NHS@P

ISSP International Workshop

New Horizon of Strongly Correlated Physics

June 16 - July 4, 2014 (Symposium June 25-27) ISSP, The University of Tokyo

Irakli Titvinidze Andrej Schwabe Maximilian Aulbach Michael Potthoff

Inverse Indirect Magnetic Exchange

Irakli Titvinidze Andrej Schwabe Maximilian Aulbach Michael Potthoff

Inverse Indirect Magnetic Exchange

Contents:

- Kondo effect and RKKY
- physical systems
- IIME main idea
- exact diagonalization
- DMRG in D=1 dimension
- real-space DMFT:
 D=2 nanostructures
- 4-th order perturbation theory: IIME effective Hamiltonian
- IIME off half-filling and at T>O static mean field and DMFT/QMC
- flat-band ferromagnetism?

υн

Universität Hamburg

DER FORSCHUNG I DER LEHRE I DER BILDUNG

Magnetic atoms on metallic surfaces: Kondo effect

$TA = 1.3$ $pe \widehat{p} \widehat{p} 1.2$ of $\overline{nu} 2$ 1.1		shape parameters and (1) to scanning tur on Cu(100) and Cu(Cu atoms.	nd Kondo tem- nneling spectra (111). <i>n</i> is the
 ⇒ 1.0	× _	Co/Cu(100)	Co in bulk
, -40 -20	0 20 40 bias (mV)	88 ± 4	~500 [9]
	53 ± 5 [6]		
n	3	4	12
q	0.18 ± 0.03	1.13 ± 0.06	
$\Delta E \text{ [meV]}$	1.8 ± 0.6	-1.3 ± 0.4	

Knorr et al., PRL 88, 096804 (2002)

Co/Cu(100), Co/Cu(111)

Manoharan et al., Nature 403, 512 (2000) Co/Cu(111): quantum mirage effect in an elliptical quantum corral

RKKY interaction at metallic surfaces

Khajetoorians et al., Nat. Phys. 8, 497 (2012)

insulating spacer

large bath

Cu bulk

Ultracold atoms in optical lattices

• Fermionic alkaline earth atoms

• simulation of the Kondo-lattice model

Gorshkov et al., Nat. Phys. 6, 289 (2010)

Hamiltonian:

DER FORSCHUNG | DER LEHRE | DER BILDUNG

Universität Hamburg

Ш

t = 1
J > 0
L
R
N

assume, e.g.: N = L half-filling: N = K Fermi liquid state (large L): N + R even

Kondo vs. RKKY in a quantum box

modified Doniach diagram:

A. Schwabe, D. Gütersloh, M.P., PRL 109, 257202 (2012)

υн

HÌ

Universität Hamburg

DER FORSCHUNG I DER LEHRE I DER BILDUNG

from weak to strong J

- unique ground state
- local Kondo singlets: magnetically inert
- confinement of conduction electrons
- local moment formation
- magnetic coupling: IIME
- IIME mediated by virtual excitations of local Kondo singlets
- Kondo effect "helps"

Lieb-Mattis theorem

Lieb, Mattis (1962):

Heisenberg model on a bipartite lattice antiferromagnetic coupling between A and B sites arbitrary dimension

ground state is **non-degenerate** (apart from spin degeneracy) Stot=0 (singlet) if NA=NB, Stot=1/2(NA-NB) else

proof: "spin-reflection positivity" and Perron-Frobenius theorem

Lieb (1989): generalization to the Hubbard model (bipartite lattice, half-filling, arbitrary dimension)

Yanagisawa, Shimoi (1995), Shen (1996), Tsunetsugu (1997) generalization to the correlated Kondo lattice model (bipartite lattice, half-filling, arbitrary dimension)

unique ground state with $S_{tot}=1/2(N_A-N_B)$

υн

HÌ

Universität Hamburg

DER FORSCHUNG I DER LEHRE I DER BILDUNG

from weak to strong J

- unique ground state
- local Kondo singlets: magnetically inert
- confinement of conduction electrons
- local moment formation
- magnetic coupling: IIME
- IIME mediated by virtual excitations of local Kondo singlets
- Kondo effect "helps"

Depleted Kondo lattice in D=1

DMRG study:

- Kondo impurities and Anderson impurities
- L=49, R=25 spins commensurate with RKKY period
- convergence check: L=89, R=49
- S_{tot}=(R-1)/2=const.
- weak J: one spin is Kondo screened
- strong J: R-1 local moments coupled by IIME

IIME in a 2D array

real-space DMFT:

magnetic adatoms on metal surface, strong J (J=5)

substrate: 18x22 array (PBC)

R=57 impurities

 $N_A - N_B = 36 - 21 = 15, 2S_{tot} = 15.06$

IIME:

- ferromagnetic chain
- oscillatory distance dependence
- proximity effect
- confinement is essential
- odd-even effects
- interference pattern

"Inverse" indirect magnetic exchange

Ш

iii

Universität Hamburg

DER FORSCHUNG I DER LEHRE I DER BILDUNG

effective
low-energy
theory: $H_{\rm eff} = J_{\rm RKKY} \, \boldsymbol{S}_1 \boldsymbol{S}_2$?

spin

Strong-coupling perturbation theory

Kondo-lattice perturbation theory up to $O(t/J)^4$

UН

💾 Universität Hamburg DER FORSCHUNG I DER LEHRE I DER BILDUNG

isospin

 $\mathbf{s}_{i} = \frac{1}{2} (c_{i\uparrow}^{\dagger}, c_{i\downarrow}^{\dagger}) \cdot \boldsymbol{\sigma} \cdot \begin{pmatrix} c_{i\uparrow} \\ c_{i\downarrow} \end{pmatrix} \quad \mathbf{t}_{i} = \frac{1}{2} (c_{i\uparrow}^{\dagger}, (-1)^{i} c_{i\downarrow}) \cdot \boldsymbol{\sigma} \cdot \begin{pmatrix} c_{i\uparrow} \\ (-1)^{i} c_{i\downarrow}^{\dagger} \end{pmatrix}$

Effective Hamiltonian

ferromagnetic ground state

Bond-spin representation

Universität Hamburg Static mean-field theory for Heff at T>O DER FORSCHUNG | DER LEHRE | DER BILDUNG

mean-field decoupling: $c^{\dagger}c^{\dagger}cc \longrightarrow \langle c^{\dagger}c \rangle c^{\dagger}c + c^{\dagger}c \langle c^{\dagger}c \rangle - \langle c^{\dagger}c \rangle \langle c^{\dagger}c \rangle$

4-th order perturbation theory

$$H_{\text{eff}} = -\frac{\alpha}{4} \sum_{i \in B} \left[2D \sum_{j_1, j_2 \in A_i} \sum_{\sigma} c^{\dagger}_{j_1, \sigma} c_{j_2, \sigma} - 2 \sum_{j_1, j_2, j_3, j_4 \in A_i} c^{\dagger}_{j_1, \uparrow} c_{j_2, \uparrow} c^{\dagger}_{j_3, \downarrow} c_{j_4, \downarrow} \right]$$

off half-filling: fully polarized state at T=0 T_c decreases

υн

谱

half-filling:

upturn of m at

$T_c >> coordination$

Universität Hamburg Static mean-field theory for Heff at T>O DER FORSCHUNG | DER LEHRE | DER BILDUNG

mean-field decoupling: $c^{\dagger}c^{\dagger}cc \longrightarrow \langle c^{\dagger}c \rangle c^{\dagger}c + c^{\dagger}c \langle c^{\dagger}c \rangle - \langle c^{\dagger}c \rangle \langle c^{\dagger}c \rangle$

4-th order perturbation theory

$$H_{\text{eff}} = -\frac{\alpha}{4} \sum_{i \in B} \left[2D \sum_{j_1, j_2 \in A_i} \sum_{\sigma} c^{\dagger}_{j_1, \sigma} c_{j_2, \sigma} - 2 \sum_{j_1, j_2, j_3, j_4 \in A_i} c^{\dagger}_{j_1, \uparrow} c_{j_2, \uparrow} c^{\dagger}_{j_3, \downarrow} c_{j_4, \downarrow} \right]$$

off half-filling: fully polarized state at T=0 T_c decreases

υн

谱

half-filling:

upturn of m at

$T_c \gg$ coordination

full DMFT-CT-QMC-hyb-segment calculation for the depleted Anderson model

υн

12 14 U=8 8 10 ∣_{0.8} V=2 DMR .8 ordered magnetic moment mz Impurifies_o Anderson impurities 0.4 Kondo impurities 0.2 I_C 200 Kondo 150 Anderson 100 -50 DMRG 0 12 14 8 10 -0,2 0,01 0,03 0,04 0,02 0,05 0,06 0 temperature T

DMFT-ED at T=0: low-energy excitation spectrum

M. Aulbach, I. Titvinidze, M.P., t.b.p.

Flat band

"flat-band ferromagnetism" Mielke (1991), Tasaki (1992)

- in certain geometries, not necessarily bipartite lattices
- ground state is a polarized uncorrelated Fermi sea even at U>0

free band structure:

Hartree-Fock vs. DMRG/DMFT

Irakli Titvinidze Andrej Schwabe Maximilian Aulbach Michael Potthoff

Universität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUNG

Inverse Indirect Magnetic Exchange

conclusions

- Kondo effect vs. indirect exchange: new phenomena due to confinement
- IIME: Kondo effect helps (rather than competes)
- effective Hamiltonian: spins on bonds, plaquettes, ...
- comprises the predictions of the Lieb-Mattis theorem
- different from flat-band ferromagnetism

