New Horizon of Strongly Correlated Physics ISSP International Workshop 6.16 - 7.4, 2014 (Symposium 6.25-27) ISSP The University of Tokyo

Spontaneous Parity Breaking by Electron Correlations

Hiroaki Kusunose, Ehime University

Collaborators: S. Hayami and Y. Motome (U. Tokyo)

Acknowledgements : T. Arima, Y. Yanase, H. Harima, H. Tsunetsugu

S. Hayami, HK and Y. Motome: arXiv:1406.2093 S. Hayami, HK and Y. Motome: arXiv:1404.1156

Recent Topics by Spin-Orbit Coupling

Various interesting phenomena caused by **spin-orbit coupling**, especially **without spatial inversion symmetry**

Anti-symmetric spin splitting in spin-orbit coupled systems

Spin-Hall effect in topological insulators

Y. Ando: JPSJ 82 (2013) 102001

S. Fujimoto

Such interesting spin-orbital coupled systems can be created by spontaneous parity breaking ?

Degree of parity breaking is controllable

Parities and Band Structures

By symmetry argument

 $\begin{array}{ccccc} \mathbf{T} & (+k,\uparrow) & \leftrightarrow & (-k,\downarrow) \\ \mathbf{P} & (+k,\sigma) & \leftrightarrow & (-k,\sigma) \end{array} \end{array} \qquad \qquad \mathbf{TP} \quad (\pm k,\sigma) \quad (\pm$

$$\label{eq:point} \textbf{P} \quad (\pm k,\uparrow) \quad \leftrightarrow \quad (\pm k,\downarrow)$$

unbroken

T broken

P broken

View from Microscopic Degrees of Freedom

lowest-order multipoles

	M-dipole	E-dipole	M-toroidal dipole	E-toroidal dipole		
Т	_	+	_	+		
Р	+	-	-	+		
conj. field	H	E	$\nabla \times H j \frac{\partial P}{\partial t}$	$\mathbf{\nabla} imes E$		

Note that the momentum *k* has the same parities as M-toroidal dipole

We can consider corresponding higher-rank multipoles, which couple with conjugate fields *in higher-order terms*

Minimal Ingredients for Parity Breaking

- Spin-orbit coupling atomic origin (local) α "magnetic field" without time-reversal breaking • Local parity breaking exists intrinsically at atomic sites *in proper lattices* $d_i(Q)$ "parity mixing" without *global* parity breaking
 - Electron correlations stabilize various electronic orders

$$\Lambda_e(Q)$$
 electric orders $\Lambda_m(Q)$ magnetic orders

$$\mathcal{F}_{\text{int}} = \alpha_1 \, d_i(Q) \, \Lambda_e(Q) p_j(0) + \alpha_2 \, d_i(Q) \Lambda_m(Q) t_k(0)$$

Local Parity Breaking

2D 1/5-depleted square lattice

2D honeycomb lattice

3D diamond lattice

Two-Band Model on Honeycomb Lattice

Non-interacting Hamiltonian

inversion symmetry exists

Ω

$$\mathcal{H}_{0} = \begin{pmatrix} \frac{\lambda}{2}\sigma_{z} & -t_{0}\gamma_{0,k} - \frac{t_{1}}{2}(\gamma_{+1,k}\tau_{+} + \gamma_{-1,k}\tau_{-}) \\ \text{h.c.} & \frac{\lambda}{2}\sigma_{z} \end{pmatrix}$$

$$A \qquad B$$

Sublattice (A, B)
$$P$$
orbital (+1,-1) τ spin (1, \downarrow) σ

 $\gamma_{n,k} = e^{i\boldsymbol{k}\cdot\boldsymbol{\eta}_1} + \omega^{-2n}e^{i\boldsymbol{k}\cdot\boldsymbol{\eta}_2} + \omega^{2n}e^{i\boldsymbol{k}\cdot\boldsymbol{\eta}_3}$

additional phase factor from angular-momentum transfer $\omega = e^{2\pi i/3}$

 $\alpha_{\rm D} = 100 \, (\Lambda \, {\rm D})$

Symmetry-breaking fields (AB-staggered type)

$$\mathcal{H}_{1} = -h \sum_{sk} \sum_{mm'\sigma\sigma'} c^{\dagger}_{skm\sigma} \left[p(s) \Lambda^{\alpha}_{\beta} \right]^{\sigma\sigma'}_{mm'} c_{skm'\sigma'}$$

$$p(A) = +1, \ p(B) = -1$$

 $\Lambda^{\alpha}_{\ \beta} = \sigma_{\alpha} \tau_{\beta}$

Symmetry Operations

in terms of $~ ho,~ au,~\sigma$

Possible Spin-Orbital Orders and ME effects

#	O.P.	\mathcal{P}	$ \mathcal{T} $	\mathcal{R}	\mathcal{M}	ME(u)	ME(s)
1	CO, zz -SOO	×	\bigcirc	0	Ο		
2	x/y-OO	×	\bigcirc	×	0		\checkmark
3	xz/yz-SOO	×	0	\bigcirc	×		_
4	<i>z</i> -SO, <i>z</i> -OO	×	×	0	0		
5	zx/zy-SOO	×	×	×	0		\checkmark
6	x/y-SO	×	×	\bigcirc	×		
7	xx/yy/xy/yx-SOO	×	×	×	\times	\checkmark	\checkmark

CO : charge order

- SO : spin order
- OO : orbital order

SOO : spin-orbital order

 $\Lambda^{\alpha}_{\ \beta} = \sigma_{\alpha} \tau_{\beta}$

uniform S_x

ME (s)

staggered S_z

Phase Diagram at T=0 (1/4 filling)

Note: all cases are insulators

ME responses in SOO state

 \checkmark

 \checkmark

×

 $7 \frac{y}{xx/yy/xy/yx}$ -SOO

X

×

Non-Magnetic State

Charge Ordered State

increasing V in CO state (topological switching)

gap closes at K and K' points

The quantized value of σ^{z}_{xy} changes from 2 to 0

anti-symmetric spin splitting occurs

(energy contour at $\mu = -0.05$)

$$\mathcal{H}_{\rm SO}^{\rm eff} \sim \left(|\gamma_{+1,k}|^2 - |\gamma_{-1,k}|^2 \right) \sigma \Lambda_0^0$$
$$\sim k_y (3k_x^2 - k_y^2) \sigma \Lambda_0^0$$

cf. electronic structure is similar to monolayer dichalcogenides, MoS₂

Spin Ordered State

K.

М

г

 K_{+}

Μ

(energy contour at $\mu = 1$)

Summary

Minimal ingredients for spontaneous parity breaking

- Spin-orbit coupling ... for spin-orbital entanglement
- Local parity breaking ... seed for parity breaking
- Electron correlations ... origin of electronic orders

Two-band system on honeycomb lattice

