### Topological classification of semi-metals and nodal superconductors

Andreas P. Schnyder

**MPI-FKF** Stuttgart



in collaboration with:

Raquel Queiroz, Johannes Hofmann Philip Brydon, Carsten Timm Shinsei Ryu, Shunji Matsuura, Po-Yao Chang Ching-Kai Chiu

ISSP University of Tokyo, June 2014

#### Outline

#### 1. Introduction

- What is a topological superconductor?
- Chiral p-wave superconductor

#### 2. Topological nodal superconductors

- Superconductors without inversion symmetry
- Spin polarization of topological surface states

#### 3. Topological crystalline materials

- Mirror symmetry
- Classification schemes

#### 4. Conclusions & Outlook

- Candidate materials





#### **Topological superconductors (full gap)**

Superconductor = Cooper pairs (boson) + Bogoliubov quasiparticles (fermions)

BCS mean field theory: 
$$c^{\dagger}c c^{\dagger}c \Rightarrow \langle c^{\dagger}c^{\dagger}\rangle c c = \Delta^{*}c c$$
  
 $H = \frac{1}{2}\sum_{k} (c^{\dagger} c) H_{BdG} \begin{pmatrix} c \\ c^{\dagger} \end{pmatrix}$  Bogoliubov-de Gennes  $H_{BdG} = \begin{pmatrix} h_{0} & \Delta \\ \Delta^{\dagger} & -h_{0}^{T} \end{pmatrix}$   
Built-in particle-hole symmetry:  $\Gamma_{+E}^{\dagger} = \Gamma_{-E}$   $\approx$   $+$   $\sim$  Cooper pair  
gap in spectrum  $\rightarrow$  can define top. invariant  $n = \frac{i}{2\pi} \int_{\text{states}} \mathcal{F} dk$   $E_{k\uparrow}$   
with E<0  $E_{k\uparrow}$   $= \frac{1}{2} \sum_{k \neq 0} \mathcal{F} dk$   $E_{k\downarrow}$   $= \frac{1}{2} \sum_{k \neq 0} \mathcal{F} dk$   $= \frac{1}{2} \sum_{k \neq 0} \mathcal{F} dk$   $= \frac$ 

BdG band structures are equivalent if they can be continuously deformed into one another without closing the energy gap and without breaking the symmetries of the SC.

#### Symmetries to consider:

particle-hole symmetry, time-reversal, reflection symmetry, etc.

#### Chiral p-wave superconductor (full gap)



 $Sr_2RuO_4$  (n=2)

#### **Topological superconductors are:**

- fully gapped unconventional superconductors that support stable gapless edge states (or surface states)
- surface states are robust to perturbations (e.g. insensitive to disorder) that respect the fundamental symmetries of the system
- the stability of the surface states is guaranteed by the bulk gap and by the bulk topological invariant (bulk-boundary correspondence)

#### **Topological superconductors are:**

- fully gapped unconventional superconductors that support stable gapless edge states (or surface states)
- surface states are robust to perturbations (e.g. insensitive to disorder) that respect the fundamental symmetries of the system
- the stability of the surface states is guaranteed by the bulk gap and by the bulk topolog  $\mathcal{C}_{\Xi}^{\mathcal{H}(k)} = \mathcal{C}_{\Xi}^{\mathcal{H}(k)} =$

Classification of topological superconductors (and insulators):



# Topological *nodal* superconductors



CePt<sub>3</sub>Si, CeRhSi<sub>3</sub>, CeIrSi<sub>3</sub>, Li<sub>2</sub>Pt<sub>3</sub>B, LaPtBi, etc.

Interfaces: LaAIO<sub>3</sub>/SrTiO<sub>3</sub>

 $k_{x}$ 

(i) Lack of center of inversion causes anti-symmetric SO coupling.

Normal state:  $\mathcal{H} = \sum_{k\mu\nu} c^{\dagger}_{k\mu} \left( \varepsilon_{k}\sigma_{0} + \alpha g_{k} \cdot \boldsymbol{\sigma} \right)_{\mu\nu} c_{k\nu} = \sum_{ks} \xi_{ks} b^{\dagger}_{ks} b_{ks}$ Spin basis:  $\mu = \uparrow, \downarrow$  Helicity basis:  $s = \pm$   $\uparrow k_{y}$ 

Spin-split energy spectrum:

$$\xi_{\boldsymbol{k}}^{\pm} = \varepsilon_{\boldsymbol{k}} \pm |\boldsymbol{g}_{\boldsymbol{k}}|$$

(ii) Lack of center of inversion allows for admixture of singlet and triplet pairing components

$$\Delta(\boldsymbol{k}) = f(\boldsymbol{k}) \left( \Delta_s \sigma_0 + \Delta_t \boldsymbol{d}_{\boldsymbol{k}} \cdot \boldsymbol{\sigma} \right) i \sigma_y$$

 $d_k$  is constrained by SO interaction:  $g_k \parallel d_k$ 

Gaps on the two Fermi surfaces:

$$\Delta_{\boldsymbol{k}}^{\pm} = \Delta_s \pm \Delta_t \left| \boldsymbol{d}_{\boldsymbol{k}} \right|$$

CePt<sub>3</sub>Si, CeRhSi<sub>3</sub>, CeIrSi<sub>3</sub>, Li<sub>2</sub>Pt<sub>3</sub>B, LaPtBi, etc.

(i) Lack of center of inversion causes anti-symmetric SO coupling.

Normal state:  $\mathcal{H} = \sum_{k\mu\nu} c^{\dagger}_{k\mu} \left( \varepsilon_{k}\sigma_{0} + \alpha g_{k} \cdot \boldsymbol{\sigma} \right)_{\mu\nu} c_{k\nu} = \sum_{ks} \xi_{ks} b^{\dagger}_{ks} b_{ks}$ Spin basis:  $\mu = \uparrow, \downarrow$  Helicity basis:  $s = \pm$ 

Spin-split energy spectrum:

$$\xi_{\boldsymbol{k}}^{\pm} = \varepsilon_{\boldsymbol{k}} \pm |\boldsymbol{g}_{\boldsymbol{k}}|$$

(ii) Lack of center of inversion allows for admixture of singlet and triplet pairing components

$$\Delta(\boldsymbol{k}) = f(\boldsymbol{k}) \left( \Delta_s \sigma_0 + \Delta_t \boldsymbol{d}_{\boldsymbol{k}} \cdot \boldsymbol{\sigma} \right) i \sigma_y$$

 $d_k$  is constrained by SO interaction:  $g_k \parallel d_k$ 

Gaps on the two Fermi surfaces:

$$\Delta_{\boldsymbol{k}}^{\pm} = \Delta_s \pm \Delta_t \left| \boldsymbol{d}_{\boldsymbol{k}} \right|$$

Interfaces: LaAIO<sub>3</sub>/SrTiO<sub>3</sub>

 $k_{v}$ 

 $k_{x}$ 

#### Non-centrosymmetric SCs: Structure of pairing state



**Topologically non-trivial** 

#### Non-centrosymmetric SCs: Structure of pairing state



**Topologically non-trivial** 

Non-centro SC: 
$$\mathcal{H}_{BdG}(\mathbf{k}) = \begin{pmatrix} \varepsilon_{\mathbf{k}}\sigma_0 + \lambda \, \mathbf{g}_{\mathbf{k}} \cdot \vec{\sigma} & [\Delta_s\sigma_0 + \Delta_t \mathbf{d}_{\mathbf{k}} \cdot \vec{\sigma}](i\sigma_y) \\ (-i\sigma_y)[\Delta_s\sigma_0 + \Delta_t \mathbf{d}_{\mathbf{k}} \cdot \vec{\sigma}] & -\varepsilon_{\mathbf{k}}\sigma_0 - \lambda \, \mathbf{g}_{\mathbf{k}} \cdot \vec{\sigma}^* \end{pmatrix}$$

Symmetries:

particle-hole symmetry: $\Xi \mathcal{H}_{BdG}(\mathbf{k}) \Xi^{-1} = -\mathcal{H}_{BdG}(-\mathbf{k})$  $\Xi^2 = +1$ time-reversal symmetry: $\Theta \mathcal{H}_{BdG}(\mathbf{k}) \Theta^{-1} = +\mathcal{H}_{BdG}(-\mathbf{k})$  $\Theta^2 = -1$ chiral symmetry (TRS+PHS): $S \mathcal{H}_{BdG}(\mathbf{k}) + \mathcal{H}_{BdG}(\mathbf{k})S = 0$  $S = \Xi \Theta$ 

Gaps on the two Fermi surfaces

s: 
$$\Delta_{\boldsymbol{k}}^{\pm} = \Delta_s \pm \Delta_t |\boldsymbol{d}_{\boldsymbol{k}}|$$

 $\Delta_s \sim \Delta_t \implies nodal \ lines$  on negative helicity Fermi surface

Problem: Global topological number *ill-defined* (no gap!)

**Solution:** (assume translational symmetry)

Define momentum-dependent topological number

$$\nu_{\mathcal{C}} = \frac{1}{2\pi} \oint_{\mathcal{C}} \mathcal{F}(\mathbf{k}) dk_l$$

> Topological characteristics depend on the symmetries of BdG Hamiltonian restricted to contour  ${\cal C}$ 



 $k_{\pi}$ 

 $K_{\chi}$ 

 $\mathbf{k} k_z$ 

 $k_x$ 

Topological characteristics depend on the symmetries of BdG Hamiltonian restricted to contour C.

Schnyder, Brydon, Timm PRB (2012)

$$\mathbf{d}_{\mathbf{k}} = (\sin k_x + \sin k_y, \sin k_x + \sin k_y, \sin k_z)^{\mathrm{T}}$$
$$\Delta_s \sim \Delta_t$$

(i) 1D contour *is not* centrosymmetric: TRS X PHS X TRS+PHS (chiral sym S) V

AIII: 1D Winding number:

$$W_C = \frac{1}{2\pi} \oint_{\mathcal{C}} dk_l \,\partial_{k_l} \left[ \arg(\xi_{\mathbf{k}}^- + i\Delta_{\mathbf{k}}^-) \right]$$

flat band surface states





|               | Sy    | dim |    |   |                |                |                |
|---------------|-------|-----|----|---|----------------|----------------|----------------|
|               | Class | T   | P  | S | 1              | 2              | 3              |
|               | Α     | 0   | 0  | 0 | 0              | $\mathbb{Z}$   | 0              |
| Classificatio | AIII  | 0   | 0  | 1 | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   |
|               | AI    | 1   | 0  | 0 | 0              | 0              | 0              |
|               | BDI   | 1   | 1  | 1 | $\mathbb{Z}$   | 0              | 0              |
|               | D     | 0   | 1  | 0 | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              |
|               | DIII  | -1  | 1  | 1 | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   |
|               | All   | -1  | 0  | 0 | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ |
|               | CII   | -1  | -1 | 1 | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ |
|               | С     | 0   | -1 | 0 | 0              | $\mathbb{Z}$   | 0              |
|               | CI    | 1   | -1 | 1 | 0              | 0              | $\mathbb{Z}$   |

Topological characteristics depend on the symmetries of BdG Hamiltonian restricted to contour C.

$$\mathbf{d}_{\mathbf{k}} = (\sin k_x, \sin k_y, \sin k_z)^{\mathrm{T}}$$
$$\Delta_s \sim \Delta_t$$



|                | Sv    | mme      | dim       |   |                |                |                |
|----------------|-------|----------|-----------|---|----------------|----------------|----------------|
|                | Class | $\mid T$ | $\vec{P}$ | S | 1              | 2              | 3              |
| Classification | А     | 0        | 0         | 0 | 0              | $\mathbb{Z}$   | 0              |
|                | AIII  | 0        | 0         | 1 | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   |
|                | AI    | 1        | 0         | 0 | 0              | 0              | 0              |
|                | BDI   | 1        | 1         | 1 | $\mathbb{Z}$   | 0              | 0              |
|                | D     | 0        | 1         | 0 | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              |
|                | DIII  | -1       | 1         | 1 | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb Z$    |
|                | All   | -1       | 0         | 0 | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ |
|                | CII   | -1       | -1        | 1 | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ |
|                | С     | 0        | -1        | 0 | 0              | $\mathbb{Z}$   | 0              |
|                | CI    | 1        | -1        | 1 | 0              | 0              | $\mathbb{Z}$   |

(ii) 1D contour *is* centrosymmetric: TRS  $\sqrt{PHS}$   $\sqrt{TRS+PHS}$  (chiral sym S)  $\sqrt{}$ 

DIII: 1D Z<sub>2</sub> number:

$$N_{\mathcal{C}}^{1\mathrm{D}} = \prod_{a=1}^{2} \frac{\operatorname{Pf}\left[\omega(\Lambda_{a})\right]}{\sqrt{\det\left[\omega(\Lambda_{a})\right]}} = \prod_{a=1}^{2} \frac{\operatorname{Pf}\left[q^{T}(\Lambda_{a})\right]}{\sqrt{\det\left[q(\Lambda_{a})\right]}} = \pm 1$$





Topological characteristics depend on the symmetries of BdG Hamiltonian restricted to contour C.

 $\mathbf{d}_{\mathbf{k}} = (\sin k_y, -\sin k_x, 0)^{\mathrm{T}}$  $\Delta_t \neq 0, \ \Delta_s = 0$ 



| -              | Sy    | dim      |    |   |                |                |                |
|----------------|-------|----------|----|---|----------------|----------------|----------------|
|                | Class | $\mid T$ | P  | S | 1              | 2              | 3              |
| Classification | А     | 0        | 0  | 0 | 0              | $\mathbb{Z}$   | 0              |
|                | AIII  | 0        | 0  | 1 | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   |
|                | AI    | 1        | 0  | 0 | 0              | 0              | 0              |
|                | BDI   | 1        | 1  | 1 | $\mathbb{Z}$   | 0              | 0              |
|                | D     | 0        | 1  | 0 | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              |
|                | DIII  | -1       | 1  | 1 | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   |
|                | All   | -1       | 0  | 0 | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ |
|                | CII   | -1       | -1 | 1 | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ |
|                | С     | 0        | -1 | 0 | 0              | $\mathbb{Z}$   | 0              |
|                | CI    | 1        | -1 | 1 | 0              | 0              | $\mathbb{Z}$   |

(iii) 2D contour *is* centrosymmetric: TRS  $\sqrt{}$  PHS  $\sqrt{}$  TRS+PHS (chiral sym S)  $\sqrt{}$ 

**DIII: 2D Z<sub>2</sub> number:** 
$$N_E^{1D}$$

$$=\prod_{a=1}^{4} \frac{\Pr\left[\omega(\Lambda_{a})\right]}{\sqrt{\det\left[\omega(\Lambda_{a})\right]}} = \prod_{a=1}^{4} \frac{\Pr\left[q^{T}(\Lambda_{a})\right]}{\sqrt{\det\left[q(\Lambda_{a})\right]}} = \pm 1$$





2D Z<sub>2</sub> number





#### **Topological classification of gapless materials**

#### <sup>3</sup>He A phase / Weyl semimetal **Two-dimensional systems** Three-dimensional systems d-wave SC TPSpoint surface Class Class line line point TRI SC w/ 0 0 0 $\mathbb{Z}$ Α 0 Α $\mathbb{Z}$ $\mathbb{Z}$ 0 S<sup>z</sup>-spin AIII $\mathbb{Z}$ AIII $\mathbb{Z}$ 0 0 1 0 0 Ð conserv. $\mathbb{Z}$ $\mathbb{Z}$ AI +1 0 0 AI $\mathbf{O}$ Ū 0 $\mathbb{Z}$ BD +1 $\mathbb{Z}_2$ $\mathbb{Z}$ BDI 05 +1 1 $\mathbb{Z}_2$ Non-centro SC +1 $\mathbb{Z}_2$ D $\mathbb{Z}_2$ 0 0 D $\mathbb{Z}_{2}$ $\mathbb{Z}_2$ $\mathbb{Z}_2$ $\mathbb{Z}_2$ $\mathbb{Z}_2$ DIII -1 +1 0 DIII 1 0 All -1 0 $\mathbb{Z}$ $\mathbb{Z}$ 0 0 All U $\mathbb{Z}_2$ $\mathbb{Z}$ CII CII -1 -1 $\mathbb{Z}$ 1 0 0 0 С -1 С 0 0 0 0 0 0 $\mathbb{Z}$ CI 0 +1 -1 0 0 CI 0 0 1

Classification for Fermi surfaces off high-symmetry points

(NB:  $\mathbb{Z}_2$  invariant only protects surface states, but not bulk nodes!)

• Topological invariants:

$$n_{\mathcal{C}_{2n+2}} = \frac{1}{(n+1)!} \oint_{\mathcal{C}_{2n+2}} \operatorname{tr}\left(\frac{i\mathcal{F}}{2\pi}\right)^{n+1}$$

$$\nu_{\mathcal{C}_{2n+1}} = \frac{(-1)^n n!}{(2n+1)!} \left(\frac{i}{2\pi}\right)^{n+1} \oint_{\mathcal{C}_{2n+1}} \epsilon^{\alpha_1 \alpha_2 \cdots} \operatorname{tr}\left[q^{-1} \partial_{\alpha_1} q \cdot q^{-1} \partial_{\alpha_2} q \cdots\right] d^{2n+1} k$$

 $\mathbb{Z}$ : integer classification

 $\mathbb{Z}_2$ : binary classification

0

: no top. stable nodes

 $\mathbf{V}^{C}$ 

Matsuura, Chang, Schnyder, Ryu NJP (2013) Zhao, Wang, PRL (2013)

## Consequences of the surface-state spin polarization



#### Robustness of flat-band surface states against disorder

Interband scattering: surface states are spin polarized

- scattering requires change in spin polarization

 $\left\langle \Psi_{-k}^{+} \right| V_{2k}^{0} \left| \Psi_{k}^{-} \right\rangle = 0 \qquad \left\langle \Psi_{-k'}^{+} \right| V_{k+k'}^{0} \left| \Psi_{k'}^{-} \right\rangle \text{ small}$ 

Intraband scattering: surface states have definite chirality

$$\begin{split} \Psi_k^+ &= \begin{pmatrix} \chi_k \\ 0 \end{pmatrix} \quad \Psi_k^- = \begin{pmatrix} 0 \\ i\sigma_y \chi_{-k} \end{pmatrix} \\ &\left\langle \Psi_k^{\pm} \right| V_{k'-k}^0 \left| \Psi_{k'}^{\pm} \right\rangle = 0 \quad \text{for all } k \text{ and } k' \end{split}$$

 $\Rightarrow$  some degree of protection against non-magnetic surface disorder

- for strong surface disorder: reappearance of flat-band states in 2nd layer





#### Spontaneous interface currents due to flat-band states

- ferromagnetic moment couples to spin polarization of flat-band states
  - perturbative shift of energies:  $\delta E \propto \mathbf{M} \cdot \mathbf{S}^{\mu}$ 
    - $\implies$  both flat bands acquire dispersion
    - $\implies$  spontaneous chiral interface current
    - break down of linear response (singular dependence on exchange field)



Schnyder, Brydon, Timm, PRL 111, 077001 (2013) Brydon, Timm, Schnyder, NJP 15, 045019 (2013)



### Topological crystalline materials



Topological insulator/superconductor protected by global symmetry & crystal symmetry

- 32 crystallographic point groups (230 space groups)
- Surface states can exist if:

(i) there are points/lines in the surface Brillouin zone that are invariant under the symmetry

(ii) symmetry group has a two-dimensional irreducible representation

Consider, e.g., mirror symmetry R:  $x \rightarrow -x$ 

$$R^{-1}\mathcal{H}(-k_x,k_y,k_z)R = \mathcal{H}(k_x,k_y,k_z)$$

-for spin-1/2 systems:  $R = s_x$ 

$$\implies \mathcal{H}(0, k_y, k_z)R - R\mathcal{H}(0, k_y, k_z) = 0$$

— define Chern number for *each eigenspace of* R:

( i.e., 
$$s_x = \pm 1$$
)

mirror Chern number:

$$n_{\mathcal{M}} = \frac{1}{4\pi} \int_{2\text{D BZ}} \left( \mathcal{F}_{+} - \mathcal{F}_{-} \right) d^{2}\mathbf{k}$$



#### **Topological crystalline materials**

SnTe is a topological crystalline insulator:

Teo, Fu, Kane, 2008, Fu 2011

Tanaka, Ando, et al., 2012, 2013

 $\mathcal{H} = \varepsilon(\mathbf{k})\sigma_z + v(\sin k_x s_y - \sin k_y s_x) \otimes \sigma_x + v_z \sin k_z \sigma_y$ (s<sub>i</sub>: spin;  $\sigma_i$ : orbitals)

Time-reversal symmetry (class AII):  $(is_y)\mathcal{H}^*(\mathbf{k})(is_y)^{-1} = +\mathcal{H}(-\mathbf{k})$   $\Theta = is_y\mathcal{K}$ Reflection symmetry:  $R = s_x$ ,  $R^{-1}\mathcal{H}(-k_x, k_y, k_z)R = \mathcal{H}(k_x, k_y, k_z)$  $\implies \Theta R = -R\Theta$ 

- project  $\mathcal{H}$  onto eigenspaces of R: (i.e.,  $s_x = \pm 1$ )  $\mathcal{H}_{\pm} = \varepsilon_{\mathbf{k}} \sigma_z \mp v \sin k_y \sigma_x + v_z \sin k_z \sigma_y = \mathbf{m}_{\pm}(\mathbf{k}) \cdot \boldsymbol{\sigma}$   $\implies$  class D:  $\sigma_x \mathcal{H}_{\pm}^*(\mathbf{k}) \sigma_x = -\mathcal{H}(-\mathbf{k})$  $\implies n_{\pm} = \frac{1}{8\pi} \int_{2\text{D BZ}} d^2 \mathbf{k} \, \epsilon^{\mu\nu} \hat{\mathbf{m}}_{\pm} \cdot \left[ \partial_{k_{\mu}} \hat{\mathbf{m}}_{\pm} \times \partial_{k_{\nu}} \hat{\mathbf{m}}_{\pm} \right]$ 

mirror Chern number:  $n_{\mathcal{M}} = (n_+ - n_-)$ 

 $n_{\mathcal{M}} = \#$  Dirac cones surface states



ARPES on SnTe



#### **Classification topological crystalline materials**

Mirror symmetry:  $R^{-1}\mathcal{H}(-k_x, k_y, k_z)R = \mathcal{H}(k_x, k_y, k_z)$ 

- Classification of *fully gapped* mirror symmetric topological materials depends on:
  - non-spatial symmetries: TRS, PHS, and chiral SLS
  - whether R commutes or anti-commutes with TRS, PHS, SLS
  - spatial dimension of the system d

Classification of gapless mirror symmetric topological materials depends on:

- global symmetries: TRS, PHS, and chiral SLS
- whether R (anti-)commutes with TRS, PHS, SLS
- co-dimension  $p = d d_{\rm FS}$  of Fermi surface
- how Fermi surface transforms under mirror and non-spatial symmetries



#### Classification of *fully gapped* topological crystalline materials

#### Classification in terms of mirror symmetries

 $R_{-}$ : R anti-commutes with T (C or S)

 $R_+$ : R commutes with T (C or S)

| Reflection               | top. insul. and top. SC | <i>d</i> =1                         | <i>d</i> =2                         | <i>d</i> =3                       | <i>d</i> =4                       | <i>d</i> =5                       | <i>d</i> =6                       | <i>d</i> =7                         | <i>d</i> =8                         |
|--------------------------|-------------------------|-------------------------------------|-------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-------------------------------------|-------------------------------------|
| R                        | А                       | $M\mathbb{Z}$                       | 0                                   | $M\mathbb{Z}$                     | 0                                 | $M\mathbb{Z}$                     | 0                                 | $M\mathbb{Z}$                       | 0                                   |
| $R_+$                    | AIII                    | 0                                   | $M\mathbb{Z}$                       | 0                                 | $M\mathbb{Z}$                     | 0                                 | $M\mathbb{Z}$                     | 0                                   | $M\mathbb{Z}$                       |
| $R_{-}$                  | AIII                    | $M\mathbb{Z}\oplus\mathbb{Z}$       | 0                                   | $M\mathbb{Z}\oplus\mathbb{Z}$     | 0                                 | $M\mathbb{Z}\oplus\mathbb{Z}$     | 0                                 | $M\mathbb{Z}\oplus\mathbb{Z}$       | 0                                   |
|                          | AI                      | $M\mathbb{Z}$                       | 0                                   | 0                                 | 0                                 | $2M\mathbb{Z}$                    | 0                                 | $M\mathbb{Z}_2$                     | $M\mathbb{Z}_2$                     |
|                          | BDI                     | $M\mathbb{Z}_2$                     | $M\mathbb{Z}$                       | 0                                 | 0                                 | 0                                 | $2M\mathbb{Z}$                    | 0                                   | $M\mathbb{Z}_2$                     |
|                          | D                       | $M\mathbb{Z}_2$                     | $M\mathbb{Z}_2$                     | $M\mathbb{Z}$                     | 0                                 | 0                                 | 0                                 | $2M\mathbb{Z}$                      | 0                                   |
|                          | DIII                    | 0                                   | $M\mathbb{Z}_2$                     | $M\mathbb{Z}_2$                   | $M\mathbb{Z}$                     | 0                                 | 0                                 | 0                                   | $2M\mathbb{Z}$                      |
| $ $ $n_+, n_{++}$        | AII                     | $2M\mathbb{Z}$                      | 0                                   | $M\mathbb{Z}_2$                   | $M\mathbb{Z}_2$                   | $M\mathbb{Z}$                     | 0                                 | 0                                   | 0                                   |
|                          | CII                     | 0                                   | $2M\mathbb{Z}$                      | 0                                 | $M\mathbb{Z}_2$                   | $M\mathbb{Z}_2$                   | $M\mathbb{Z}$                     | 0                                   | 0                                   |
|                          | С                       | 0                                   | 0                                   | $2M\mathbb{Z}$                    | 0                                 | $M\mathbb{Z}_2$                   | $M\mathbb{Z}_2$                   | $M\mathbb{Z}$                       | 0                                   |
|                          | CI                      | 0                                   | 0                                   | 0                                 | $2M\mathbb{Z}$                    | 0                                 | $M\mathbb{Z}_2$                   | $M\mathbb{Z}_2$                     | $M\mathbb{Z}$                       |
|                          | AI                      | 0                                   | 0                                   | $2M\mathbb{Z}$                    | 0                                 | $T\mathbb{Z}_2$                   | $\mathbb{Z}_2$                    | $M\mathbb{Z}$                       | 0                                   |
|                          | BDI                     | 0                                   | 0                                   | 0                                 | $2M\mathbb{Z}_{\mathbf{C}}$       | 0                                 | $T\mathbb{Z}_2$                   | $\mathbb{Z}_2$                      | $M\mathbb{Z}$                       |
|                          | D                       | $M\mathbb{Z}$                       | 0                                   | 0                                 |                                   | $\mathbf{e}_{2M\mathbb{Z}}$       | 0                                 | $T\mathbb{Z}_2$                     | $\mathbb{Z}_2$                      |
|                          | DIII                    | $\mathbb{Z}_2$                      | $M\mathbb{Z}$                       | 0                                 | 0                                 | 0                                 | $2M\mathbb{Z}$                    | 0                                   | $T\mathbb{Z}_2$                     |
| $  \stackrel{R,R_{}}{ }$ | AII                     | $T\mathbb{Z}_2$                     | $\mathbb{Z}_2$                      | $M\mathbb{Z}$                     | 0                                 | 0                                 | 0                                 | $2M\mathbb{Z}$                      | 0                                   |
|                          | CII                     | 0                                   | $T\mathbb{Z}_2$                     | $\mathbb{Z}_2$                    | $M\mathbb{Z}$                     | 0                                 | 0                                 | 0                                   | $2M\mathbb{Z}$                      |
|                          | С                       | $2M\mathbb{Z}$                      | 0                                   | $T\mathbb{Z}_2$                   | $\mathbb{Z}_2$                    | $M\mathbb{Z}$                     | 0                                 | 0                                   | 0                                   |
|                          | CI                      | 0                                   | $2M\mathbb{Z}$                      | 0                                 | $T\mathbb{Z}_2$                   | $\mathbb{Z}_2$                    | $M\mathbb{Z}$                     | 0                                   | 0                                   |
| $R_{-+}$                 | BDI, CII                | $2\mathbb{Z}$                       | 0                                   | $2M\mathbb{Z}$                    | 0                                 | $2\mathbb{Z}$                     | 0                                 | $2M\mathbb{Z}_2$                    | 0                                   |
| $R_{+-}$                 | DIII, CI                | $2M\mathbb{Z}$                      | 0                                   | $2\mathbb{Z}$                     | 0                                 | $2M\mathbb{Z}$                    | 0                                 | $2\mathbb{Z}$                       | 0                                   |
| $R_{+-}$                 | BDI                     | $M\mathbb{Z}\oplus\mathbb{Z}$       | 0                                   | 0                                 | 0                                 | $2M\mathbb{Z}\oplus 2\mathbb{Z}$  | 0                                 | $M\mathbb{Z}_2 \oplus \mathbb{Z}_2$ | $M\mathbb{Z}_2 \oplus \mathbb{Z}_2$ |
| $R_{-+}$                 | DIII                    | $M\mathbb{Z}_2 \oplus \mathbb{Z}_2$ | $M\mathbb{Z}_2 \oplus \mathbb{Z}_2$ | $M\mathbb{Z}\oplus\mathbb{Z}$     | 0                                 | 0                                 | 0                                 | $2M\mathbb{Z}\oplus 2\mathbb{Z}$    | 0                                   |
| $R_{+-}$                 | CII                     | $2M\mathbb{Z}\oplus 2\mathbb{Z}$    | 0                                   | $M\mathbb{Z}_2\oplus\mathbb{Z}_2$ | $M\mathbb{Z}_2\oplus\mathbb{Z}_2$ | $M\mathbb{Z}\oplus\mathbb{Z}$     | 0                                 | 0                                   | 0                                   |
| $R_{-+}$                 | CI                      | 0                                   | 0                                   | $2M\mathbb{Z}\oplus 2\mathbb{Z}$  | 0                                 | $M\mathbb{Z}_2\oplus\mathbb{Z}_2$ | $M\mathbb{Z}_2\oplus\mathbb{Z}_2$ | $M\mathbb{Z}\oplus\mathbb{Z}$       | 0                                   |

Chiu & Schnyder 2014; Chiu, Yao, Ryu, PRB 2013; Morimoto & Furusaki PRB 2013; Shiozaki & Sato 2014

#### **Conclusions & Outlook**

- Topological properties of fully gapped and nodal superconductors (and insulators and semi-metals)
  - Classification in terms of global non-spatial symmetries
  - Classification in terms of mirror symmetries

#### - Experimental fingerprints of surface states

- tunneling spectroscopy: zero-bias peak
- Fourier-transformed STS: absence of backscattering
- NCS-FM junction: spontaneous interface currents

#### - Candidate materials for topological superconductivity

- Non-centrosymmetric SCs: CePt<sub>3</sub>Si, Li<sub>2</sub>Pt<sub>3</sub>B, BiPd, LuPtB, LaPtB, etc. (class DIII)
- Locally non-centrosymmetric SCs: SrPtAs (class A ?)
- Centrosymmetric SCs: Sr<sub>2</sub>RuO<sub>4</sub> (class D), Cu<sub>x</sub>Bi<sub>2</sub>Se<sub>3</sub>?, Cu<sub>x</sub>(PbSe)<sub>5</sub>(Bi<sub>2</sub>Se<sub>3</sub>)<sub>6</sub> (class DII), LuPtBi, YPtBi (class CII), UrPt<sub>3</sub>, URu<sub>2</sub>Si<sub>2</sub>, CeCoIn<sub>5</sub>
- Interfaces: LaAIO<sub>3</sub>/SrTiO<sub>3</sub>? (class DIII), InSb + Nb (class D)



