New Horizon of Strongly Correlated Physics

Quantum Criticality in Iron-pnictide Superconductors

Takasada Shibauchi Department of Advanced Materials Science University of Tokyo shibauchi@k.u-tokyo.ac.jp

<u>OUTLINE</u>

- 1. Evidence of a QCP in $BaFe_2(As_{1-x}P_x)_2$
 - Mass enhancement near *x*=0.3
- 2. Anomalous superconducting properties near the QCP

Collaborators

Transport properties Penetration depth Thermal conductivity dHvA Magnetic torque Crystal growth

S. Kasahara K. Hashimoto Y. Mizumami H. Shishido Y. Kawamoto D. Watanabe Y. Matsuda

Band calc.

H. Ikeda

NMR

T. Iye Y. Nakai

K. Ishida

Kyoto Univ. Japan

Critical fields, dHvA

- C. Puzke
- A. Serafin
- P. Walmsley
- A. Carrington

Univ. of Bristol, UK

dHvA

A.I. Coldea Univ. of Oxford, UK

Penetration depth

M.Tanatar R.Prozorov Ames, USA N. Salovich

K. Cho

THE Ames Laboratory Creating Materials & Energy Solutions

R. W. Giannetta

Urbana-Champaign, USA

Microwave H. Kitano *Aoyama Gakuin, Japan*

Quantum Critical Point (QCP)

Doping evolution of the transport property

See also

S. Sachdev and B. Keimer, Physics Today (2011).

J. Dai, Q. Si, J.-X. Zhu, and E. Abrahams, PNAS (2009).

*T*²-dependence at *x*=0.71 Fermi-liquid behavior

Fermi surface and mass renormalization

Fermi temperature $T_{\rm F} = heF/m * k_{\rm B}$ tends to zero

H. Shishido et al., PRL (2009); B. J. Arnold et al., PRB (2011); P. Walmsley et al., PRL (2013).

Doping evolution of the specific heat jump at $T_{\rm c}$

 m_b

P. Walmsley et al., PRL (2013).

Doping evolution of the magnetic properties (³¹P NMR)

 θ : Weiss temperature

Magnetic moment vanishes at x=0.3

Doping evolution of normal-state properties

As x is tuned towards the maximum T_c at x=0.30

Hallmark of non-Fermi liquid behavior Resistivity

Effective mass m* is strongly enhanced dHvA Specific heat

Weiss temperature goes to zero Magnetic moment vansishes

NMR

We need evidence at zero temperature and zero field.

Phase diagrams of unconventional superconductors

BaFe₂(As_{1-x}P_x)₂

K. Hashimoto et al., Science (2012).

T. Shibauchi, A. Carrington, and Y. Matsuda, Annu. Rev. Condens. Matter Phys. **5**, 113-135 (2014). Doping evolution of the London penetration depth at T = 0 K

London penetration depth λ_L is the quantity that can probe the electronic structure at zero temperature limit.

1. Al coated method

Tunnel diode oscillator (13MHz, 70 mK)

2. Microwave surface impedance

Rutile cavity resonator (5 GHz, Q~10⁶, 350 mK)

3.Nodal superconducting gap structure

Line node

$$\frac{\delta \lambda_L(T)}{\lambda_L(0)} \approx \frac{\ln 2}{\Delta} k_B T$$

Doping evolution of the London penetration depth at T=0

Doping evolution of the London penetration depth at T=0

QCP lies beneath the dome

- 1. The QCP is the origin of the non-Fermi liquid behavior above T_c .
- 2. Unconventional SC coexists with AFM on a microscopic level.
- 3. The quantum critical fluctuations help to enhance superconductivity.

Doping evolution of $\lambda(T)$ in BaFe₂(As,P)₂

Deviations from the *T*-linear dependence near x=0.3

Nodal superconductors in the vicinity of AFM

Anomalous $\lambda(T)$ in CeColn₅ and Ce₂Pdln₈

Deviations from the *T*-linear dependence

Consistent with previous studies.

S. Ozcan et al., Europhys. Lett 62 412 (2003).

Anomalous $\lambda(T)$ in CeColn₅ and Ce₂Pdln₈

Anomalous non-integer 3/2 power-law dependence in a wide *T*-range

K. Hashimoto et al., PNAS 110, 3293 (2013).

Anomalous superfluid density in `quantum critical' SCs

0.2

0.4

0.8

0.6 X

`Nodal quantum criticality' in unconventional SCs

Below T_{c} ... Low-energy quantum critical fluctuations may be quenched by the SC gap formation.

Fermi surface is not gapped at the nodes, which leads to momentumdependent mass enhancement.

$$m^{*2} \propto (p - p_{\rm QCP})^{-\beta}$$

p: non-thermal parameter \rightarrow gap magnitude

 $v_F(k) \propto z_k \propto 1/m^*(k) \propto |\Delta(k)|^{eta/2}$

 β ~1 has been reported in β -YbAlB₄ and YbRh₂Si₂

Y. Matsumoto *et al.*, Science (2011). P. Gegenwart *et al.*, PRL (2002).

Nodal quantum criticality' in unconventional SCs

Anomalous critical fields in quantum critical SCs

Summary: $BaFe_2(As_{1-x}P_x)_2$ A clean system to study the QCP

Anomalous SC properties near the QCP

Several anomalies in the normal state A sharp peak in penetration depth at T=0

A QCP lurking inside the superconducting dome

T. Shibauchi, A. Carrington, and Y. Matsuda, Annu. Rev. Condens. Matter Phys. **5**, 113 (2014). Possible nodal quantum criticality and unusual vortex state due to microscopic mixing of AFM and SC

K. Hashimoto et al., PNAS 110, 3293 (2013).

C. Putzke et al., arXiv:1402.1323