

ISSP International Workshop

New Horizon of Strongly Correlated Physics

June 16 - July 4, 2014 (Symposium June 25-27) ISSP, The University of Tokyo

Ab initio Studies on Mechanism for Iron-based Superconductors

Masatoshi Imada

June 26, 2014, ISSP Kashiwa

Collaborator: Takahiro Misawa

1. Introduction Ab initio Approach

2. Orbital Selective Mottness, Magnetism

3. Phase Diagram, Superconducting Mechanism

4. Summary

Introduction

Diversity and strong family dependence

No AF order in LaFePO Small AF ordered moment ($0.36-0.83 \mu_{\rm B}$ for LaFeAsO) cf. LSDA overestimate the order (~ $2\mu_{\rm B}$) vs. large moment (2.25 $\mu_{\rm B}$ for FeTe) Variation of AF ordered pattern (π ,0) stripe in LaFeAsO vs. (π /2, π /2) bicollinear in FeTe **Role of electron correlation** Variation of T_c **Bad metallic behavior** small Drude weight **Diversity cannot be explained by** Keimer et al. Timusk et al. band strucuture Chen *et al*. **Unconventional** T_1

What controls the material dependence?

IVI, TIVIADA

First Principles Approach

downfolding; Fe 3d 5 band models (*d* model)

dimensional downfolding

 \rightarrow 2 D effective model

$$\mathcal{H} = \mathcal{H}_0 + \mathcal{H}_{\mathrm{int}},$$

 $\mathcal{H}_0 = \sum \sum \sum t_{i,j,\nu,\mu} c^{\dagger}_{i,\nu,\sigma} c_{j,\mu,\sigma},$

 $\mathcal{H}_{int} = \mathcal{H}_{on-site} + \mathcal{H}_{off-site}.$

1. Global electronic Energy (eV) structure by DFT_o far from Fermi level tens eV constrained RPA 2. downfolding (1) Screened Coulomb interaction -6L Г (2) Self-energy Low-energy effective Hamiltonian 1/10-1/100 eV 3. Low-energy solver target bands variational Monte Carlo (VMC), path-integral renormalization group (PIRG), (cluster) dynamical mean-field theory (DMFT), $\begin{array}{cccc} \overline{\sigma} & \overline{i,j} & \overline{\nu,\mu} \\ \mathcal{U} & \overline{\nu,\mu} \end{array} & \mathcal{H}_{\mathrm{on-site}} & = & \frac{1}{2} \sum_{\sigma,\sigma'} \sum_{i} \sum_{\nu,\mu} \left\{ U_{i,i,\mu,\nu} c^{\dagger}_{i,\nu,\sigma} c^{\dagger}_{i,\mu,\sigma'} c_{i,\mu,\sigma'} c_{i\nu,\sigma} \right\}$ + $J_{i,i,\mu,\nu} (c^{\dagger}_{i,\nu,\sigma} c^{\dagger}_{i,\mu,\sigma'} c_{i,\nu,\sigma'} c_{i,\mu,\sigma}$ + $c_{i,\nu,\sigma}^{\dagger}c_{i,\nu,\sigma'}^{\dagger}c_{i,\mu,\sigma'}c_{i,\mu,\sigma}\Big\}$

 $\mathcal{H}_{\text{off-site}} = V_{nn} \sum n_{i\nu} n_{j\mu} + V_{nnn} \sum$

 $\langle\langle k,l
angle
angle,
u,\mu$

 $\langle i,j
angle,
u,\mu$

 $n_{k\nu}n_{l\mu}$

Review: Imada, Miyake: J. Phys. Soc. Jpn. 79 (2010) 112001

Ab initio derivation of U by constrained RPA

	$d \bmod d$			$dp/dpp \; { m model}$		
	\bar{U} (eV)	\bar{v} (eV)	$ar{U}/ar{v}$	\bar{U} (eV)	$\bar{v}~(\mathrm{eV})$	$\bar{U}/ar{v}$
LaFePO	2.47	14.15	0.174	4.13	18.96	0.218
LaFeAsO	2.53	14.85	0.171	4.23	19.46	0.217
$BaFe_2As_2$	2.80	15.59	0.180	5.24	20.38	0.257
LiFeAs	3.15	15.82	0.199	5.94	20.35	0.292
FeSe	4.24	17.53	0.242	7.21	21.37	0.337
FeTe	3.41	16.89	0.202	6.25	20.90	0.299

U/t: d model

LaFePO8LaFeAsO9FeTe11FeSe14Miyake, Nakamura, Arita, ImadaJPSJ 79 (2010) 044705

IVI. TIVIADA

$$\mathcal{P}_{G} = \exp\left[-g\sum_{i} n_{i\uparrow}n_{i\downarrow}\right] \quad \begin{array}{l} \textbf{Gutzwiller factor} \\ \textbf{quantum number} \\ \mathcal{L}^{S} = \frac{2S+1}{8\pi^{2}} \int d\Omega P_{S}(\cos\beta)\hat{R}(\Omega) \quad \begin{array}{l} \textbf{projection} \\ \textbf{M}. \text{IMAL} \end{array}$$

Solution of low-energy solver

see also Yin Haule Kotliar Nat. Mat. (2011)

Detailed Study on Doping Effect Orbital Selective Mottness and Charge Inhomogeneity

This part was deleted

Superconducting Mechanism

This part was deleted

- Ab intio electronic model shows s± superconducting phase by electron doping into stripe AF phase of LaFeAsO. Agreement with experiment
- 2. Orbital selective Mottness of d_{X2-Y2} orbital holds an underlying key for the emergence of the high- T_c superconductivity. Major role for both magnetism and superconductivity.
- 3. Superconductivity emerges because of the charge instability accompanied by the PS caused by the strong 1st order AF/nematic transition.

Smoking gun is found in one-to-one correspondence between charge compressibility and superconductivity in various cases.

