefunctions
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∣ψl,ky

〉

of H(10)
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,

Iy = −
e

!
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Ny

∑

ky

Lx/2
∑

n=1

∑

l,El<0

⟨ψl,ky |jn,ky
|ψl,ky⟩ (15)
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Summary: Topological superconductor (fully gapped)

Topological superconductors are:
•  fully gapped unconventional superconductors that support stable 
gapless edge states (or surface states)!!

• surface states are robust to perturbations (e.g. insensitive to disorder) 
that respect the fundamental symmetries of the system!!

• the stability of the surface states is guaranteed by the bulk gap and 
by the bulk topological invariant (bulk-boundary correspondence)



Summary: Topological superconductor (fully gapped)

Topological superconductors are:

Periodic Table of Topological Insulators and Superconductors
Anti-Unitary Symmetries :

- Time Reversal :   

- Particle - Hole  :

Unitary (chiral) symmetry :  
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Classification of topological superconductors (and insulators):
Symmetry dim

Class T P S 1 2 3
A 0 0 0 0 Z 0
AIII 0 0 1 Z 0 Z
AI 1 0 0 0 0 0
BDI 1 1 1 Z 0 0
D 0 1 0 Z2 Z 0
DIII -1 1 1 Z2 Z2 Z
AII -1 0 0 0 Z2 Z2

CII -1 -1 1 Z 0 Z2

C 0 -1 0 0 Z 0
CI 1 -1 1 0 0 Z

Table 1: Periodic table of topological insulators and superconductors. The ten symmetry classes
are defined in terms of the presence or absence of time-reversal symmetry (T ), particle-hole sym-
metry (C), and chiral symmetry (S). The presence and absence of symmetries is denoted by “±1”
and “0”, respectively, with “+1” or “-1” specifying whether the antiunitary operator implementing the
symmetry at the level of the single-particle Hamiltonian squares to “+1” or “-1”. The symbols Z
and Z2 indicate that the topologically distinct phases within a given symmetry class of topologi-
cal insulators (superconductors) are characterized by an integer invariant (Z), or a binary quantity
(Z2), respectively. The topological classifications show a regular pattern as a function of symmetry
class and spatial dimension.

2.2.1 Classification of topological insulators and superconductors

Together with Prof. Ludwig from UC Santa Barbara, Prof. Furusaki from RIKEN, and
Dr. Ryu from UC Berkeley, I have shown in 2008 that the notion of topological order
can be generalized to systems with different discrete symmetries than those discussed
in Sec. 2.1. Indeed, we found that there is a unified mathematical framework, which pro-
vides a complete and exhaustive classification of topologically ordered phases of gapped
free fermion systems in terms of discrete symmetries and spatial dimension [?, ?, ?]. A
summary of this classification scheme is presented in Table 1. The first column in this
table lists all possible “symmetry classes” of non-interacting single-particle Hamiltonians.
There are precisely ten distinct classes, which are identical to those discussed by Altland
and Zirnbauer in the context of random matrix theory [?,?]. The symmetry classes are
defined in terms of the presence or absence of time-reversal symmetry T = ±1, particle-
hole symmetry C = ±1, and the combined symmetry S = T � C, which is called “chiral”
symmetry. The result of this classification scheme is that in each spatial dimension there
exist precisely five distinct classes of topological insulators or superconductors, three of
which are characterized by an integer topological invariant (denoted by Z in Table 1),
while the remaining two possess a binary topological quantity (denoted by Z2). Since this
classification scheme shows a regular pattern as a function of symmetry class and spa-
tial dimension [?], it is is now commonly referred to as the “periodic table” of topological
insulators and superconductors.

The topologically ordered states discussed in Sec. 2.1 are all included in the periodic
table: The quantum Hall state belongs to class A (d = 2; no symmetry), the spin-orbit
induced topological insulators are members of class AII (d = 2, 3; T = �1), the spinless
px + ipy superconductor is in class D (d = 2; C = +1), and the B phase of 3He belongs
to class DIII (d = 3; T = �1, C = +1). However, by means of this classification scheme
we also predicted new topological phases of matter. That is, there are entries in the
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 chiral p-wave superconductor 

time-reversal invariant topological 
singlet superconductor

chiral d-wave superconductor 

non-centrosymmetric SC

A. Kitaev, AIP (2009)Schnyder, Ryu, Furusaki, Ludwig, PRB (2008)

    : integer classification!
    : binary classification!
0  : no topological SC

Tunneling conductance and topological surface states in superconductors
without inversion symmetry
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We study surface bound states and tunneling conductance spectra of non-centrosymmetric superconductors
(NCS). The appearance of dispersionless bound states is related to a non-zero topological invariant. Further-
more, we discuss different types of topological phase transitions in non-centrosymmetric superconductors.

PACS numbers: 74.50.+r,74.20.Rp,74.25.F-,03.65.vf

I. INTRODUCTION

In this paper we derive the surface bound state spectrum of
a NCS using quasiclassical scattering theory and compute the
tunneling conductance between a normal metal and a NCS
both as a function of surface orientation and as a function
of the relative magnitude of spin-singlet and spin-triplet pair-
ing states. Moreover, we also study zero-temperature quan-
tum phase transitions, where the momentum space topology
of the quasi-particle spectrum changes abruptly as the singlet-
to-triplet ratio in the pairing amplitude crosses a critical value
(Fig. 5). We discuss how these topological phase transitions
can be observed in experiments.

1

2π

∫

M

κ dA = χ = 2 − 2g (1)

2 0 (2)

II. THEORETICAL BACKGROUND

A. Model definition

We consider a mean-field model Hamiltonian for a BCS su-
perconductor in a non-centrosymmetric crystal. In particular
we have in mind Li2PdxPt3−xB, CePt3Si, and Y2C3. We start
from a general non-centrosymmetric superconductor with the
mean-field HamiltonianH = 1

2

∑

k
ψ†

k
H(k)ψ

k
with

H(k) =

(

h(k) ∆(k)
∆†(k) −hT (−k)

)

(3a)

and ψk = (c
k↑, ck↓, c

†
−k↑, c

†
−k↓)

T, where c†
k
(c

k
) denotes the

electron creation (annihilation) operator with momentum k
and spin σ. The normal state dispersion of the electrons is
described by the matrix

h(k) = ξkσ0 + gk · σ, (3b)

with ξk = !2k2/(2m) − µ and gk the spin-orbit coupling
(SOC) potential. The gap function∆(k) is

∆(k) = f(k) (∆s + dk · s) (isy) . (3c)

It is well-known that the highest Tc corresponds to dk ∥ gk.
Hence we write dk = ∆pgk.

B. Winding number

We can study the topological properties of nodal lines using
the winding number

WL =
1

2πi

∮

L

dl Tr
[

q−1(k)∇lq (k)
]

, (4)

where the integral is evaluated along the closed loop L in the
Brillouin zone. With this formula we can compute the topo-
logical charge associated with the nodal lines appearing in the
gapless phases of non-centrosymmetric superconductors.

III. BOUND STATE SPECTRA

IV. TUNNELING CONDUCTANCE

V. TOPOLOGICAL PHASE TRANSITIONS

In this Section we examine topological phase transi-
tions of model (2) as a function of the relative strength
of singlet and triplet contributions to the order parameter,
∆s/∆t. I.e, we investigate zero-temperature transitions be-
tween two phases which share the same symmetries, in
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We study surface bound states and tunneling conductance spectra of non-centrosymmetric superconductors
(NCS). The appearance of dispersionless bound states is related to a non-zero topological invariant. Further-
more, we discuss different types of topological phase transitions in non-centrosymmetric superconductors.
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I. INTRODUCTION

In this paper we derive the surface bound state spectrum of
a NCS using quasiclassical scattering theory and compute the
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both as a function of surface orientation and as a function
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tum phase transitions, where the momentum space topology
of the quasi-particle spectrum changes abruptly as the singlet-
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(Fig. 5). We discuss how these topological phase transitions
can be observed in experiments.
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2π

∫

M

κ dA = χ = 2 − 2g (1)

2 0 (2)
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2
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ψ†

k
H(k)ψ

k
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∆†(k) −hT (−k)

)

(3a)
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k↑, ck↓, c

†
−k↑, c

†
−k↓)

T, where c†
k
(c

k
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described by the matrix
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•  fully gapped unconventional superconductors that support stable 
gapless edge states (or surface states)!!

• surface states are robust to perturbations (e.g. insensitive to disorder) 
that respect the fundamental symmetries of the system!!

• the stability of the surface states is guaranteed by the bulk gap and 
by the bulk topological invariant (bulk-boundary correspondence)



Topological nodal 
superconductors



Festk

¨

orperphysik II, Musterl

¨

osung 11.

Prof. M. Sigrist, WS05/06 ETH Zürich

⇥(k) = f(k) (⇥s⌅0 + ⇥tdk · �) i⌅y

SHBdG(k) +HBdG(k)S = 0 (1)

⇤HBdG(k)⇤�1 = +HBdG(�k) (2)

sym

⇥(k1) =
i

2⇤

�

C
F(k)dk2 C (3)

and time-reversal symmetry ky

E = ± |m(k)| (4)

⇤ ⇥i (5)

k = �1 k = �2 (6)

⇤ = e+i�Sy/~K ⇤2 = �1 2e2/h ⌅i ⌅1 ⌅2 ⌅3 ⌅4 (7)

E0 ky (8)

2�C = solid angle swept out by d̂(k) (9)

H(k) = d(k) · � d̂ (10)

n =
i

2⇤

⇥ ⇤
Fd2k (11)

|u(k)⇧ ⇤ ei⇥k |u(k)⇧ (12)

A⇤ A+⌃k⇧k (13)

F = ⌃k ⇥A (14)

�C =

�

C

A · dk (15)

�C =

⇤

S

Fd2k (16)

=⌅ (17)

Bloch theorem

[T (R), H] = 0 k |⌃n⇧ = eikr |un(k)⇧ (18)

(19)

H(k) = e�ikrHe+ikr (20)

(21)

H(k) |un(k)⇧ = En(k) |un(k)⇧ (22)

Non-centrosymmetric superconductors

Helicity basis:

Normal state: 

Spin basis:
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1. f-Summenregel

Spin basis

µ =↑, ↓ (1)

Asymmetric potential gradient

∇U ∥ êz (p × ∇U) · σ (2)

Define n-vector

n =
1

√

ε2
k + |∆k|2

⎛

⎝

εk

Re∆k

Im∆k

⎞

⎠ (3)

Now we do the following

WS3 =
1

24π2

∫

S3

d2k dω εµνλTr
[

G∂µG−1G∂νG−1G∂λG−1
]

(4)

and

NS2 =
1

2π

∫

S2

d2k Tr [F ] F = ∇×A (5)

Time-reversal symmetry:

UTH∗(k)U †
T = +H(−k), UT = σ0 (6)

Particle-hole symmetry: S = TC = σ2

UCH∗(k)U †
C = −H(−k), UC = iσ2 (7)

basis in which S the H(k) Off-diagonal form

H̃(k) =

(

0 εk − i∆k

εk + i∆k 0

)

(8)

qk is

q(k) : S1 −→ S1 π1(S
1) = (9)
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1. f-Summenregel

Consider for example

ξ±k = εk ± |gk| (1)

g(−k) = −g(k) (2)

g(k) ∝ ky êx − kxêy (3)

Spin basis

µ =↑, ↓ s = ± (4)

Asymmetric potential gradient

∇U ∥ êz (p × ∇U) · σ (5)

Define n-vector

n =
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√

ε2
k + |∆k|2

⎛

⎝

εk

Re∆k

Im∆k

⎞

⎠ (6)

Now we do the following
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24π2

∫

S3
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]

(7)

and

NS2 =
1

2π

∫
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T = +H(−k), UT = σ0 (9)
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C = −H(−k), UC = iσ2 (10)
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(

0 εk − i∆k
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(11)

qk is

q(k) : S1 −→ S1 π1(S
1) = (12)
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1. f-Summenregel

The Hamiltonian is:

H =
∑

kµν

c†kµ (εkσ0 + αgk · σ)µν ckν =
∑

ks

ξks b†ksbks (1)

Consider for example

ξ±k = εk ± |gk| (2)

g−k = −gk (3)

gk ∝ ky êx − kxêy (4)

Spin basis

µ =↑, ↓ s = ± (5)

Asymmetric potential gradient

∇U ∥ êz (p × ∇U) · σ (6)

Define n-vector

n =
1

√

ε2
k + |∆k|2

⎛

⎝

εk

Re∆k

Im∆k

⎞

⎠ (7)

Now we do the following

WS3 =
1

24π2

∫

S3

d2k dω εµνλTr
[

G∂µG−1G∂νG−1G∂λG−1
]

(8)

and

NS2 =
1

2π

∫

S2

d2k Tr [F ] F = ∇×A (9)

Time-reversal symmetry:

UTH∗(k)U †
T = +H(−k), UT = σ0 (10)

Spin-split energy spectrum:

ky  

kx  

Gaps on the two Fermi surfaces:

(ii) Lack of center of inversion allows for admixture of singlet 
and triplet pairing components 

            is constrained by SO interaction: 
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1. f-Summenregel Superconducting gap

∆(k) = f(k) (∆sσ0 + dk · σ) iσy (1)

Uk (gk · σ)U †
k = |gk|σ3, (2)

that is

Uk = cos
θ

2
− ink · σ sin

θ

2
, nk =

gk × êz

|gk × êz|
, (3)

The Hamiltonian is:

H =
∑

kµν

c†kµ (εkσ0 + αgk · σ)µν ckν =
∑

ks

ξks b†ksbks (4)

Consider for example

ξ±k = εk ± |gk| (5)

g−k = −gk (6)

gk ∝ ky êx − kxêy (7)

Spin basis

µ =↑, ↓ s = ± (8)

Asymmetric potential gradient

∇U ∥ êz (p × ∇U) · σ (9)

Define n-vector

n =
1

√

ε2
k + |∆k|2

⎛

⎝

εk

Re∆k

Im∆k

⎞

⎠ (10)

Now we do the following

WS3 =
1

24π2

∫

S3

d2k dω εµνλTr
[

G∂µG−1G∂νG−1G∂λG−1
]

(11)
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gk ∥ dk (1)

ν = −2.0 ν = +2.0 ν = +4.0 (2)

g
(1,3)
inter = g

(2,3)
inter = −0.05 (3)

(4)

∆0,t ≫ ∆0,s (5)

and

∆(l)
s,k = ∆0,s

∑

i

wi cos (k · Ti) (6)

∆(l)
t,k = (−1)l∆0,t

∑

i

wi sin (k · Ti) (7)

D(k) =

(

+gz
k + ε1k − i(∆t,k − ∆s,k) +ε⊥k

+ε∗⊥k
−gz

k
+ ε1k − i(∆t,k + ∆s,k)

)

(8)

(9)

The topology of the nodal lines is described by the following invariant

ν1 =
1

2π
Im

∮

dklTr [∂kl
ln Dk] . (10)

gap functions

∆0,t > ∆0,s, ∆1,s (11)

(12)

∆(l)
s,k = (−1)l

[

∆0,s − ∆1,s

∑

i

cos (k · Ti)
]

(13)

(14)

∆(l)
t,k = ∆0,t

∑

i

sin (k · Ti) (15)
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homotopy

∆±
k

= ∆s ± ∆t |dk| (1)

and

π3[U(2)] = q(k) :∈ U(2) (2)

Lattice BdG HBdG

h(k) = εkσ0 + αgk · σ (3)

∆(k) = (∆sσ0 + dk · σ) iσy (4)

hex Iy ≃
e

!

∫ kF,−

kF,+

dky

2π
sgn

[

∑

µ

Hµ
exρ

µ
1 (0, ky)

]

(

− t sin ky + λ

Lx/2
∑

n=1

ρx
n(0, ky) cos ky

)

.(5)

and

jn,ky = −t sin ky

(

c†nky↑cnky↑ + c†nky↓cnky↓

)

(6)

+ λ cos ky

(

c†nky↓
cnky↑ + c†nky↑

cnky↓

)

(7)

The contribution j(1)
n,ky

corresponds to nearest-neighbor hopping, whereas j(2)
n,ky

is due to
SOC. We calculate the expectation value of the edge current at zero temperature from
the spectrum El,ky and the wavefunctions

∣

∣ψl,ky

〉

of H(10)
ky

,

Iy = −
e

!

1

Ny

∑

ky

Lx/2
∑

n=1

∑

l,El<0

⟨ψl,ky |jn,ky
|ψl,ky⟩ (8)

We observe that the current operators presence of the superconducting gaps or the edge;
these only enter through the eigenstates |ψl,ky⟩.

Momentum dependent topological number:

∝
3

∑

µ=1

Hµ
exρ

µ
1 (E, ky) ρx

1 (9)

NQPI(ω, q) = −
1

π
Im

[

∑

k

G0(k, ω)T (ω)G0(k + q, ω)

]

∝
〈

S⃗f

∣

∣

∣
T (ω)

∣

∣

∣
S⃗i

〉

(10)

a (11)

ξ±
k

= εk ± α |gk|(12)

(i) Lack of center of inversion causes anti-symmetric SO coupling.

CePt3Si, CeRhSi3, CeIrSi3, Li2Pt3B, LaPtBi,  etc. Interfaces: LaAlO3/SrTiO3!
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SHBdG(k) +HBdG(k)S = 0 (1)

⇤HBdG(k)⇤�1 = +HBdG(�k) (2)

sym
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F = ⌃k ⇥A (14)

�C =

�
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A · dk (15)

�C =

⇤
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Fd2k (16)

=⌅ (17)

Bloch theorem

[T (R), H] = 0 k |⌃n⇧ = eikr |un(k)⇧ (18)

(19)

H(k) = e�ikrHe+ikr (20)

(21)

H(k) |un(k)⇧ = En(k) |un(k)⇧ (22)
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Normal state: 

Spin basis:

Festkörperphysik II, Musterlösung 11.

Prof. M. Sigrist, WS05/06 ETH Zürich

1. f-Summenregel

Spin basis

µ =↑, ↓ (1)

Asymmetric potential gradient

∇U ∥ êz (p × ∇U) · σ (2)

Define n-vector

n =
1

√

ε2
k + |∆k|2

⎛

⎝

εk

Re∆k

Im∆k

⎞

⎠ (3)

Now we do the following

WS3 =
1

24π2

∫

S3

d2k dω εµνλTr
[

G∂µG−1G∂νG−1G∂λG−1
]

(4)

and

NS2 =
1

2π

∫

S2

d2k Tr [F ] F = ∇×A (5)

Time-reversal symmetry:

UTH∗(k)U †
T = +H(−k), UT = σ0 (6)

Particle-hole symmetry: S = TC = σ2

UCH∗(k)U †
C = −H(−k), UC = iσ2 (7)

basis in which S the H(k) Off-diagonal form

H̃(k) =

(

0 εk − i∆k

εk + i∆k 0

)

(8)

qk is

q(k) : S1 −→ S1 π1(S
1) = (9)
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Spin-split energy spectrum:

ky  

kx  

Gaps on the two Fermi surfaces:

(ii) Lack of center of inversion allows for admixture of singlet 
and triplet pairing components 

            is constrained by SO interaction: 
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1. f-Summenregel Superconducting gap
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Uk (gk · σ)U †
k = |gk|σ3, (2)
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Uk = cos
θ

2
− ink · σ sin

θ

2
, nk =

gk × êz

|gk × êz|
, (3)

The Hamiltonian is:

H =
∑

kµν

c†kµ (εkσ0 + αgk · σ)µν ckν =
∑

ks

ξks b†ksbks (4)
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gk ∝ ky êx − kxêy (7)
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µ =↑, ↓ s = ± (8)

Asymmetric potential gradient

∇U ∥ êz (p × ∇U) · σ (9)

Define n-vector

n =
1

√

ε2
k + |∆k|2

⎛

⎝

εk

Re∆k

Im∆k

⎞

⎠ (10)

Now we do the following

WS3 =
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24π2

∫

S3

d2k dω εµνλTr
[

G∂µG−1G∂νG−1G∂λG−1
]
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gk ∥ dk (1)

ν = −2.0 ν = +2.0 ν = +4.0 (2)

g
(1,3)
inter = g

(2,3)
inter = −0.05 (3)

(4)

∆0,t ≫ ∆0,s (5)

and

∆(l)
s,k = ∆0,s

∑

i

wi cos (k · Ti) (6)

∆(l)
t,k = (−1)l∆0,t

∑

i

wi sin (k · Ti) (7)

D(k) =

(

+gz
k + ε1k − i(∆t,k − ∆s,k) +ε⊥k

+ε∗⊥k
−gz

k
+ ε1k − i(∆t,k + ∆s,k)

)

(8)

(9)

The topology of the nodal lines is described by the following invariant

ν1 =
1

2π
Im

∮

dklTr [∂kl
ln Dk] . (10)

gap functions

∆0,t > ∆0,s, ∆1,s (11)

(12)

∆(l)
s,k = (−1)l

[

∆0,s − ∆1,s

∑

i

cos (k · Ti)
]

(13)

(14)

∆(l)
t,k = ∆0,t

∑

i

sin (k · Ti) (15)

Festkörperphysik II, Musterlösung 11.

Prof. M. Sigrist, WS05/06 ETH Zürich

homotopy

∆±
k

= ∆s ± ∆t |dk| (1)

and

π3[U(2)] = q(k) :∈ U(2) (2)

Lattice BdG HBdG

h(k) = εkσ0 + αgk · σ (3)

∆(k) = (∆sσ0 + dk · σ) iσy (4)

hex Iy ≃
e

!

∫ kF,−

kF,+

dky

2π
sgn

[

∑

µ

Hµ
exρ

µ
1 (0, ky)

]

(

− t sin ky + λ

Lx/2
∑

n=1

ρx
n(0, ky) cos ky

)

.(5)

and

jn,ky = −t sin ky

(

c†nky↑cnky↑ + c†nky↓cnky↓

)

(6)

+ λ cos ky

(

c†nky↓
cnky↑ + c†nky↑

cnky↓

)

(7)

The contribution j(1)
n,ky

corresponds to nearest-neighbor hopping, whereas j(2)
n,ky

is due to
SOC. We calculate the expectation value of the edge current at zero temperature from
the spectrum El,ky and the wavefunctions

∣

∣ψl,ky

〉

of H(10)
ky

,

Iy = −
e

!

1

Ny

∑

ky

Lx/2
∑

n=1

∑

l,El<0

⟨ψl,ky |jn,ky
|ψl,ky⟩ (8)

We observe that the current operators presence of the superconducting gaps or the edge;
these only enter through the eigenstates |ψl,ky⟩.

Momentum dependent topological number:

∝
3

∑

µ=1

Hµ
exρ

µ
1 (E, ky) ρx

1 (9)

NQPI(ω, q) = −
1

π
Im

[

∑

k

G0(k, ω)T (ω)G0(k + q, ω)

]

∝
〈

S⃗f

∣

∣

∣
T (ω)

∣

∣

∣
S⃗i

〉

(10)

a (11)

ξ±
k

= εk ± α |gk|(12)

(i) Lack of center of inversion causes anti-symmetric SO coupling.

Non-centrosymmetric superconductors

CePt3Si, CeRhSi3, CeIrSi3, Li2Pt3B, LaPtBi,  etc. Interfaces: LaAlO3/SrTiO3!
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pronounced angular dependence of jgkj leads to a strong
polarization dependence. Thus we get different peak posi-
tions for the E and T2 polarizations in !00

""ð!þÞ. As a
further consequence, the Raman spectra reveals up to two
kinks on each band (þ and $) at !=2c ¼ j1& p=4j and
!=2c ¼ j1& pj [21]. Furthermore, no singularities are
present. Nevertheless, the main feature, namely, the two-
peak structure, is still present, and one can directly deduce
the value of p from the peak and kink positions. Finally, for
p ' 1, one recovers the pure triplet case (d), in which the
unscreened Raman response is given by

!00
""ð!Þ / 2d

!
<
!
"2
k

jgkj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð!=2dþ jgkjÞð!=2d$ jgkjÞ

p
#

FS
:

Clearly, only the area on the Fermi surface with !=2d >
jgkj contributes to the Raman intensity. Since jgkj 2 ½0; 1)
has a saddle point at jgkj ¼ 1=4, we find kinks at charac-
teristic frequencies !=2d ¼ 1=4 and !=2d ¼ 1. In con-
trast to the Rashba-type ASOC, we find a characteristic low
energy expansion / ð!=2dÞ2 for both the A1 and the E
symmetry, while / ð!=2dÞ4 for the T2 symmetry [22].
Assuming weak coupling theory, we expect the pair-
breaking peaks (as shown in Fig. 4) for Li2PdxPt3$xB
roughly in the range 4–30 cm$1.

In summary, we have calculated for the first time the
electronic (pair-breaking) Raman response in the newly
discovered NCSs such as CePt3Si (G ¼ C4v) and
Li2PdxPt3$xB [G ¼ Oð432Þ]. Taking the pronounced
ASOC into account, we provide various analytical results

for the Raman response function and cover all relevant
cases from weak to strong triplet-singlet ratio p. Our
theoretical predictions can be used to analyze the under-
lying condensate in parity-violated NCSs and allows the
determination of p.
We thank P.M.R. Brydon and M. Sigrist for helpful

discussions.
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[5] B. Fåk, S. Raymond, D. Braithwaite, G. Lapertot, and
J.-M. Mignot, Phys. Rev. B 78, 184518 (2008).

[6] T. P. Devereaux, D. Einzel, B. Stadlober, R. Hackl, D. H.
Leach, and J. J. Neumeier, Phys. Rev. Lett. 72, 396 (1994).

[7] K. V. Samokhin, Phys. Rev. B 76, 094516 (2007).
[8] gk has the symmetry properties: g$k ¼ $gk and

ggðg$1kÞ ¼ gk, where g is any symmetry operation of
the point group G of the crystal.

[9] P. Badica, T. Kondo, and K. Togano, J. Phys. Soc. Jpn. 74,
1014 (2005).

[10] V.M. Edel’stein, Sov. Phys. JETP 68, 1244 (1989).
[11] L. P. Gor’kov and E. I. Rashba, Phys. Rev. Lett. 87,

037004 (2001).
[12] H. Q. Yuan, D. F. Agterberg, N. Hayashi, P. Badica, D.

Vandervelde, K. Togano, M. Sigrist, and M.B. Salamon,
Phys. Rev. Lett. 97, 017006 (2006), and references therein.

[13] P. Frigeri, D. Agterberg, I. Milat, and M. Sigrist, Eur.
Phys. J. B 54, 435 (2006).

[14] K.-W. Lee and W. E. Pickett, Phys. Rev. B 72, 174505
(2005).

[15] H. Monien and A. Zawadowski, Phys. Rev. B 41, 8798
(1990).

[16] The vertices Eð1Þ and Eð2Þ look completely different, but
the Raman response is exactly the same because Eð1Þ and
Eð2Þ are both elements of the same symmetry class.

[17] Because of screening, the constant term (k ¼ 0, l ¼ 0) in
the A1 vertex generates no Raman response; thus, we used
(k ¼ 1, l ¼ 0). For all of the other vertices, the leading
term is given by (k ¼ 1, l ¼ 1).

[18] H.-Y. Kee, K. Maki, and C.H. Chung, Phys. Rev. B 67,
180504 (2003).

[19] T. P. Devereaux and D. Einzel, Phys. Rev. B 51, 16 336
(1995); 54, 15 547 (1996).

[20] Note that, even though the gap function does not depend
on # (see Fig. 1), we obtain a small polarization depen-
dence. This unusual behavior only in A1 symmetry is due
to screening and leads to a small shoulder for p * 1.

[21] Interestingly, the T2 symmetry displays only a change in
slope at !=2c ¼ j1þ pj instead of a kink. A detailed
analysis can be found in [22].

[22] L. Klam, D. Manske, and D. Einzel (unpublished).

FIG. 4 (color online). Theoretical prediction of the Raman
spectra !00

""ð!$Þ [blue] and !00
""ð!þÞ [red] for E (solid lines),

T2 (dashed lines), and A1 [dotted line, only in (d)] polarizations
for the point group Oð432Þ. The insets display the point and line
nodes of the gap function !$.

PRL 102, 027004 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

16 JANUARY 2009

027004-4

+

pronounced angular dependence of jgkj leads to a strong
polarization dependence. Thus we get different peak posi-
tions for the E and T2 polarizations in !00

""ð!þÞ. As a
further consequence, the Raman spectra reveals up to two
kinks on each band (þ and $) at !=2c ¼ j1& p=4j and
!=2c ¼ j1& pj [21]. Furthermore, no singularities are
present. Nevertheless, the main feature, namely, the two-
peak structure, is still present, and one can directly deduce
the value of p from the peak and kink positions. Finally, for
p ' 1, one recovers the pure triplet case (d), in which the
unscreened Raman response is given by

!00
""ð!Þ / 2d

!
<
!
"2
k

jgkj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð!=2dþ jgkjÞð!=2d$ jgkjÞ

p
#

FS
:

Clearly, only the area on the Fermi surface with !=2d >
jgkj contributes to the Raman intensity. Since jgkj 2 ½0; 1)
has a saddle point at jgkj ¼ 1=4, we find kinks at charac-
teristic frequencies !=2d ¼ 1=4 and !=2d ¼ 1. In con-
trast to the Rashba-type ASOC, we find a characteristic low
energy expansion / ð!=2dÞ2 for both the A1 and the E
symmetry, while / ð!=2dÞ4 for the T2 symmetry [22].
Assuming weak coupling theory, we expect the pair-
breaking peaks (as shown in Fig. 4) for Li2PdxPt3$xB
roughly in the range 4–30 cm$1.

In summary, we have calculated for the first time the
electronic (pair-breaking) Raman response in the newly
discovered NCSs such as CePt3Si (G ¼ C4v) and
Li2PdxPt3$xB [G ¼ Oð432Þ]. Taking the pronounced
ASOC into account, we provide various analytical results

for the Raman response function and cover all relevant
cases from weak to strong triplet-singlet ratio p. Our
theoretical predictions can be used to analyze the under-
lying condensate in parity-violated NCSs and allows the
determination of p.
We thank P.M.R. Brydon and M. Sigrist for helpful

discussions.

*L.Klam@fkf.mpg.de
[1] E. Bauer, G. Hilscher, H. Michor, C. Paul, E.W. Scheidt,

A. Gribanov, Y. Seropegin, H. Noël, M. Sigrist, and P.
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""ð!þÞ. As a
further consequence, the Raman spectra reveals up to two
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!=2c ¼ j1& pj [21]. Furthermore, no singularities are
present. Nevertheless, the main feature, namely, the two-
peak structure, is still present, and one can directly deduce
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Assuming weak coupling theory, we expect the pair-
breaking peaks (as shown in Fig. 4) for Li2PdxPt3$xB
roughly in the range 4–30 cm$1.
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pronounced angular dependence of jgkj leads to a strong
polarization dependence. Thus we get different peak posi-
tions for the E and T2 polarizations in !00

""ð!þÞ. As a
further consequence, the Raman spectra reveals up to two
kinks on each band (þ and $) at !=2c ¼ j1& p=4j and
!=2c ¼ j1& pj [21]. Furthermore, no singularities are
present. Nevertheless, the main feature, namely, the two-
peak structure, is still present, and one can directly deduce
the value of p from the peak and kink positions. Finally, for
p ' 1, one recovers the pure triplet case (d), in which the
unscreened Raman response is given by
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Clearly, only the area on the Fermi surface with !=2d >
jgkj contributes to the Raman intensity. Since jgkj 2 ½0; 1)
has a saddle point at jgkj ¼ 1=4, we find kinks at charac-
teristic frequencies !=2d ¼ 1=4 and !=2d ¼ 1. In con-
trast to the Rashba-type ASOC, we find a characteristic low
energy expansion / ð!=2dÞ2 for both the A1 and the E
symmetry, while / ð!=2dÞ4 for the T2 symmetry [22].
Assuming weak coupling theory, we expect the pair-
breaking peaks (as shown in Fig. 4) for Li2PdxPt3$xB
roughly in the range 4–30 cm$1.

In summary, we have calculated for the first time the
electronic (pair-breaking) Raman response in the newly
discovered NCSs such as CePt3Si (G ¼ C4v) and
Li2PdxPt3$xB [G ¼ Oð432Þ]. Taking the pronounced
ASOC into account, we provide various analytical results

for the Raman response function and cover all relevant
cases from weak to strong triplet-singlet ratio p. Our
theoretical predictions can be used to analyze the under-
lying condensate in parity-violated NCSs and allows the
determination of p.
We thank P.M.R. Brydon and M. Sigrist for helpful

discussions.
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Non-centrosymmetric SCs: Structure of pairing state
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(4)

WC = ±1 (5)

WC =
1

2⌅

⇤

C
dkl ⌥kl

�
arg(⇤�k + i⇥�

k )
⇥

(6)

Wk⇥ =
1

2⌅i

⇧
dk⇤Tr [⌥k� ln Dk] (7)

g(k) = kxx̂ + kyŷ + kzẑ (8)

and ⇥s > ⇥t ⇥s ⇤ ⇥t ⇥s < ⇥t

Iy =
e

2~
1

Ny

⌅

ky

Lx/2⌅

n=1

⇧ 0

�⇥
dE

⇥ {2t sin ky ⇧n(E, ky)� � cos ky ⇧x
n(E, ky)} (9)

and

⇥(k) = f(k) (⇥s⌃0 + ⇥tdk · �) i⌃y k1 k2

SHBdG(k) +HBdG(k)S = 0 (10)

⇤HBdG(k)⇤�1 = +HBdG(�k) (11)

sym

⇥C =
1

2⌅

⇤

C
F(k)dkl C (12)

and time-reversal symmetry ky

E = ± |m(k)| (13)

⌅ ⇥i (14)

k = �1 k = �2 (15)

⇤ = e+i�Sy/~K ⇤2 = �1 2e2/h ⌅i ⌅1 ⌅2 ⌅3 ⌅4 (16)
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Non-centro SC: HBdG(k) =

✓
⇤k⇥0 + �gk · ⌅⇥ [�s⇥0 +�tdk · ⌅⇥](i⇥y)

(�i⇥y)[�s⇥0 +�tdk · ⌅⇥] �⇤k⇥0 � �gk · ⌅⇥⇤
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homotopy

∆±
k

= ∆s ± ∆t |dk| (1)

and

π3[U(2)] = q(k) :∈ U(2) (2)

Lattice BdG HBdG

h(k) = εkσ0 + αgk · σ (3)

∆(k) = (∆sσ0 + dk · σ) iσy (4)

hex Iy ≃
e

!

∫ kF,−

kF,+

dky

2π
sgn

[

∑

µ

Hµ
exρ

µ
1 (0, ky)

]

(

− t sin ky + λ

Lx/2
∑

n=1

ρx
n(0, ky) cos ky

)

.(5)

and

jn,ky = −t sin ky

(

c†nky↑cnky↑ + c†nky↓cnky↓

)

(6)

+ λ cos ky

(

c†nky↓
cnky↑ + c†nky↑

cnky↓

)

(7)

The contribution j(1)
n,ky

corresponds to nearest-neighbor hopping, whereas j(2)
n,ky

is due to
SOC. We calculate the expectation value of the edge current at zero temperature from
the spectrum El,ky and the wavefunctions

∣

∣ψl,ky

〉

of H(10)
ky

,

Iy = −
e

!

1

Ny

∑

ky

Lx/2
∑

n=1

∑

l,El<0

⟨ψl,ky |jn,ky
|ψl,ky⟩ (8)

We observe that the current operators presence of the superconducting gaps or the edge;
these only enter through the eigenstates |ψl,ky⟩.

Momentum dependent topological number:

∝
3

∑

µ=1

Hµ
exρ

µ
1 (E, ky) ρx

1 (9)

NQPI(ω, q) = −
1

π
Im

[

∑

k

G0(k, ω)T (ω)G0(k + q, ω)

]

∝
〈

S⃗f

∣

∣

∣
T (ω)

∣

∣

∣
S⃗i

〉

(10)

a (11)

ξ±
k

= εk ± α |gk|(12)

Gaps on the two Fermi surfaces:
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The contribution j(1)
n,ky

corresponds to nearest-neighbor hopping, whereas j(2)
n,ky

is due to
SOC. We calculate the expectation value of the edge current at zero temperature from
the spectrum El,ky and the wavefunctions

∣

∣ψl,ky

〉

of H(10)
ky

,

Iy = −
e

!

1

Ny

∑

ky

Lx/2
∑

n=1

∑

l,El<0

⟨ψl,ky |jn,ky
|ψl,ky⟩ (9)

We observe that the current operators presence of the superconducting gaps or the edge;
these only enter through the eigenstates |ψl,ky⟩.

Momentum dependent topological number:

∝
3

∑

µ=1

Hµ
exρ

µ
1 (E, ky) ρx

1 (10)

NQPI(ω, q) = −
1

π
Im

[

∑

k

G0(k, ω)T (ω)G0(k + q, ω)

]

∝
〈

S⃗f

∣

∣

∣
T (ω)

∣

∣

∣
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〉
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a (12)
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= εk ± α |gk|(13)
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⇥(k1) =
i

2⇤

⇤

C
F(k)dk2 C (1)

and time-reversal symmetry ky

E = ± |m(k)| (2)

⇤ ⇥i (3)

k = �1 k = �2 (4)

⇥ = e+i�Sy/~K ⇥2 = �1 2e2/h ⇤i ⇤1 ⇤2 ⇤3 ⇤4 (5)

E0 ky (6)

2�C = solid angle swept out by d̂(k) (7)

H(k) = d(k) · � d̂ (8)

n =
i

2⇤

⌅ ⇧
Fd2k (9)

|u(k)⌃ ⇤ ei⇥k |u(k)⌃ (10)

A⇤ A+⌥k⌅k (11)

F = ⌥k ⇥A (12)

�C =

⇤

C

A · dk (13)

�C =

⇧

S

Fd2k (14)

=⌅ (15)

Bloch theorem

[T (R), H] = 0 k |⇧n⌃ = eikr |un(k)⌃ (16)

(17)

H(k) = e�ikrHe+ikr (18)

(19)

H(k) |un(k)⌃ = En(k) |un(k)⌃ (20)

we have

H(k) kx ky ⇤/a � ⇤/a k ⇧ Brillouin Zone (21)

majoranas

�1 = ⇧ + ⇧† (22)

�2 = �i
�
⇧ � ⇧†⇥ (23)

chiral symmetry (TRS+PHS):

 Symmetries:
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1 frist chapter

BdG Hamiltonian

H =
1

2

∑

k

(

c† c
)

HBdG

(

c
c†

)

, HBdG =

(

h0 ∆
∆† −hT

0

)

(1)

and

Ξϕ = τxϕ
∗ (2)

ν =
1

2π

[
∮

∂(EBZ)

dk · A−
∫

EBZ

d2kF
]

mod 2 (3)

tages

ΞHBdG(k) Ξ−1 = −HBdG(−k) "−→ (4)

∆n

Chern number g = 0, g = 1

n =
∑

bands

i

2π

∫

Fdk2 (5)

γC =

∮

C

A · dk (6)

First Chern number n = 0

n =
∑

bands

i

2π

∫

dk2

[〈

∂u

∂k1

∣

∣

∣

∣

∂u

∂k2

〉

−
〈

∂u

∂k2

∣

∣

∣

∣

∂u

∂k1

〉]

(7)

H(k) :

H(k, k′)

kF > 1/ξ0

sgn(∆+
K) = − sgn(∆−

K) and lk antiparallel to lek

sgn(∆+
k ) = − sgn(∆−

k )

particle-hole symmetry:

time-reversal symmetry:
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⇥HBdG(k)⇥�1 = +HBdG(�k) (1)

sym

⇥(k1) =
i

2⇤

�

C
F(k)dk2 C (2)

and time-reversal symmetry ky

E = ± |m(k)| (3)

⇤ ⇥i (4)

k = �1 k = �2 (5)

⇥ = e+i�Sy/~K ⇥2 = �1 2e2/h ⇤i ⇤1 ⇤2 ⇤3 ⇤4 (6)

E0 ky (7)

2�C = solid angle swept out by d̂(k) (8)

H(k) = d(k) · � d̂ (9)

n =
i

2⇤

⇥ ⇤
Fd2k (10)

|u(k)⌃ ⇤ ei⇥k |u(k)⌃ (11)

A⇤ A+⌥k⌅k (12)

F = ⌥k ⇥A (13)

�C =

�

C

A · dk (14)

�C =

⇤

S

Fd2k (15)

=⌅ (16)

Bloch theorem

[T (R), H] = 0 k |⇧n⌃ = eikr |un(k)⌃ (17)

(18)

H(k) = e�ikrHe+ikr (19)

(20)

H(k) |un(k)⌃ = En(k) |un(k)⌃ (21)

we have

H(k) kx ky ⇤/a � ⇤/a k ⇧ Brillouin Zone (22)
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SHBdG(k) +HBdG(k)S = 0 (1)

⇥HBdG(k)⇥�1 = +HBdG(�k) (2)

sym

⇥(k1) =
i

2⇤

�

C
F(k)dk2 C (3)

and time-reversal symmetry ky

E = ± |m(k)| (4)

⇤ ⇥i (5)

k = �1 k = �2 (6)

⇥ = e+i�Sy/~K ⇥2 = �1 2e2/h ⇤i ⇤1 ⇤2 ⇤3 ⇤4 (7)

E0 ky (8)

2�C = solid angle swept out by d̂(k) (9)

H(k) = d(k) · � d̂ (10)

n =
i

2⇤

⇥ ⇤
Fd2k (11)

|u(k)⌃ ⇤ ei⇥k |u(k)⌃ (12)

A⇤ A+⌥k⌅k (13)

F = ⌥k ⇥A (14)

�C =

�

C

A · dk (15)

�C =

⇤

S

Fd2k (16)

=⌅ (17)

Bloch theorem

[T (R), H] = 0 k |⇧n⌃ = eikr |un(k)⌃ (18)

(19)

H(k) = e�ikrHe+ikr (20)

(21)

H(k) |un(k)⌃ = En(k) |un(k)⌃ (22)

we have

H(k) kx ky ⇤/a � ⇤/a k ⇧ Brillouin Zone (23)

Periodic Table of Topological Insulators and Superconductors
Anti-Unitary Symmetries :

-Time Reversal :   

-Particle -Hole  :

Unitary (chiral) symmetry :  

1 ()()1 2  ;    HH � �������� kk

1 ()()1 2  ;   HH � �������� kk

1 ()() HH � �������� kk ;   

Real
K-theory

Complex
K-theory

Bott Periodicity d����

Altland-
Zirnbauer
Random 
Matrix
Classes

Kitaev, 2008
Schnyder, Ryu, Furusaki, Ludwig 2008

8 antiunitary symmetry classes

DIII

⌅2 = +1

⇥2 = �1

S = ⌅⇥



1D Winding number:
(i) 1D contour  is not centrosymmetric: TRS   ,    PHS        TRS+PHS (chiral sym S)
AIII:

Symmetry dim
Class T P S 1 2 3
A 0 0 0 0 Z 0
AIII 0 0 1 Z 0 Z
AI 1 0 0 0 0 0
BDI 1 1 1 Z 0 0
D 0 1 0 Z2 Z 0
DIII -1 1 1 Z2 Z2 Z
AII -1 0 0 0 Z2 Z2

CII -1 -1 1 Z 0 Z2

C 0 -1 0 0 Z 0
CI 1 -1 1 0 0 Z

Table 1: Periodic table of topological insulators and superconductors. The ten symmetry classes
are defined in terms of the presence or absence of time-reversal symmetry (T ), particle-hole sym-
metry (C), and chiral symmetry (S). The presence and absence of symmetries is denoted by “±1”
and “0”, respectively, with “+1” or “-1” specifying whether the antiunitary operator implementing the
symmetry at the level of the single-particle Hamiltonian squares to “+1” or “-1”. The symbols Z
and Z2 indicate that the topologically distinct phases within a given symmetry class of topologi-
cal insulators (superconductors) are characterized by an integer invariant (Z), or a binary quantity
(Z2), respectively. The topological classifications show a regular pattern as a function of symmetry
class and spatial dimension.

2.2.1 Classification of topological insulators and superconductors

Together with Prof. Ludwig from UC Santa Barbara, Prof. Furusaki from RIKEN, and
Dr. Ryu from UC Berkeley, I have shown in 2008 that the notion of topological order
can be generalized to systems with different discrete symmetries than those discussed
in Sec. 2.1. Indeed, we found that there is a unified mathematical framework, which pro-
vides a complete and exhaustive classification of topologically ordered phases of gapped
free fermion systems in terms of discrete symmetries and spatial dimension [?, ?, ?]. A
summary of this classification scheme is presented in Table 1. The first column in this
table lists all possible “symmetry classes” of non-interacting single-particle Hamiltonians.
There are precisely ten distinct classes, which are identical to those discussed by Altland
and Zirnbauer in the context of random matrix theory [?,?]. The symmetry classes are
defined in terms of the presence or absence of time-reversal symmetry T = ±1, particle-
hole symmetry C = ±1, and the combined symmetry S = T � C, which is called “chiral”
symmetry. The result of this classification scheme is that in each spatial dimension there
exist precisely five distinct classes of topological insulators or superconductors, three of
which are characterized by an integer topological invariant (denoted by Z in Table 1),
while the remaining two possess a binary topological quantity (denoted by Z2). Since this
classification scheme shows a regular pattern as a function of symmetry class and spa-
tial dimension [?], it is is now commonly referred to as the “periodic table” of topological
insulators and superconductors.

The topologically ordered states discussed in Sec. 2.1 are all included in the periodic
table: The quantum Hall state belongs to class A (d = 2; no symmetry), the spin-orbit
induced topological insulators are members of class AII (d = 2, 3; T = �1), the spinless
px + ipy superconductor is in class D (d = 2; C = +1), and the B phase of 3He belongs
to class DIII (d = 3; T = �1, C = +1). However, by means of this classification scheme
we also predicted new topological phases of matter. That is, there are entries in the
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⇥(k1) =
i

2⇤

⇤

C
F(k)dk2 C (1)

and time-reversal symmetry ky

E = ± |m(k)| (2)

⇤ ⇥i (3)

k = �1 k = �2 (4)

⇥ = e+i�Sy/~K ⇥2 = �1 2e2/h ⇤i ⇤1 ⇤2 ⇤3 ⇤4 (5)

E0 ky (6)

2�C = solid angle swept out by d̂(k) (7)

H(k) = d(k) · � d̂ (8)

n =
i

2⇤

⌅ ⇧
Fd2k (9)

|u(k)⌃ ⇤ ei⇥k |u(k)⌃ (10)

A⇤ A+⌥k⌅k (11)

F = ⌥k ⇥A (12)

�C =

⇤

C

A · dk (13)

�C =

⇧

S

Fd2k (14)

=⌅ (15)

Bloch theorem

[T (R), H] = 0 k |⇧n⌃ = eikr |un(k)⌃ (16)

(17)

H(k) = e�ikrHe+ikr (18)

(19)

H(k) |un(k)⌃ = En(k) |un(k)⌃ (20)

we have

H(k) kx ky ⇤/a � ⇤/a k ⇧ Brillouin Zone (21)

majoranas

�1 = ⇧ + ⇧† (22)

�2 = �i
�
⇧ � ⇧†⇥ (23)

flat band surface states
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homotopy

∆±
k

= ∆s ± ∆t |dk| (1)

∆s > ∆t ∆s ∼ ∆t ∆s < ∆t (2)

and

π3[U(2)] = q(k) :∈ U(2) (3)

Lattice BdG HBdG

h(k) = εkσ0 + αgk · σ (4)

∆(k) = (∆sσ0 + ∆tdk · σ) iσy (5)

hex Iy ≃
e

!

∫ kF,−

kF,+

dky

2π
sgn

[

∑

µ

Hµ
exρ

µ
1 (0, ky)

]

(

− t sin ky + λ
Lx/2
∑

n=1

ρx
n(0, ky) cos ky

)

.(6)

and

jn,ky = −t sin ky

(

c†nky↑
cnky↑ + c†nky↓

cnky↓

)

(7)

+ λ cos ky

(

c†nky↓
cnky↑ + c†nky↑

cnky↓

)

(8)

The contribution j(1)
n,ky

corresponds to nearest-neighbor hopping, whereas j(2)
n,ky

is due to
SOC. We calculate the expectation value of the edge current at zero temperature from
the spectrum El,ky and the wavefunctions

∣

∣ψl,ky

〉

of H(10)
ky

,

Iy = −
e

!

1

Ny

∑

ky

Lx/2
∑

n=1

∑

l,El<0

⟨ψl,ky |jn,ky
|ψl,ky⟩ (9)

We observe that the current operators presence of the superconducting gaps or the edge;
these only enter through the eigenstates |ψl,ky⟩.

Momentum dependent topological number:

∝
3

∑

µ=1

Hµ
exρ

µ
1 (E, ky) ρx

1 (10)

NQPI(ω, q) = −
1

π
Im

[

∑

k

G0(k, ω)T (ω)G0(k + q, ω)

]

∝
〈

S⃗f

∣

∣

∣
T (ω)

∣

∣

∣
S⃗i

〉

(11)

a (12)

ξ±
k

= εk ± α |gk|(13)

dk = (sin k
x

+ sin k
y

, sin k
x

+ sin k
y

, sin k
z

)T
Schnyder, Brydon, Timm PRB (2012) 

Nodal noncentrosymmetric superconductors

Mineev and Sigrist, arXiv 2009; Schnyder and Ryu, PRB 2011; Sato et al., PRB 2011

positive helicity negative helicity
superconductor without inversion
symmetry, e.g. CePt3Si
spin-orbit coupling lifts
spin-degeneracy of Fermi surface
) helicity basis
absence of parity ) mixed
singlet/triplet, gap line nodes

no bulk topological invariant
but momentum-dependent
winding number W (kk) at
surfaces
W (kk) = ±1: nondegenerate

zero-energy flat bands

gap nodes
projected

gap nodes

Fermi surface

trivial = 0

projectednon−trivial = +/−1

Brillouin zone

2D surface

3D Brillouin zone

1D class AIII Hamiltonian

Fermi surface

Philip M. R. Brydon,1,3 Andreas Schnyder,2 and Carsten Timm3 Spin texture of topological superconductor...

Nodal non-centrosymmetric superconductor

courtesy P. Brydon



Symmetry dim
Class T P S 1 2 3
A 0 0 0 0 Z 0
AIII 0 0 1 Z 0 Z
AI 1 0 0 0 0 0
BDI 1 1 1 Z 0 0
D 0 1 0 Z2 Z 0
DIII -1 1 1 Z2 Z2 Z
AII -1 0 0 0 Z2 Z2

CII -1 -1 1 Z 0 Z2

C 0 -1 0 0 Z 0
CI 1 -1 1 0 0 Z

Table 1: Periodic table of topological insulators and superconductors. The ten symmetry classes
are defined in terms of the presence or absence of time-reversal symmetry (T ), particle-hole sym-
metry (C), and chiral symmetry (S). The presence and absence of symmetries is denoted by “±1”
and “0”, respectively, with “+1” or “-1” specifying whether the antiunitary operator implementing the
symmetry at the level of the single-particle Hamiltonian squares to “+1” or “-1”. The symbols Z
and Z2 indicate that the topologically distinct phases within a given symmetry class of topologi-
cal insulators (superconductors) are characterized by an integer invariant (Z), or a binary quantity
(Z2), respectively. The topological classifications show a regular pattern as a function of symmetry
class and spatial dimension.

2.2.1 Classification of topological insulators and superconductors

Together with Prof. Ludwig from UC Santa Barbara, Prof. Furusaki from RIKEN, and
Dr. Ryu from UC Berkeley, I have shown in 2008 that the notion of topological order
can be generalized to systems with different discrete symmetries than those discussed
in Sec. 2.1. Indeed, we found that there is a unified mathematical framework, which pro-
vides a complete and exhaustive classification of topologically ordered phases of gapped
free fermion systems in terms of discrete symmetries and spatial dimension [?, ?, ?]. A
summary of this classification scheme is presented in Table 1. The first column in this
table lists all possible “symmetry classes” of non-interacting single-particle Hamiltonians.
There are precisely ten distinct classes, which are identical to those discussed by Altland
and Zirnbauer in the context of random matrix theory [?,?]. The symmetry classes are
defined in terms of the presence or absence of time-reversal symmetry T = ±1, particle-
hole symmetry C = ±1, and the combined symmetry S = T � C, which is called “chiral”
symmetry. The result of this classification scheme is that in each spatial dimension there
exist precisely five distinct classes of topological insulators or superconductors, three of
which are characterized by an integer topological invariant (denoted by Z in Table 1),
while the remaining two possess a binary topological quantity (denoted by Z2). Since this
classification scheme shows a regular pattern as a function of symmetry class and spa-
tial dimension [?], it is is now commonly referred to as the “periodic table” of topological
insulators and superconductors.

The topologically ordered states discussed in Sec. 2.1 are all included in the periodic
table: The quantum Hall state belongs to class A (d = 2; no symmetry), the spin-orbit
induced topological insulators are members of class AII (d = 2, 3; T = �1), the spinless
px + ipy superconductor is in class D (d = 2; C = +1), and the B phase of 3He belongs
to class DIII (d = 3; T = �1, C = +1). However, by means of this classification scheme
we also predicted new topological phases of matter. That is, there are entries in the
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Bloch theorem
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H(k) = e�ikrHe+ikr (18)
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homotopy

∆±
k

= ∆s ± ∆t |dk| (1)

∆s > ∆t ∆s ∼ ∆t ∆s < ∆t (2)

and

π3[U(2)] = q(k) :∈ U(2) (3)

Lattice BdG HBdG

h(k) = εkσ0 + αgk · σ (4)

∆(k) = (∆sσ0 + ∆tdk · σ) iσy (5)

hex Iy ≃
e

!

∫ kF,−

kF,+

dky

2π
sgn

[

∑

µ

Hµ
exρ

µ
1 (0, ky)

]

(

− t sin ky + λ
Lx/2
∑

n=1

ρx
n(0, ky) cos ky

)

.(6)

and

jn,ky = −t sin ky

(

c†nky↑
cnky↑ + c†nky↓

cnky↓

)

(7)

+ λ cos ky

(

c†nky↓
cnky↑ + c†nky↑

cnky↓

)

(8)

The contribution j(1)
n,ky

corresponds to nearest-neighbor hopping, whereas j(2)
n,ky

is due to
SOC. We calculate the expectation value of the edge current at zero temperature from
the spectrum El,ky and the wavefunctions

∣

∣ψl,ky

〉

of H(10)
ky

,

Iy = −
e

!

1

Ny

∑

ky

Lx/2
∑

n=1

∑

l,El<0

⟨ψl,ky |jn,ky
|ψl,ky⟩ (9)

We observe that the current operators presence of the superconducting gaps or the edge;
these only enter through the eigenstates |ψl,ky⟩.

Momentum dependent topological number:

∝
3

∑

µ=1

Hµ
exρ

µ
1 (E, ky) ρx

1 (10)

NQPI(ω, q) = −
1

π
Im

[

∑

k

G0(k, ω)T (ω)G0(k + q, ω)

]

∝
〈

S⃗f

∣

∣

∣
T (ω)

∣

∣

∣
S⃗i

〉

(11)

a (12)

ξ±
k

= εk ± α |gk|(13)

dk = (sin k
x

, sin k
y

, sin k
z

)T

1D Z2 number:DIII: N1D
C =

2Y

a=1

Pf [�(�a)]p
det [�(�a)]

=
2Y

a=1

Pf
⇥
qT (�a)

⇤
p

det [q(�a)]
= ±1

We recognise the Dirac Cone centered around zero momentum and addition-
ally a bound state between the peaks located at kz = 1 and kz = 2. It is not
clear though, if these are di�erent states or if its the same one. That these are
di�erent states can be judged by looking at the spin resolved SDOS
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SOC. We calculate the expectation value of the edge current at zero temperature from
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∣
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〉
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ky
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Iy = −
e

!

1

Ny

∑

ky

Lx/2
∑

n=1

∑

l,El<0

⟨ψl,ky |jn,ky
|ψl,ky⟩ (10)

We observe that the current operators presence of the superconducting gaps or the edge;
these only enter through the eigenstates |ψl,ky⟩.

Momentum dependent topological number:

∝
3

∑

µ=1

Hµ
exρ

µ
1 (E, ky) ρx

1 (11)

NQPI(ω, q) = −
1

π
Im

[

∑

k

G0(k, ω)T (ω)G0(k + q, ω)

]

∝
〈

S⃗f

∣

∣

∣
T (ω)

∣

∣

∣
S⃗i

〉

(12)

a (13)

ξ±
k

= εk ± α |gk|(14)

Surface DOS

The out of plain spin component is zero and therefore not shown.
We notice, that the x-component of the expectation value of the spin on

the Dirac Cone is zero and the z-component is positiv for negative kz and vice
versa. We conclude, that the spin on the Dirac Cone is in plane and points to
the center. This is excected, as the vector l is paralell to k though the spin
should be alinged along k.

We also notice, that the bound stated mentioned before has a nonzero x-
component and is pointing outward. Therefore this state has opposite helicity
compared to the Dirac Cone and is condsidered a di�erent state.

As we have observed an oszillation of the surface state in the last section,
we will analyse this as well. Therefore we plot the DOS for the first layers
beginning from the surface, the colorsceme is the same and in each DOS and
spin resolved DOS respectively. We choose a fixed energy of ⇤ = 0.5. Further
� = 0.01 and the remaining k-components varies between �⇥ and ⇥ with 160
points being calculated.
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∣

∣
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∣

∣

∣
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helical Majorana state

k
x

ky
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C

Nodal non-centrosymmetric superconductor



Symmetry dim
Class T P S 1 2 3
A 0 0 0 0 Z 0
AIII 0 0 1 Z 0 Z
AI 1 0 0 0 0 0
BDI 1 1 1 Z 0 0
D 0 1 0 Z2 Z 0
DIII -1 1 1 Z2 Z2 Z
AII -1 0 0 0 Z2 Z2

CII -1 -1 1 Z 0 Z2

C 0 -1 0 0 Z 0
CI 1 -1 1 0 0 Z

Table 1: Periodic table of topological insulators and superconductors. The ten symmetry classes
are defined in terms of the presence or absence of time-reversal symmetry (T ), particle-hole sym-
metry (C), and chiral symmetry (S). The presence and absence of symmetries is denoted by “±1”
and “0”, respectively, with “+1” or “-1” specifying whether the antiunitary operator implementing the
symmetry at the level of the single-particle Hamiltonian squares to “+1” or “-1”. The symbols Z
and Z2 indicate that the topologically distinct phases within a given symmetry class of topologi-
cal insulators (superconductors) are characterized by an integer invariant (Z), or a binary quantity
(Z2), respectively. The topological classifications show a regular pattern as a function of symmetry
class and spatial dimension.

2.2.1 Classification of topological insulators and superconductors

Together with Prof. Ludwig from UC Santa Barbara, Prof. Furusaki from RIKEN, and
Dr. Ryu from UC Berkeley, I have shown in 2008 that the notion of topological order
can be generalized to systems with different discrete symmetries than those discussed
in Sec. 2.1. Indeed, we found that there is a unified mathematical framework, which pro-
vides a complete and exhaustive classification of topologically ordered phases of gapped
free fermion systems in terms of discrete symmetries and spatial dimension [?, ?, ?]. A
summary of this classification scheme is presented in Table 1. The first column in this
table lists all possible “symmetry classes” of non-interacting single-particle Hamiltonians.
There are precisely ten distinct classes, which are identical to those discussed by Altland
and Zirnbauer in the context of random matrix theory [?,?]. The symmetry classes are
defined in terms of the presence or absence of time-reversal symmetry T = ±1, particle-
hole symmetry C = ±1, and the combined symmetry S = T � C, which is called “chiral”
symmetry. The result of this classification scheme is that in each spatial dimension there
exist precisely five distinct classes of topological insulators or superconductors, three of
which are characterized by an integer topological invariant (denoted by Z in Table 1),
while the remaining two possess a binary topological quantity (denoted by Z2). Since this
classification scheme shows a regular pattern as a function of symmetry class and spa-
tial dimension [?], it is is now commonly referred to as the “periodic table” of topological
insulators and superconductors.

The topologically ordered states discussed in Sec. 2.1 are all included in the periodic
table: The quantum Hall state belongs to class A (d = 2; no symmetry), the spin-orbit
induced topological insulators are members of class AII (d = 2, 3; T = �1), the spinless
px + ipy superconductor is in class D (d = 2; C = +1), and the B phase of 3He belongs
to class DIII (d = 3; T = �1, C = +1). However, by means of this classification scheme
we also predicted new topological phases of matter. That is, there are entries in the
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E0 ky (6)

2�C = solid angle swept out by d̂(k) (7)

H(k) = d(k) · � d̂ (8)

n =
i

2⇤

⌅ ⇧
Fd2k (9)

|u(k)⌃ ⇤ ei⇥k |u(k)⌃ (10)

A⇤ A+⌥k⌅k (11)

F = ⌥k ⇥A (12)

�C =

⇤

C

A · dk (13)

�C =

⇧

S

Fd2k (14)

=⌅ (15)

Bloch theorem

[T (R), H] = 0 k |⇧n⌃ = eikr |un(k)⌃ (16)

(17)

H(k) = e�ikrHe+ikr (18)

(19)

H(k) |un(k)⌃ = En(k) |un(k)⌃ (20)

we have

H(k) kx ky ⇤/a � ⇤/a k ⇧ Brillouin Zone (21)

majoranas

�1 = ⇧ + ⇧† (22)

�2 = �i
�
⇧ � ⇧†⇥ (23)

 2D Z2 number:DIII:

arc surface state

dk = (sin k
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,� sin k
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, 0)T
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some more

kx kz (1)

k q = 2k A(E,k) ⇥⌃00
s ⇥⌃ij

s i, j ⇥ {1, 2, 3} (2)

⇥⌃�⇥
s (E,q) = � 1

⇧
⇤

⌃
d2k⇧
(2⇧)2

Tr⇤

�
S�G(0)(E,k + q)V ⇥G0(E,k)

⇥
11

(3)

qx qy (4)

⇥⌃0⇥
s ⇥⌃i⇥

s , i ⇥ {1, 2, 3} � = 0 � ⇥ {1, 2, 3} (5)

and this is it:

⇥⌃�⇥
s (E,q) = � 1

2⇧i

⌥
⇤�⇥(E,q)�

⇤
⇤�⇥(E,�q)

⌅⇥�
, (6)

and

⇥G⇥
nn(E,k⇧,q⇧) =

⇧

n�n��

G(0)
nn�(E,k⇤⇧)V

⇥
n�n��G

(0)
n��n(E,k⇧), (7)

and

⇤�⇥(E,q) =

⌃
d2k⇧
(2⇧)2

Tr⇤

�
S�G(0)(E,k + q)V ⇥G0(E,k)

⇥
11

. (8)

More formulas I need:

q = kf � ki kf ki ⇤ = 2⇧/|q| (9)

these are the formulas I need:

⇥⌃00
s ⇥⌃ij

s |q⇧| = 2E/⇥t

1/qx qx = ±2E/⇥t (10)

this is the topological number

�†
+E = ��E (11)

⇥t > ⇥s : ⌅ = +1 (12)

⇥t < ⇥s : ⌅ = 0 (13)

Z2 number 2:

NK⇤ =
Pf [i⌥2 q(K⌅,1)]

Pf [i⌥2 q(K⌅,2)]
e�

1
2

R
dk⇥Tr[q†(k⇥)⌅k⇥q(k⇥)] K⇧ (14)

2D Z2 number

-1

+1

k
x

ky

kz

N1D
E =

4Y

a=1

Pf [�(�a)]p
det [�(�a)]

=
4Y

a=1

Pf
⇥
qT (�a)

⇤
p

det [q(�a)]
= ±1
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Topological classification of gapless materials

    : integer classification!
    : binary classification!
0  : no top. stable nodes

Tunneling conductance and topological surface states in superconductors
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We study surface bound states and tunneling conductance spectra of non-centrosymmetric superconductors
(NCS). The appearance of dispersionless bound states is related to a non-zero topological invariant. Further-
more, we discuss different types of topological phase transitions in non-centrosymmetric superconductors.

PACS numbers: 74.50.+r,74.20.Rp,74.25.F-,03.65.vf

I. INTRODUCTION

In this paper we derive the surface bound state spectrum of
a NCS using quasiclassical scattering theory and compute the
tunneling conductance between a normal metal and a NCS
both as a function of surface orientation and as a function
of the relative magnitude of spin-singlet and spin-triplet pair-
ing states. Moreover, we also study zero-temperature quan-
tum phase transitions, where the momentum space topology
of the quasi-particle spectrum changes abruptly as the singlet-
to-triplet ratio in the pairing amplitude crosses a critical value
(Fig. 5). We discuss how these topological phase transitions
can be observed in experiments.

1

2π

∫

M

κ dA = χ = 2 − 2g (1)

2 0 (2)

II. THEORETICAL BACKGROUND

A. Model definition

We consider a mean-field model Hamiltonian for a BCS su-
perconductor in a non-centrosymmetric crystal. In particular
we have in mind Li2PdxPt3−xB, CePt3Si, and Y2C3. We start
from a general non-centrosymmetric superconductor with the
mean-field HamiltonianH = 1

2

∑

k
ψ†

k
H(k)ψ

k
with

H(k) =

(

h(k) ∆(k)
∆†(k) −hT (−k)

)

(3a)

and ψk = (c
k↑, ck↓, c

†
−k↑, c

†
−k↓)

T, where c†
k
(c

k
) denotes the

electron creation (annihilation) operator with momentum k
and spin σ. The normal state dispersion of the electrons is
described by the matrix

h(k) = ξkσ0 + gk · σ, (3b)

with ξk = !2k2/(2m) − µ and gk the spin-orbit coupling
(SOC) potential. The gap function∆(k) is

∆(k) = f(k) (∆s + dk · s) (isy) . (3c)

It is well-known that the highest Tc corresponds to dk ∥ gk.
Hence we write dk = ∆pgk.

B. Winding number

We can study the topological properties of nodal lines using
the winding number

WL =
1

2πi

∮

L

dl Tr
[

q−1(k)∇lq (k)
]

, (4)

where the integral is evaluated along the closed loop L in the
Brillouin zone. With this formula we can compute the topo-
logical charge associated with the nodal lines appearing in the
gapless phases of non-centrosymmetric superconductors.

III. BOUND STATE SPECTRA

IV. TUNNELING CONDUCTANCE

V. TOPOLOGICAL PHASE TRANSITIONS

In this Section we examine topological phase transi-
tions of model (2) as a function of the relative strength
of singlet and triplet contributions to the order parameter,
∆s/∆t. I.e, we investigate zero-temperature transitions be-
tween two phases which share the same symmetries, in
particular the same pairing symmetry, but differ in their
topological characteristics.33,34 This is motivated in part by
Li2PdxPt3−xB, which is a family of NCS where the SO cou-
pling strength can be tuned by substituting Pt for Pd.35 The
magnitude of the SO interaction in these compounds in turn
seems to be directly related to the singlet-to-triplet ratio in
the pairing amplitude.36 This suggest that it might be possi-
ble to observe in Li2PdxPt3−xB topological phase transitions
between a fully gapped and a gapless phase, or between two
gapless phases as a function of Pt concentration.
In Fig. 5a we present the topological phase diagram

for a NCS with cubic point group O (appropriate for
Li2PdxPt3−xB) and l-vector given by Eq. (??). For∆s > ∆t

the superconductor is fully gapped and topologically triv-
ial. At ∆s = ∆t there is a Lifshitz-type zero-temperature
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2πi
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dl Tr
[

q−1(k)∇lq (k)
]

, (4)
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high-temperature superconductors), or at the zig-zag edge in graphene [?,?, ?]. Another
example are nodal superconductors without inversion symmetry (see Sec. 2.2.2).

From this observation, it is natural to ask whether topological properties of metallic
systems and nodal superconductors can be classified in a similar manner as the insula-
tors and superconductors with a full gap. By definition, a Fermi surface (or a nodal line
in a superconductor) is a set (i.e., a manifold) of gapless points in momentum space.
Under certain conditions, this manifold of gapless points can be “topologically stable” in
the sense that within a single-particle framework a gap cannot be opened by small “local”
perturbations. (Of course, the Fermi surface can always acquire a gap due to interactions,
or due to processes that connect Fermi surfaces with opposite “topological charge”, such
as, e.g., a charge density wave.) There are a number of previous works in the literature
that studied the topological stability of Fermi surfaces [?, ?, ?, ?], but the important role
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FIG. 3. (Color online) Layer-resolved local density of states ρy(ω) plotted for the first four outermost layers of a (dxy + p)-wave
superconducting ribbon with (01) edges in the presence of (a)–(e) “Gaussian” edge disorder and (f)–(j) “unitary” edge disorder (for details see
text). The insets show the width # and the area A of the Lorentzian peaks at ω = 0 as a function of layer index y. The number in the lower
left corner of the insets indicates the total area of the zero-bias peak as obtained by summing A over the first four layers. In the clean case,
vimp = 0, the edge states penetrate only about two layers into the bulk [panel (a)]. For strong disorder the outermost layer shows signatures of
localization, while new weakly disordered states appear in the second and third inward layers [panels (e) and (j)].

For strong edge disorder with γimp ≫ |%±| (or ρimpvimp ≫
|%±|), on the other hand, the states in the outermost layer
become strongly localized. But remarkably, new weakly
disordered edge states appear at the second and third inward
layers [Figs. 3(e) and 3(j)]. In other words, due to the
bulk-boundary correspondence, zero-energy states emerge at
the interface between the bulk topological superconductor and
the Anderson insulator formed by the outermost layer. This
behavior is reminiscent of topological-insulator surface states
perturbed by strong disorder [54,55].

B. Magnetic impurities

Magnetic impurities V
x,y,z
xj

= v(xj )Sx,y,z break time-
reversal symmetry, thereby lifting the symmetry protection
of the edge states. In Fig. 4 we present the edge density
of states ρedge, defined as the sum of ρy(ω) over the four
outermost layers, of a (dxy + p)-wave superconducting ribbon
with (01) edges in the presence of impurity spins polarized
along the x, y, and z axes [panels (b)–(d) and (g)–(i)] and
randomly oriented magnetic disorder [panels (e) and (j)]. For
comparison, Figs. 4(a) and 4(f) show the edge density of states
for nonmagnetic scalar impurities. As before, we consider both
“Gaussian”-type disorder [Figs. 4(a)–4(e)] and “unitary”-type
disorder [Figs. 4(f)–4(j)]. Since the flat-band edge states are
polarized within the yz spin plane (cf. Sec. III), impurity
spins polarized along the y and z axes couple strongly to
the flat bands, whereas scalar impurities and x spin-polarized
impurities leave the edge states almost unaffected as long as
γimp (ρimpvimp) is not much larger than |%±|. As shown in
Figs. 4(c) and 4(h), y spin-polarized impurities are particularly

harmful to the flat-band edge states, even for relatively small
disorder strengths of γimp ≃ 0.8|%±| (or vimp ≃ 0.8|%±| for
the “unitary”-type disorder).

VI. SUMMARY AND CONCLUSIONS

In summary, we have shown that flat-band edge states
in noncentrosymmetric superconductors are robust against
weak and moderately strong nonmagnetic edge disorder, as
long as the disorder strength is not much larger than the
superconducting gaps. Using analytical considerations, we
have found that spin-independent scattering among the flat-
band edge states is suppressed due to the definite chirality of
the edge-state wave functions and their helical spin texture
(Sec. III B). By means of extensive numerical simulations, we
have demonstrated that moderately strong spin-independent
disorder spreads the zero-energy edge states over a small
band in energy, but does not alter the total number of edge
states [Figs. 4(a) and 4(f)]. However, in the presence of strong
edge disorder, with disorder strength much larger than the
superconducting gaps, the wave functions in the outermost
layer localize, but new weakly disordered in-gap states appear
in the second and third inward layers [Figs. 3(e) and 3(j)].
We have investigated the edge orientation dependence of the
edge-state density by numerically simulating superconducting
dots with both smooth and rough boundaries. Edge states
appear for almost all edge orientations, even in the absence
of translation symmetry along the boundary (Fig. 2). This
demonstrates that translation symmetry is not crucial for the
protection of the edge states. Time-reversal and particle-hole
symmetry, on the other hand, play a key role for the stability
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Spontaneous interface currents due to flat-band states
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Topological crystalline materials

Mirror plane

 —for spin-1/2 systems:

Topological insulator/superconductor protected by global symmetry & crystal symmetry

(i) there are points/lines in the surface Brillouin zone  
    that are invariant under the symmetry

•  32 crystallographic point groups (230 space groups)!!
•  Surface states can exist if:

 Consider, e.g., mirror symmetry R:
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Topological crystalline materials

 — project      onto eigenspaces of R:

Time-reversal symmetry (class AII): 

Reflection symmetry:

Teo, Fu, Kane, 2008, Fu 2011
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 SnTe is a topological crystalline insulator: 
Tanaka, Ando, et al., 2012, 2013

H
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the other one163) reported by a group at Princeton University
was not published; the Princeton group performed new
measurements, and a paper containing new data were
submitted in August and published in November.164)

Among the first two published papers, the one by Tanaka
et al.62) reported straightforward confirmation of the predic-
tion in SnTe, and the observed surface state with the double
Dirac-cone structure (Fig. 11) was in good qualitative
agreement with the theory; they also showed that the cousin
material PbTe does not present any surface state. The other
one by Dziawa et al.162) reported the TCI phase in
Pb0:77Sn0:23Se, which shows a transition to a trivial phase
upon increasing the temperature. The work by Xu et al.
published later164) reported a TCI phase in Pb0:6Sn0:4Te and
a trivial phase in Pb0:8Sn0:2Te, together with spin-resolved
ARPES data showing helical polarization on each of the

double Dirac cones. A more recent paper by Tanaka et al.165)

nailed down that the topological phase transition in Pb1!x-
SnxTe occurs at xc ’ 0:25; furthermore, they found that the
separation between the two Dirac cones near the !X points
systematically narrows when x is reduced toward xc, but they
never merge before the transition eliminates them.

In passing, the mirror Chern number nM can also be used
for TR-invariant 3D TIs to further classify them.88) For
example, Bi1!xSbx is a TI with Z2 invariant (1;111), and it
can have nM ¼ #1. The sign of nM is called mirror
chirality, which is related to the sign of the g factor. The first
experimental work that addressed this additional topological
property in a TI was the spin-resolved ARPES done by
Nishide et al.,40) who elucidated that the mirror chirality is
!1 in Bi1!xSbx.

The discovery of TCIs significantly widened the scope of
topological materials. Already, detailed topological classifi-
cation schemes for all point-group symmetries have been
proposed,166) and also the mirror topology has been
expanded to superconductors.167–169) Experimentally, eluci-
dating the interplay between Z2 topology and mirror
topology in materials like SnTe under uniaxial strain would
be an interesting issue.

5. How to Confirm TI Materials

In this section, I briefly summarize the possible experi-
mental procedures to confirm whether a material is a TI or
not. In the case of 2D TIs, one needs to probe the existence
of helical 1D edge state, which is possible only through
quantum transport experiments using nano-fabricated device
structures. The existence of the edge state can be seen
through conductance quantization in the insulating re-
gime.31) Also, the helical spin polarization of the edge state
may be detected by transport experiments using spin Hall
effect.70)

For 3D TIs, the simplest and the most convincing is to
observe the Dirac cone by ARPES experiments. To firm up
the identification of a TI, one should employ spin-resolved
ARPES to confirm that the Dirac cone is non-degenerate and
is helically spin polarized.39,40)

Unfortunately, not all materials are suitable for ARPES,
which requires clean and flat surface that is usually obtained
by cleaving single crystals. When single crystals are not
available or the material does not cleave well, APRES
becomes difficult. In such a case, one may rely on transport
experiments. Ideally, if the bulk is sufficiently insulating and
the surface carriers have high enough mobility, one would be
able to confirm that the transport is occurring through the
surface and that the surface carriers are Dirac fermions.
The former can be done by looking at the sample-size
dependence of the conductance,108,140–142) and the latter may
be accomplished by elucidating the ! Berry phase in the
quantum oscillations from the surface state.103,104,108,170–173)

(Detailed discussions on the identification of the ! Berry
phase will be given in Sect. 8.3.) It should be emphasized
that confirming the Dirac-fermion nature of the surface
carriers is important, because trivial accumulation layer or
inversion layer that may form on the surface of an insulator
may also give rise to surface-dominated transport.144)

The Dirac-fermion nature may also be confirmed by STS
experiments in magnetic fields, because massless Dirac

(a) (b)

(c) (d)

(e)

Fig. 11. (Color online) ARPES data on cleaved (001) surface of SnTe.
(a) The bulk BZ and the corresponding (001) surface BZ of SnTe; ", L, X
are the symmetry points in the bulk 3D BZ, whereas !", !X, !M are in the
surface 2D BZ. The (110) mirror plane is indicated by the shaded area. Note
that two L points [e.g., L1 and L2 in panel (a)] are projected to the same !X
point. (b) ARPES intensity mapping in the surface BZ at EF measured with
h" ¼ 21:2 eV at 30K. (c) Near-EF ARPES intensity as a function of the
wave vector and the binding energy measured along the cut which is nearly
parallel to the !X– !M direction and is crossing the !#2 point [one of the red
arrows in panel (b)]. (d) Near-EF ARPES intensity along the !"– !X cut
[yellow arrow in panel (b)]. (e) Schematic 2D band dispersions near EF

concluded from the data in panels (c) and (d) depicting the characteristic
double Dirac-cone structure. Taken from Ref. 62.
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Figure 1 |Dirac-like band dispersion in SnTe. a, The bulk Brillouin zone (red lines) and the corresponding (001) surface Brillouin zone (blue lines). The
(110) mirror plane is indicated by the green shaded area. b, ARPES intensity mapping at EF at T = 30 K for SnTe plotted as a function of the 2D wave vector
measured with the He 1 line (hv = 21.2 eV); this intensity is obtained by integrating the spectra within ±10 meV of EF. c,d, Near-EF ARPES intensity
measured at h⌫ = 21.2 eV as a function of the wave vector and EB along the cut crossing the ¯31 and ¯32 point (red arrows in b), respectively. e,f, Energy
distribution curves (e) along the ¯0¯X cut (yellow arrow in b) measured at h⌫ = 21.2 eV, and the corresponding intensity plot (f). The dashed lines in e are a
guide to the eyes to trace the band dispersion. g–j, ARPES intensity measured at T = 30 K with various photon energies across the cut crossing the ¯32

point (green arrow in b). k, The same as in g but measured at T = 130 K. The ARPES intensity is divided by the Fermi–Dirac distribution function convoluted
with the instrumental resolution. l, A slice of the bulk Brillouin zone in the (110) plane, together with the momentum points in which the ARPES data for c,d
and g–k were obtained; k

z

values were estimated by using the inner-potential value of 8.5 eV as determined by the normal-emission ARPES measurement.
m, Comparison of the band dispersion for various photon energies extracted by tracking the peak position of momentum distribution curves obtained along
the green arrow in b; error bars are shown for the data at h⌫ = 92, 83, and 21.2 eV, and they reflect the uncertainties originating from the momentum
resolution and the standard deviation in the peak positions of momentum distribution curves. The h⌫ = 83 eV data are particularly broad at high EB, which
is partly due to a mixing of the bulk band.

of the sample (chemical potential was located ⇠0.5 eV lower when
compared with our data). Furthermore, a downward band bending,
possibly due to a loss of Te atoms on cleaving, was obviously taking
place near the surface (Supplementary Information), which further
worked in our favour.

As shown in Fig. 1k, the ARPES data at T = 130K divided
by the Fermi–Dirac distribution function indicate that the left-
and right-hand side dispersion branches actually merge into a

single peak above EF. The Dirac-point energy is estimated to be
0.05 eV above EF from a linear extrapolation of the two dispersion
branches (Fig. 1m) that were determined from the peak positions in
the momentum distribution curves; furthermore, the Dirac band
velocities extracted from the dispersions are 4.5 and 3.0 eVÅ, for
the left- and right-hand side branches, respectively. One can see in
Fig. 1m that the band dispersion exhibits no discernible changewith
temperature (compare the 30K and 130Kdata for h⌫ =92 eV).
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ARPES on SnTe 

nM = # Dirac cones surface states
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Classification topological crystalline materials

Mirror plane Classification of fully gapped mirror symmetric  
   topological materials depends on:

 Classification of gapless mirror symmetric    
  topological materials depends on:

!
•  non-spatial symmetries: TRS, PHS, and chiral SLS
!
•  whether     commutes or anti-commutes with TRS, PHS, SLS
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Classification of fully gapped topological crystalline materials

Classification in terms of mirror symmetries 

SnTe

Chiu & Schnyder 2014; Chiu, Yao, Ryu, PRB 2013; Morimoto & Furusaki PRB 2013; Shiozaki & Sato 2014

8

TABLE II. Classification of reflection symmetry protected topological insulators and fully gapped superconductors,? ? ? as well as of Fermi
surfaces and nodal points/lines in reflection symmetry protected semimetals and nodal superconductors, respectively. The first row specifies
the spatial dimension d of reflection symmetry protected topological insulators and fully gapped superconductors, while the second and third
rows indicate the codimension p = d � d

FS

of the reflection symmetric Fermi surfaces (nodal lines) at high-symmetry points [Fig. 3(a)] and
away from high-symmetry points of the Brillouin zone [Fig. 3(b)], respectively.

Reflection top. insul. and top. SC d=1 d=2 d=3 d=4 d=5 d=6 d=7 d=8
R A MZ 0 MZ 0 MZ 0 MZ 0
R

+

AIII 0 MZ 0 MZ 0 MZ 0 MZ
R� AIII MZ� Z 0 MZ� Z 0 MZ� Z 0 MZ� Z 0

R
+

,R
++

AI MZ 0 0 0 2MZ 0 MZ
2

MZ
2

BDI MZ
2

MZ 0 0 0 2MZ 0 MZ
2

D MZ
2

MZ
2

MZ 0 0 0 2MZ 0
DIII 0 MZ

2

MZ
2

MZ 0 0 0 2MZ
AII 2MZ 0 MZ

2

MZ
2

MZ 0 0 0
CII 0 2MZ 0 MZ

2

MZ
2

MZ 0 0
C 0 0 2MZ 0 MZ

2

MZ
2

MZ 0
CI 0 0 0 2MZ 0 MZ

2

MZ
2

MZ

R�,R��

AI 0 0 2MZ 0 TZ
2

Z
2

MZ 0
BDI 0 0 0 2MZ 0 TZ

2

Z
2

MZ
D MZ 0 0 0 2MZ 0 TZ

2

Z
2

DIII Z
2

MZ 0 0 0 2MZ 0 TZ
2

AII TZ
2

Z
2

MZ 0 0 0 2MZ 0
CII 0 TZ

2

Z
2

MZ 0 0 0 2MZ
C 2MZ 0 TZ

2

Z
2

MZ 0 0 0
CI 0 2MZ 0 TZ

2

Z
2

MZ 0 0
R�+

BDI, CII 2Z 0 2MZ 0 2Z 0 2MZ
2

0
R

+� DIII, CI 2MZ 0 2Z 0 2MZ 0 2Z 0
R

+� BDI MZ� Z 0 0 0 2MZ� 2Z 0 MZ
2

� Z
2

MZ
2

� Z
2

R�+

DIII MZ
2

� Z
2

MZ
2

� Z
2

MZ� Z 0 0 0 2MZ� 2Z 0
R

+� CII 2MZ� 2Z 0 MZ
2

� Z
2

MZ
2

� Z
2

MZ� Z 0 0 0
R�+

CI 0 0 2MZ� 2Z 0 MZ
2

� Z
2

MZ
2

� Z
2

MZ� Z 0

kinetic leads to only stable Fermi points. For Z-like (Z, MZ,
and Z �MZ) system , the entire Fermi surface are robust in
the absence of an extra kinetic term.

The label “M” in table II indicates that topological invari-
ants, which protect Fermi points, are defined in a region of
reflection planes as blue points/lines illustrated in fig. 3. The
topological invariants without M are defined by the original
ten-fold classification. The regions to compute these topolog-
ical numbers are not completely in reflection planes as shown
in fig. 1.

D. Fermi surfaces within mirror planes but off high-symmetry
points

When Fermi surfaces are off the high-symmetry points in
the Brillouin zone, the energy spectrum are gapped at these
points, such as k = 0; therefore, when the system is described
by a Dirac Hamiltonian, at least one gamma matrix should not
vanish at the high-symmetry points and be controlled by an
even function of k

i

. One of the simplest Hamiltonians can be

written as in the lattice model

HR

n

=
p�1X

i=1

sin k
i

�
i

+ (1� p+
pX

i=1

cos k
i

)�̃
0

, (28)

and the Fermi surface is located at

k = (0, . . . , 0,±⇡/2, k
p+1

, . . . , k
d

) (29)

We discuss the stability of these Fermi surfaces in the reflec-
tion planes (k

1

= 0, ⇡) and off high-symmetry points to clas-
sify topological semimetals and nodal superconductors. This
Hamiltonian is similar with the Dirac Hamiltonian of TI and
SC in eq. (31) in p � 1 dimensions. The first summation of
HR

n

can be treated as kinetic terms with linear momentum
and the last term behaves like a mass term. The classifica-
tion of reflection TI and SC is based on the presence and
absence of SPEMT in the Dirac Hamiltonian in the form of
eq. (31)? ? . Thus, the classification of bulk gapless mode in
reflection planes and off high-symmetry points corresponds to
p� 1 dimensional TI and SC classification.

Stop Here. To be continued.

R� : R anti-commutes with T (C or S)
R+ : R commutes with T (C or S)



- Non-centrosymmetric SCs: CePt3Si, Li2Pt3B, BiPd, LuPtB, LaPtB, etc. (class DIII)!!
- Locally non-centrosymmetric SCs: SrPtAs (class A ?)!!
- Centrosymmetric SCs: Sr2RuO4 (class D), CuxBi2Se3?, Cux(PbSe)5(Bi2Se3)6 (class DIII),  
       LuPtBi, YPtBi (class CII), UrPt3, URu2Si2, CeCoIn5 !!
- Interfaces: LaAlO3/SrTiO3? (class DIII), InSb + Nb (class D)

- Experimental fingerprints of surface states!
• tunneling spectroscopy: zero-bias peak !!
• Fourier-transformed STS: absence of backscattering!!
• NCS-FM junction: spontaneous interface currents!

     

Conclusions & Outlook

- Candidate materials for topological superconductivity

- Topological properties of fully gapped and nodal 
superconductors (and insulators and semi-metals)
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!
• Classification in terms of global non-spatial symmetries !!
• Classification in terms of mirror symmetries


