Floquet topological phase transition: Control of quantum matter by laser

using synthetic fields

$$H_{\text{eff}} = H_0 + \frac{[H_{-1}, H_1]}{\Omega} + \mathcal{O}(A^4)$$

Takashi Oka (U-Tokyo, Dept. of Applied Physics)

M. Sato (Aoyama), S. Takayoshi (NIMS), T. Kitagawa (Harvard), T. Mikami (U-Tokyo), M. Sentef (Stanford, Bonn), N. Tsuji (U-Tokyo), L. Fu (MIT), H. Aoki (U-Tokyo), E. Demler (Harvard), J. Freericks (Georgetown), T. Devereaux (Stanford)

Quantum Control by laser

cold atom

high controllability

- synthetic gauge field, optical lattice
- control of interaction by Feshbach resonance
- simulated spin models
- realization of topological QHE

Quantum Control of Solid state materials

http://www.fhi-berlin.mpg.de/pc/PCres_methods.html

even higher controllability

- Floquet topolotical phase transition
 - laser induced quantum Hall effect Oka-Aoki 2009
- Control of interaction via dynamical localization

Tsuji-Oka-Aoki 2011

Control of quantum magnets

Takayoshi-Aoki-Oka 2013 Takayoshi-Sato-Oka 2014 Sato-Sasaki-Oka 2014 Theory (1/3): Floquet theory (time-version of Bloch theorem) time periodic system

$$i\partial_t \psi = H(t)\psi$$
 $H(t) = H(t+T)$ $\Omega = 2\pi/T$
"Floquet mapping"
=discrete Fourier trans. $\Psi(t) = e^{-i\varepsilon t}\sum_m \phi^m e^{-im\Omega t}$

Floquet Hamiltonian (static eigenvalue problem)

 $\sum_{m=-\infty}^{\infty} \mathcal{H}^{mn} \phi_{\alpha}^{m} = \varepsilon_{\alpha} \phi_{\alpha}^{n} \qquad \text{s: Floquet quasi-energy}$

$$(\mathcal{H})^{mn} = \frac{1}{T} \int_0^T dt H(t) e^{i(m-n)\Omega t} + m\delta_{mn}\Omega I$$

comes from the $i\partial_t$ term

 $H_m = \mathcal{H}^{m0}$

~ absorption of m "photons"

Theory (2/3): Floquet theory (time-version of Bloch theorem)

Time-periodic quantum system = Floquet theory (exact) \sim effective theory

 $i\partial_t \psi = H(t)\psi$ H(t) = H(t+T)

$$\mathcal{H}\phi = \varepsilon\phi$$

Floquet theory

 $H_{\text{eff}} = H_0 + \frac{[H_{-1}, H_1]}{\Omega} + \mathcal{O}(A^4)$

"synthetic fields (term)"

two states + periodic driving

 	 _	-	$+2\Omega$
 	 _	-	
 	 _	-	$+\Omega$
 	 _	-	
 	 _	_	
 	 _	-	$-\Omega$
 	 _	_	- 20

Hilbert sp. size = original system

n-photon dressed state

Theory (3/3): Floquet theory (time-version of Bloch theorem)

 $1/\Omega$ expansion of the effective Hamiltonian

Mikami, Yasuda, Tsuji, Oka, Aoki in prep.

cf) Floquet-Magnus expansion has a initial time dependence and is not the correct $1/\Omega$ expansion

Realizable with strong pulse lasers

Application (2/4): "Dirac systems"

Laser induced Quantum Hall effect

Floquet topological insulator

Application (3/4): "Spin systems"

Takayoshi-Aoki-Oka 2013 Takayoshi-Sato-Oka 2014

Large, and dynamical synthetic (effective) magnetic field

$$B_{\mathrm{eff}}^z = \Omega$$

~ 50 Tesla for Ω = 1THz

"laser induced magnetization curve"

Application (4/4): "Spin liquid"

Sato-Sasaki-Oka 2014

Kitaev model in a circularly polarized laser

Floquet Topological Spin Liquid

Quantum spin version of
 Floquet Topological Insulator

Plan of talk

1. Dirac + circularly polarized laser = parity anomaly (QHE)

Explanation of
$$H_{\text{eff}} = H_0 + \frac{[H_{-1}, H_1]}{\Omega} + \mathcal{O}(A^4)$$

How experiments are done

2. Kitaev spin model + multiferroic coupling + circularly polarized laser

1. Dirac + circularly polarized laser = parity anomaly (QHE)

Wang et al. ... N. Gedik Phys. Rev. Lett. 109, 127401 (2012)

Experiment using time resolved ARPES surface Dirac state of a TI No laser k

12

Chern number of a 2d Dirac system

Niemi Semenoff '83, Redlich '84, Ishikawa '84

$$H = \begin{pmatrix} m & \pm k_x - ik_y \\ \pm k_x + ik_y & -m \end{pmatrix}$$
$$\sigma_{xy} = e^2 \int \frac{d\mathbf{k}}{(2\pi)^d} \left[\nabla_{\mathbf{k}} \times \mathcal{A}_1(\mathbf{k}) \right]_z$$
$$= \pm \frac{1}{2} \frac{e^2}{h} \frac{m}{|m|}$$

Parity anomaly in QFT

1. Dirac cone has half quantum unit

non-integer because BZ is not periodic

2. The sign depends on the chirality, and mass sign

coupling to AC field ${m k}
ightarrow {m k} + {m A}(t)$

$$k = k_x + ik_y$$
$$A(t) = (F/\Omega \cos \Omega t, F/\Omega \sin \Omega t)$$
$$A = F/\Omega$$

time dependent Schrodinger equation

$$i\partial_t\psi_k = \begin{pmatrix} 0 & k + Ae^{i\Omega t} \\ \bar{k} + Ae^{-i\Omega t} & 0 \end{pmatrix}\psi_k$$

Floquet theory $(\mathcal{H})^{mn} = \frac{1}{T} \int_0^T dt H(t) e^{i(m-n)\Omega t} + m\delta_{mn}\Omega I$

$$H^{\text{Floquet}} = \begin{pmatrix} \Omega & k & 0 & A & 0 & 0 \\ \bar{k} & \Omega & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & k & 0 & A \\ A & 0 & \bar{k} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 - \Omega & k \\ 0 & 0 & A & 0 & \bar{k} - \Omega \end{pmatrix}$$

truncated at m=0,+1, -1 for display

TO, Aoki 2009

$$H^{\text{Floquet}} = \begin{pmatrix} \Omega & k & 0 & A & 0 & 0 \\ \bar{k} & \Omega & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & k & 0 & A \\ A & 0 & \bar{k} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 - \Omega & k \\ 0 & 0 & A & 0 & \bar{k} - \Omega \end{pmatrix}$$

0-photon absorbed state

0-photon absorbed state

 k_x

 k_x

Theory II: Synthetic fields (terms) from Floquet

2nd order perturbation

near Dirac point

 $H_{\text{eff}} = H_0 + \underbrace{\begin{bmatrix} \mathcal{A}\sigma_- & \sim \mathcal{A}\sigma_+ \\ \mathcal{H}_- \end{bmatrix}}_{\text{Synthetic term}} \mathcal{O}(A^4)$ $\sim v(k_x \sigma_y - \tau_z k_y \sigma_x) + \underbrace{\tau_z \frac{v^2 A^2}{\Omega} \sigma_z}_{\mathcal{O}} A = F/\Omega$

Dynamical gap

$$\kappa = \frac{\sqrt{4A^2 + \Omega^2} - \Omega}{2} \sim A^2 / \Omega$$

21

Realization of the Haldane model of QHE without Landau levels

Kitagawa, TO, Fu, Brataas, Demler '11 $H_{\rm eff} = H_0 +$ $\mathcal{O}(A^4)$ $A = F/\Omega$

applied to honeycomb lattice

n. hopping + n. hopping = n.n. hopping with phase $\pi/2$

Plan of talk

1. Dirac + circularly polarized laser = parity anomaly (QHE)

Explanation of
$$H_{ ext{eff}} = H_0 + rac{[H_{-1}, H_1]}{\Omega} + \mathcal{O}(A^4)$$

How experiments are done

2. Kitaev spin model + multiferroic coupling + circularly polarized laser

Masahiro Sato (Aoyama Gakuin) 佐藤正寛 (青学) Floquet Majorana edge state and Nonabelian anyons in a Driven Kitaev model

Kitaev's Spin liquid model + circularly polarized light

M. Sato, Y. Sasaki and T. Oka arXiv 2014

Honeycomb lattice + circularly polarized light

Fermionization

Real (not complex) Fermion

weak field expansion

$$H_{\text{eff}} = H_0 + \frac{[H_{-1}, H_1]}{\Omega} + \mathcal{O}(A^4)$$

Haldane model

Gapped topological spin liquid with Majorana edge mode and nonabelian anyon excitation

Kitaev honeycomb model (an anisotropic spin model)

Kitaev honeycomb model (an anisotropic spin model)

$$\hat{\mathcal{H}}_{\text{Kitaev}} = \sum_{\alpha=x,y,z} J_{\alpha} \sum_{\langle \vec{r},\vec{r}' \rangle_{\alpha}} \sigma^{\alpha}_{\vec{r}} \sigma^{\alpha}_{\vec{r}'}$$

Application of circularly polarized laser

$$\hat{\mathcal{H}}(t) = \hat{\mathcal{H}}_{\mathrm{Kitaev}} + \hat{\mathcal{H}}_{E}(t)$$

$$\hat{\mathcal{H}}_{\rm E}(t) = -\vec{E}(t) \cdot \vec{P}_{\rm tot}$$
$$\vec{E}(t) = E(\mp \cos(\Omega t + \delta), \sin(\Omega t), 0)$$

We ignore the Zeeman term

 $\mathcal{H}_{\text{Zeeman}}(t) = \vec{B}(t) \cdot \vec{S}$

Effective Hamiltonian for Kitaev model in a laser

$$\hat{\mathcal{H}}_{\text{eff}} = \hat{\mathcal{H}}_0 - \frac{1}{\Omega} [\hat{\mathcal{H}}_{+1}, \hat{\mathcal{H}}_{-1}] + \mathcal{O}(\Omega^{-2})$$

after Fermionization

$$\hat{\mathcal{H}}_{\Omega} = \pm \frac{1}{\Omega} E^2 \sum_{\vec{r}} i G_{12} \Big[\xi^b_{\vec{r}} \xi^b_{\vec{r}+\vec{u}_1+\vec{u}_2} + \xi^a_{\vec{r}} \xi^a_{\vec{r}-\vec{u}_1-\vec{u}_2} \Big] \\ + i \hat{I}_{\vec{r}} G_{23} \Big[\xi^b_{\vec{r}} \xi^b_{\vec{r}-\vec{u}_2} + \xi^a_{\vec{r}} \xi^a_{\vec{r}+\vec{u}_2} \Big] \\ + i \hat{I}_{\vec{r}} G_{31} \Big[\xi^b_{\vec{r}} \xi^b_{\vec{r}-\vec{u}_1} + \xi^a_{\vec{r}} \xi^a_{\vec{r}+\vec{u}_1} \Big]$$

Effective Hamiltonian for Kitaev model in a laser $\hat{\mathcal{H}}_{\text{eff}} = \hat{\mathcal{H}}_0 - \frac{1}{\Omega} [\hat{\mathcal{H}}_{+1}, \hat{\mathcal{H}}_{-1}] + \mathcal{O}(\Omega^{-2})$ after Fermionization ίξαξα iξbξb

Haldane model

Gap opens at the Dirac point

Nonequilibrium phase diagram of the effective Hamiltonian for the Kitaev model in a laser

Manipulation of island of topological state by spot laser ??

Conclusion

1. Quantum coherent control of solid state materials by laser

2. Floquet theory is easy (just remember the following)

Time-periodic quantum system = Floquet theory (exact)~ effective theory $i\partial_t \psi = H(t)\psi$ $\mathcal{H}\phi = \varepsilon\phi$ $H_{\text{eff}} = H_0 + \frac{[H_{-1}, H_1]}{\Omega} + \mathcal{O}(A^4)$ H(t) = H(t+T)"synthetic fields (term)"

3. Many applications

strongly correlated system, topological system, quantum spins, ...