Momentum differentiation enhanced by Hund's coupling: A multi-orbital cluster DMFT study

Ryotaro Arita RIKEN CEMS

Univ. Tokyo Yusuke Nomura Shiro Sakai RIKEN CEMS

Outline

Effect of local U and J in correlated electron systems

	Onsite correlation	Intersite correlation
U	DMFT	Cluster DMFT
J	Multi-orbital DMFT	multi-orbital cluster DMFT

Efficient CTQMC algorithm for multi-orbital DCA

Y. Nomura, S. Sakai, and RA, Phys. Rev. B 89, 195146 (2014)

How local J enhances intersite correlations

DMFT study on the on-site correlation due to U

	Onsite correlation	Intersite correlation
U	DMFT	Cluster DMFT
J	Multi-orbital DMFT	multi-orbital cluster DMFT

Mott-Hubbard transition

A. Georges et al., RMP 68 13 (1996)

Cluster DMFT study on the intersite correlation due to U

	Onsite correlation	Intersite correlation
U	DMFT	Cluster DMFT
J	Multi-orbital DMFT	multi-orbital cluster DMFT

Analytically continued spectral function A(ω): U = 7t, t'/t=0.15, β t=20

N. Lin, E. Gull, and A.J. Millis, Phys. Rev. B 82, 045104 (2010)

DMFT study on the on-site correlation due to J

	Onsite correlation	Intersite correlation
U	DMFT	Cluster DMFT
J	Multi-orbital DMFT	multi-orbital cluster DMFT

"Hund's metal" (Strong correlation induced by J)

Haule and Kotliar, New J. Phys. 11, 025021 (2009)

DMFT study on the on-site correlation due to J

	Onsite correlation	Intersite correlation
U	DMFT	Cluster DMFT
J	Multi-orbital DMFT	multi-orbital cluster DMFT

"spin-freezing" transition

Werner et al., PRL 101, 166405 (2008)

DMFT study on the on-site correlation due to J

"Janus-Faced" effect

for N electrons in M degenerate orbitals, except for N=1 or N=M

Medici et al., PRL 107, 256401 (2011)

	Onsite correlation	Intersite correlation
U	DMFT	Cluster DMFT
J	Multi-orbital DMFT	multi-orbital cluster DMFT

First multi-orbital cluster DMFT calculation using CTQMC with including spin-flip and pair-hopping terms

Y. Nomura, S. Sakai, and RA, Phys. Rev. B 89, 195146 (2014)

CTQMC: weak coupling expansion

A. N. Rubtsov et al., Phys. Rev. B 72, 035122 (2005)
F. F. Assaad and T. C. Lang, Phys. Rev. B 76, 035116 (2007)
E. Gull et al., Rev. Mod. Phys. 83 349 (2011)

Diagrammatic expansion of the partition function of an impurity model \rightarrow sampling of the series stochastically up to infinite order

$$Z = \operatorname{Tr} \begin{bmatrix} e^{-\beta H_0} T_{\tau} \exp\left(-\int_0^\beta d\tau H_1(\tau)\right) \end{bmatrix}$$

Non-interacting part Interacting part
$$\frac{Z}{Z_0} = \sum_{k=0}^\infty \int_k d\tau P(q_k), \quad P(q_k) = (-1)^k \langle T_{\tau} H_1(\tau_k) \cdots H_1(\tau_2) H_1(\tau_1) \rangle_0$$
$$\langle A \rangle_0 \equiv \frac{1}{Z_0} \operatorname{Tr} \left[e^{-\beta H_0} A \right]$$

We used the sub-matrix update method originally developed for the Hirsch-Fye algorithm (Nukula et al., PRB09) and the Continuous-Time Auxiliary Field algorithm (Gull et al., PRB11)

CTQMC: weak coupling expansion

E. Gorelov et al., Phys. Rev. B 80, 155132 (2009)

K.Arita

Action for the multi-orbital model

$$\begin{split} S_{0} &= -\int_{0}^{\beta} d\tau \int_{0}^{\beta} d\tau' \sum_{ij,\sigma} [\tilde{\mathcal{G}}_{0\sigma}^{-1}(\tau - \tau')]_{ij} c_{i\sigma}^{\dagger}(\tau) c_{j\sigma}(\tau') \\ S_{\text{int}} &= \int_{0}^{\beta} d\tau \sum_{s=\pm 1} \left[\sum_{i} \frac{U}{2} \left[n_{i\uparrow}(\tau) - \underline{\alpha_{1\uparrow}}(s) \right] \left[n_{i\downarrow}(\tau) - \underline{\alpha_{1\downarrow}}(s) \right] + \sum_{i < j,\sigma} \frac{U'}{2} \left[n_{i\sigma}(\tau) - \underline{\alpha_{1\sigma}}(s) \right] \left[n_{j\overline{\sigma}}(\tau) - \underline{\alpha_{1\overline{\sigma}}}(s) \right] \\ &+ \sum_{i < j,\sigma} \frac{U' - J_{\text{H}}}{2} \left[n_{i\sigma}(\tau) - \underline{\alpha_{1\sigma}}(s) \right] \left[n_{j\sigma}(\tau) - \underline{\alpha_{1\sigma}}(s) \right] + \sum_{i \neq j} \frac{J_{\text{H}}}{2} \left[c_{i\uparrow}^{\dagger}(\tau) c_{j\uparrow}(\tau) - \underline{\alpha_{2\downarrow}}(s) \right] \left[c_{i\downarrow}^{\dagger}(\tau) c_{j\downarrow}(\tau) - \underline{\alpha_{2\downarrow}}(s) \right] \\ &+ \sum_{i \neq j} \frac{J_{\text{H}}}{2} \left[c_{i\uparrow}^{\dagger}(\tau) c_{j\uparrow}(\tau) - \underline{\alpha_{2\uparrow}}(s) \right] \left[c_{i\downarrow}^{\dagger}(\tau) c_{j\downarrow}(\tau) - \underline{\alpha_{2\downarrow}}(s) \right] \right]. \end{split}$$

We introduce additional parameters

 $\overline{}$

$$\begin{cases} \alpha_{1\uparrow}(s) = 1/2 + s\delta_1 \\ \alpha_{1\downarrow}(s) = 1/2 - s\delta_1 \end{cases} \quad \delta_1 = 1/2 + 0^+ \qquad \longrightarrow \text{ To reduce sign problem}$$

$$\begin{bmatrix} \alpha_{2\uparrow}(s) = +s\delta_2 \\ \alpha_{2\downarrow}(s) = -s\delta_2 \end{bmatrix} \quad \begin{array}{c} \delta_2: \text{ small positive} \\ \text{number} \end{array} \quad \begin{array}{c} \text{To ensure the ergodicity (if } [G_0]_{ij} = 0) \\ \text{large } \delta_2 \rightarrow \text{sign problem} \end{array}$$

Two-orbital Hubbard model

We need sufficiently large δ_2 to guarantee the ergodicity

Two-orbital Hubbard model

Large $\delta_2 \rightarrow$ Severer sign problem

Efficient sampling for spin-flip & pair-hopping terms

Weight of configurations with odd number of *J* vertices is zero for $\delta_2 \rightarrow 0$.

The odd-order terms are artificial but necessary, since the number of non-density J vertices can not be changed without passing through the odd-order terms.

We only need to insert/remove two J vertices simultaneously (double vertex update) We do not need to introduce δ₂

Y. Nomura, S. Sakai, and RA, Phys. Rev. B 89, 195146 (2014) R.Arita

Double vertex update

Double vertex update

Calculation conditions:

- > 2D square lattice, t = 1, t=0
- Three-orbital Hubbard model with 2 electrons/site
- *≻ J= U*/4
- cluster DMFT with 2 site cluster (DCA)
- Paramagnetic and para-orbital solution

Three-orbital Hubbard model: one-particle quantity (1)

In the presence of J filling redistribution within BZ: (0,0) patch tends to be half-filling

(2)

Low energy spectrum appears in (π,π) patch

(3)

Momentum differentiation

Janus-faced effect of J

Medici et al., PRL 107, 256401 (2011)

Three-orbital Hubbard model: two-particle quantity (1)

Onsite correlation

Werner et al., PRL 101, 166405 (2008)

I, *m*: orbital

"Spin freezing" behavior for large U

Three-orbital Hubbard model: two-particle quantity (2)

Intersite correlation

i,j: site *I*, *m*: orbital Ferromagnetic ground state for 1D 2-orbital Hubbard model

K. Kubo, JPSJ 1982 K. Kusakabe & H. Aoki, Physica 1994

DMFT T. Momoi & K. Kubo, PRB 1998 K. Held & D. Vollhardt EPJ 1998 C-K. Chan et al., PRB2009

Three-orbital Hubbard model: two-particle quantity (2)

Intersite correlation

i,j: site *I*, *m*: orbital

Conclusion

- Efficient CTQMC algorithm for multi-orbital DCA
- Effect of local J in correlated electron systems

> J enhances spatial correlations

Future problem: LDA+cDMFT calculation for multi-orbital systems

Intersite correlation due to J

LnSrNiO₄: Layered perovskite $3d^7$ system (Same crystal structure as La₂CuO₄)

	Onsite correlation	Intersite correlation
U	DMFT	Cluster DMFT
J	Multi-orbital DMFT	multi-orbital cluster DMFT

Uchida, RA et al., PRL 106, 027001(2011)

Motivation: effect of J

	Onsite correlation	Intersite correlation
U	DMFT	Cluster DMFT
J	Multi-orbital DMFT	multi-orbital cluster DMFT

"band decoupler" and orbital selective Mott transition

Two-orbital Hubbard model: Mott transition

Entropy(ins,SU(2)) ~ ln(3) (S=1, Sz = 1,0,-1) Entropy(ins,Ising) ~ ln(2) (S=1, Sz= \pm 1)

Two-orbital Hubbard model: Mott transition

Entropy(metal) > Entropy(ins)