NHSCP2014 ISSP, University of Tokyo, Kashiwa 2014.6.25

Quadrupolar Ordered Phases in Pr-based Superconductors PrT₂Zn₂₀ (T = Rh and Ir)

Takahiro Onimaru¹

K. T. Matsumoto¹, N. Nagasawa¹, K. Wakiya¹, K. Umeo², S. Kittaka³, T. Sakakibara³, and T. Takabatake^{1,4} ¹AdSM, ²N–BARD, ³IAMR, Hiroshima University ⁴ISSP, University of Tokyo

<u>Outline</u>

- Multipoles of non-Kramers Pr^{3+} ion with $4f^2$ configuration
- PrT₂Zn₂₀ (T=Rh and Ir)
 - Crystal electric field (CEF) effect
 - \rightarrow Non-Kramers doublet ground state
 - Quadrupole order and superconducting transition
 - Further topic: Non-Fermi liquid behavior,

Multi-channel Kondo effect, etc.

Summary

Multipoles of 4f electrons

Electric Monopole, e⁻

Strong spin-orbit interaction $\rightarrow J = L \pm S$

- Magnetic Dipole ••• J_x , J_y , J_z
- Electric Quadrupole

$$O_{2}^{0} (= 2J_{z}^{2} - J_{x}^{2} - J_{y}^{2}) : \Gamma_{3}$$

$$O_{2}^{2} (= J_{x}^{2} - J_{y}^{2})$$

$$O_{yz}, O_{zx}, O_{xy} : \Gamma_{5}$$

$$(O_{\alpha \beta} = J_{\alpha} J_{\beta} + J_{\beta} J_{\alpha})$$
Pr

- Magnetic Octupole
 - $\begin{array}{l} T_{x}^{a}, \ T_{y}^{a}, \ T_{z}^{a} \ (\ \Gamma_{4}) \\ T_{x}^{b}, \ T_{y}^{b}, \ T_{z}^{b} \ (\ \Gamma_{5}) \\ T_{xyz} \ (\ \Gamma_{2}) \end{array}$

Quadruples of 4f electrons

	Dipole	Quadru -pole	Octu- pole
Γ_5	0	0	×
Γ_4	0	0	×
Γ ₃	×	0	0
Γ_1	×	×	×

How to remove the entropy of the degenerated state?

Cubic Pr-based compounds

	Crystal Structure	Point group	CEF GS	Magnetic order	Multipole order	SC transition
PrSn₃	AuCu ₃	O _h	Γ ₁ - Γ ₄	AFM <i>T</i> _N =8.6 K	_	_
PrPb ₃	AuCu ₃	O _h	Γ ₃	-	AFQ 7 _Q =0.4 K	
PrPtBi	MgAgAs	O _h	Γ ₃		FQ T _Q =1.35 K	
PrInAg₂	BiF ₃	O _h	Γ ₃	_	_	
PrMg₃	Fe ₃ Al	O _h	Γ ₃	_		
Pr ₃ Pd ₂₀ Ge ₆	C ₆ Cr ₂₃	O _h , T _d	Γ ₅ , Γ ₃	—	AFQ 7 _Q =0.26 K	_
Pr ₃ Pd ₂₀ Si ₆	$C_6 Cr_{23}$	O _h , T _d	Г ₅ , Г ₃	AFM <i>T</i> _N =0.14 K	AFQ T _Q =0.21 K	
PrOs ₄ Sb ₁₂	AT_4X_{12}	T _h	Γ ₁ - Γ ₄ ⁽¹⁾	_	AFQ (<i>B</i> >2 T)	Т _с =1.85 К
PrRu ₄ P ₁₂	AT ₄ X ₁₂	T _h	Γ ₁ , Γ ₄ ⁽²⁾ (<i>T</i> < <i>T</i> _{co} =63 K)	_	AFQ <i>T</i> _Q =0.11 K	_
PrFe ₄ P ₁₂	AT ₄ X ₁₂	T _h	Γ ₁ - Γ ₄ ⁽¹⁾	_	Scalar-type <i>T</i> _M =6.5 K	_
PrPt ₄ Ge ₁₂	AT ₄ X ₁₂	T _h	Γ ₁	_	—	<i>Т</i> _с =8 К

Non-Kramers Pr³⁺ ions in crystals

 Pr^{3+} ion: $4f^2$ configuration (*L*=5, *S*=1, *J*=4)

Incommensurate quadrupole structures
 ⇒ Indirect RKKY-type interaction.
 Quadrupoles are partially quenched.
 T. Onimaru *et al.*, Phys. Rev. Lett. 94 (2005) 197201.

PrInAg₂, PrMg₃:

Incommensurate quadrupole structure

in PrPb₃. (T. Onimaru *et al.*, PRL, 2005.) **No ordering, Quadrupole Kondo effect** A. Yatskar *et al.*, Phys. Rev. Lett. **77** (1996) 3637., H. Tanida *et al.*, J. Phys. Soc. Jpn. **75** (2006) 073705.

Composite order in two-channel Kondo lattice

S. Hoshino et al., J. Phys. Soc. Jpn. 82, 044707 (2013.)

- Non-Kramers Γ_3 doublet for Pr^{3+} ion \rightarrow Quadrupole moments are active.
- Strong hybridization of the 4*f* electrons with conduction electrons
 → Heavy fermion state and Kondo effect
- Anharmonic atomic vibrations couple with 4f and conduction electrons.

Magnetic susceptibility: PrT₂Zn₂₀ (T=Ru, Rh, Ir)

- The small negative θ_{P} 's indicate weak magnetic interaction between the Pr-ions.
- Van-Vleck paramagnetic behavior.
 - \Rightarrow The CEF ground states is non-magnetic Γ_1 or Γ_3 .

- Schottky-type peaks appear at 12 K. \rightarrow CEF ground state: Γ_3 doublets

 $PrRu_2Zn_{20}$: Structural transition at T_s =138 K

• Shoulder-like anomaly \rightarrow Splitting of Γ_3 doublet by the lattice modulation.

T. Onimaru et al, Phys. Rev. Lett. 106 (2011) 177001. I. Ishii, et al., J. Phys. Soc. Jpn. 80, 093601 (2011). T. Onimaru et al, Phys. Rev. B 86 (2012) 184426.

8

Inelastic neutron scattering

K. Iwasa et al., J. Phys. Soc. Jpn. 82 (2013) 043707.

• Spectra are well reproduced by the CEF level schemes with the nonmagnetic doublet ground state.

PrT₂X₂₀ (T: Transition metal, X: AI, Zn)

	Lattice parameter (Å)	Structural transition	CEF ground state	Quadrupole order	SC transition
PrRu ₂ Zn ₂₀	14.3467(4)	Т _S =138 К	Singlet (<i>T</i> < T _S)	—	— (>0.04 K)
PrRh ₂ Zn ₂₀	14.2702(3)	7 _S =170 ∼470 K	$ \begin{array}{c} \Gamma_{23} \text{ doublet (T)} \\ (T < T_{S}) \end{array} \end{array} $	AFQ 7 _Q =0.06 K	<i>Т_с=</i> 0.06 К
PrOs ₂ Zn ₂₀	14.365(5)	Т _S =87 К	?	— (>0.4 K)	— (>0.4 K)
Prlr ₂ Zn ₂₀	14.2729(2)	—	Γ ₃ doublet	AFQ 7 _Q =0.11 K	<i>Т_с=</i> 0.05 К
PrTi ₂ Al ₂₀	14.723(7)	_	Γ_3 doublet	FQ 7 _Q =2 K	<i>T</i> _c =0.2 K (a. p.) <i>T</i> _c =1 K (∼8 GPa)
PrV ₂ Al ₂₀	14.591(2)	—	Γ_3 doublet	AFQ T _Q =0.6 K	—
PrNb ₂ Al ₂₀	14.7730(3)	_	Γ_3 doublet	—	—

T. Onimaru *et al.,* JPSJ **79** (2010) 033704.

T. Onimaru *et al.*, PRL **106** (2011) 177001.

T. Onimaru *et al.*, PRB **86** (2012) 184426.

K. Wakiya *et al.*, JKPS **62** (2013) 2143.

A. Sakai and S. Nakatsuji, JPSJ 80 (2011) 063701.

R. Higashinaka et al., JPSJ 80 (2011) SA048.

A. Sakai et al., JPSJ **81** (2012) 083702.

K. Matsubayashi *et al.*, PRL **109** (2012) 187004.

Magnetic specific heat

80 (2011) 093601.

Sharp peaks appear at low temperatures. •

> $PrRh_2Zn_{20}$ Antiferroquadrupole (AFQ) ordering at $T_{\rm O}$ =0.06 K. I. Ishii et al., Phys. Rev. B 87 (2013) 205106. $PrIr_2Zn_{20}$ AFQ ordering at $T_0=0.11$ K. I. Ishii et al., J. Phys. Soc. Jpn. 80 (2011) 093601.

- i. Anisotropic behavior of T_Q . T_Q : [100] < [110] < [111]
- ii. T_Q increases with increasing *B* for [110] and [111].

AFQ ordering occurs at T_Q =0.06 K.

AFQ ordered state: PrRh₂Zn₂₀

Two-sublattice mean-field model

$$H_{A(B)}^{I} = H_{CEF} - g_{J}\mu_{B}JH - \left(K_{1}\langle J \rangle_{B(A)} + K_{2}\langle J \rangle_{A(B)}\right)J - K_{\Gamma3}\left(\langle O_{2}^{0} \rangle_{B(A)}O_{2}^{0} + \langle O_{2}^{2} \rangle_{B(A)}O_{2}^{2}\right)$$

T. Onimaru et al., Phys. Rev. B 86 (2012) 184426.

• Two sub-lattice mean-field calculation well reproduces the anisotropic *B*-*T* phase diagrams.

 Antiferromagnetic interaction between the field-induced magnetic moments of the Pr³⁺ ions stabilizes the AFQ ordered state.

Metamagnetic behavior in **B** || [100]

• Metamagnetic behavior was observed at around *B*=5 T.

- In mean-field model calculation, order parameter is changed in *B*, where metamagnetic behavior is found, resulting from level-crossing.
 - ➔ Switching of the OP possibly changes the conduction band? ¹⁴

Simultaneous Superconducting and AFQ transitions in PrRh₂Zn₂₀

T. Onimaru *et al.*, Phys. Rev. B **86** (2012) 184426.

- Superconducting transition occurs at T_c =0.06 K.
- The magnetic entropy at T_Q is only 0.1Rln2 which is much smaller than Rln2 expected for an order of the nonmagnetic doublet ground state.
 ⇒ The quadrupole fluctuations remain active below T_Q?

Ferroquadrupole order and heavy-fermion superconductivity in the isostructural PrTi₂Al₂₀

K. Matsubabashi et al., Phys. Rev. Lett. 109 (2012) 187004.

Anomalous temperature dependence of $\rho(T)$ and C(T)

S/T ~ 0.031 µV/K² (T. Ikeura and K. Izawa)
 → Weak hybridization between
 the 4f and conduction electrons 2

the 4f and conduction electrons ?

 Entropy of the Γ₃ doublet is released by dynamic Jahn-Teller distortion in PrMg₃.

K. Araki et al., J. Phys. Soc. Jpn. 81 (2012) 023710.

Summary PrT_2Zn_{20} (T = Ru, Rh, and Ir)

- For T=Rh and Ir, the CEF ground state are the non-magnetic
 Γ₃ doublet with quadrupolar degrees of freedom.
- Antiferro-quadrupolar (AFQ) ordering at T_Q was confirmed.
 - To determine the AFQ structure and order parameters, microscopic measurements are in progress.
- Non-Fermi liquid behavior was observed above T_Q .
 - Hybridization effect must play an important role in forming the ground state.

 PrT_2X_{20} (X=AI and Zn) family is appropriate for revealing characteristics of the quadrupoles such as quadrupole order, multi-channel Kondo effect, exotic superconductivity.