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Self-Contained Kondo Effect in Single Molecules

C. H. Booth,1 M. D. Walter,1 M. Daniel,1 W. W. Lukens,1 and R. A. Andersen1,2
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Kondo coupling of f and conduction electrons is a common feature of f-electron intermetallics. Similar
effects should occur in carbon ring systems (metallocenes). Evidence for Kondo coupling in Ce!C8H8"2
(cerocene) and the ytterbocene Cp#2Yb!bipy" is reported from magnetic susceptibility and LIII-edge x-ray
absorption spectroscopy. These well-defined systems provide a new way to study the Kondo effect on the
nanoscale, should generate insight into the Anderson Lattice problem, and indicate the importance of this
often-ignored contribution to bonding in organometallics.

DOI: 10.1103/PhysRevLett.95.267202 PACS numbers: 75.20.Hr, 33.15.$e, 61.10.Ht, 71.27.+a

Investigations into the Kondo effect, whereby a local
magnetic moment spin polarizes local conduction elec-
trons forming a magnetic singlet, has recently broadened
from the realm of understanding heavy-fermion, mixed-
valent, and other related intermetallic alloys, to the study of
transport and magnetic properties of quantum dots [1,2],
carbon nanotubes [3,4], intermetallic nanoparticles [5], and
even single-molecule transistors [6,7]. Self-contained sys-
tems, where the conduction electrons are intrinsic rather
than injected, are difficult to obtain experimentally,
although theoretical attention has recently focused on
magnetic impurities in & 1 nm metallic nanoparticles
[8–10]. Similar interactions should occur in metal-carbon
ring molecules (metallocenes) where the !-bonded elec-
trons are delocalized [11]. Here, we describe experimental
evidence that the Kondo effect occurs in single molecules
(Fig. 1) of cerocene [Ce!COT"2, where COT is cyclo-
octatetraene (C8H8)] and the ytterbocene Cp#2Yb!bipy"
(Cp# is pentamethylcyclopentadienyl (C5Me5), bipy is
2; 20-bipyridyl [!NC5H4"2]) from both temperature-
dependent magnetic susceptibility "!T" and f-occupancy
measurements using rare-earth LIII-edge x-ray absorption
near-edge spectroscopy (XANES). These results not only
provide a new arena for studying the Kondo effect on the
nanoscale, but also indicate the importance of this often-
ignored contribution to bonding in organometallics and
provide insight into the more general Anderson lattice
problem.

The main difference between the Kondo effect in a bulk
system and a nanoparticle is due to quantum confinement,
where the system is small enough that the conduction band
is no longer continuous, instead forming a set of discrete
states with energy gap ! [8–10]. This problem is essen-
tially a particle-in-a-box coupling to a magnetic impurity,
and so has been dubbed a ‘‘Kondo box’’ [8]. In a conven-
tional metallic lanthanide Kondo system with a continuous
density of states at the Fermi level, calculations show that
"!T" approaches a constant "0 as T ! 0, and for magnetic
quantum numbers J > 1, it goes through a maximum near
T % 1

4TK [12]. In a nanoparticle for T > !, the system will

behave similar to the bulk, continuously filling the high-T
triplet state from the low-T singlet state, that is, changing
from a reduced "!T" at low T to a Curie-Weiss "!T" at high
T. Both nanoparticle and bulk systems are in a multiconfi-
gurational, quantum mechanically mixed ground state of
the nf & 0 and 1 states, with the f-electron (for Ce) or
f-hole (for Yb) occupancy nf in the range of'0:7–1:0. For
TK * 1000 K, nf should change little with T [13].

The situation changes for "!T" at T <!, although ex-
actly how probably depends on the details of the system in
question. One possibility is that "!T"! 0 as T ! 0 and is
exponentially activated as T approaches ! [9,10], similar
to a Kondo insulator [14]. Implicit in this calculation is that
the Landé g values of the f-ion and conduction electrons
are the same. If one instead allows different g’s (e.g., g &
6=7 for Ce and 2 for conjugated ! electrons), one should
obtain a T-independent, van Vleck paramagnetic state as
T ! 0 [15]. Another possibility [8] is that the Kondo
resonance survives even up to !=TK ' 5, and therefore a
continuous density of states exists. If the resonance width
is proportional to TK as in the bulk model, one expects a
partial filling of the states above !, and "!T"! "0 at low
T. Thus, even in a nanoparticle, one may obtain qualita-
tively similar behavior in "!T" to a bulk system. A mo-
lecular Kondo system should allow exploring these issues

FIG. 1 (color online). The crystal structure of cerocene is
shown on the left, while the structure of Cp#2Yb!bipy" is shown
on the right. Hydrogen atoms are not shown.
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- metallic grains (Al nanoparticles)!
- metallocene molecules (Ce, Yb in carbon rings)!
- Co clusters in small carbon nanotube pieces!
- small QD (spin 1/2) coupled to large QD!
!
!
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Gate-Voltage Studies of Discrete Electronic States in Aluminum Nanoparticles

D. C. Ralph,* C. T. Black,† and M. Tinkham
Department of Physics and Division of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts 02138

(Received 13 January 1997)
We have investigated the spectrum of discrete electronic states in single, nm-scale Al particles

incorporated into new tunneling transistors, complete with a gate electrode. The addition of the gate
has allowed (a) measurements of the electronic spectra for different numbers of electrons in the same
particle, (b) greatly improved resolution and qualitatively new results for spectra within superconducting
particles, and (c) detailed studies of the gate-voltage dependence of the resonance level widths, which
have directly demonstrated the effects of nonequilibrium excitations. [S0031-9007(97)03240-7]

PACS numbers: 73.20.Dx, 73.23.Hk, 74.80.Bj

Recently it has become possible to measure the dis-
crete spectrum of quantum energy levels for the interact-
ing electrons within single semiconductor quantum dots
[1] and nm-scale metal particles [2–4], and thereby to in-
vestigate the forces governing electronic structure. Our
earlier experiments on Al particles were performed with
simple tunneling devices, lacking a gate with which the
electric potential of the particle could be adjusted. In
this Letter, we describe studies of nanoparticle transistors,
complete with a gate electrode. We have used the gate
to tune the number of electrons in the particle, so as to
measure excitation spectra for different numbers of elec-
trons in the same grain and to confirm even-odd effects.
The gate has also allowed significantly improved spec-
troscopic resolution, providing new understanding about
the destruction of superconductivity in a nm-scale metal
particle by an applied magnetic field. Studies of the gate-
voltage dependence of tunneling resonance widths have
shown that nonequilibrium excitations in the nanoparticle
are a primary source of resonance broadening.
A schematic cross section of our device geometry is

shown in Fig. 1(a). The devices are fabricated by first us-
ing electron-beam lithography and reactive-ion etching to
make a bowl-shaped hole in a suspended silicon nitride
membrane, with an orifice between 5 and 10 nm in di-
ameter [5]. The gate electrode is formed by evaporating
12 nm of Al onto the flat [bottom in Fig. 1(a)] side of the
membrane. Plasma anodization and deposition of insulat-
ing SiO are then used to provide electrical isolation for
the gate. We next form an aluminum electrode which fills
the bowl-shaped side [top in Fig. 1(a)] of the nitride mem-
brane by evaporation of 100 nm of Al, followed by oxida-
tion in 50 mTorr O2 for 45 s to form a tunnel barrier near
the lower opening of the bowl-shaped hole. We create a
layer of nanoparticles by depositing 2.5 nm of Al onto the
lower side of the device; due to surface tension the metal
beads up into separate grains less than 10 nm in diameter
[6]. In approximately 25% of the samples (determined as
those showing “Coulomb-staircase” structure as described
below), a single particle forms under the nm-scale tunnel
junction to contact the top Al electrode. Finally, after a
second oxidation step to form a tunnel junction on the ex-

posed surface of the particle, a lower electrode is formed
by evaporating 100 nm of Al to cover the particle. We
measure electron tunneling between the top and bottom
electrodes, through a single nanoparticle, as a function of
gate voltage, Vg.
The devices can be characterized by measuring large-

scale current vs source-drain voltage (I-V ) curves for
a series of Vg [Figs. 1(b)–1(d)]. The form of these

FIG. 1. (a) Schematic cross section of device geometry.
(b)–(d) Current-voltage curves displaying Coulomb-staircase
structure for three different samples, at equally spaced values
of gate voltage. Data for different Vg are artificially offset on
the current axis.
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(dI/dV ) spectrum recorded at the site re-
moved from the Co center is finite and nearly
constant over the small bias range used in this
measurement, consistent with the nanotube
being metallic. Data recorded over a larger
energy range (21) and van Hove singularity
analysis confirms that this SWNT is metallic.
In contrast, the dI/dV spectrum taken directly
above the Co center shows a strong resonance
peak near EF, V ! 0. This spectroscopic
feature was observed above 10 different small
Co clusters ("1 nm) situated on metallic nano-
tubes and is strongly suggestive of the presence
of a Kondo resonance in the 1D SWNTs.

To further support this suggestion, we
investigated the spatial extent of the local
magnetic perturbations by measuring the po-
sition-dependent decay of the resonance near
EF. Spectroscopic data obtained for a 0.7-nm-
wide Co cluster on an atomically resolved
metallic SWNT (Fig. 1C) are shown in Fig.
1D. At the center of the Co site (F in Fig. 1,
C and D), the resonance feature exhibits a
peak structure similar in shape but slightly
broader than the peak in Fig. 1B. The peak
feature systematically decreases in amplitude
in spectra recorded at increasing distances
from the Co center; the sharp resonance dis-
appears completely after #2 nm. This decay
length is similar, although slightly longer
than reported for Co atoms on either Au(111)
or Cu(111) surfaces (16, 17).

A number of control experiments have
been carried out to verify that the prominent
spectroscopic resonances are due to the inter-
action of the magnetic Co with the metallic
SWNTs; that is, are indeed Kondo resonanc-

es. First, we repeated these measurements
with nonmagnetic Ag clusters on SWNTs.
Similar to the protocol described above for
Co deposition, a clean, cluster-free SWNT
sample supported on Au(111) was first pre-
pared and characterized prior to Ag deposi-
tion. Figure 1, E and F, depict an atomically
resolved image of a small, isolated Ag cluster
on a SWNT and the corresponding dI/dV data
recorded above the Ag site and on the nano-
tube 2 nm away from the cluster. The spec-
troscopic results show that there is no peak
feature near EF because of the presence of the
small Ag cluster. This result demonstrates
unambiguously that the presence of the mag-
netic Co cluster is critical to observe the
resonance, which is consistent with the
Kondo model, and that the observed peak
feature is not simply an enhancement in the
DOS due to a metal cluster. Second, spectro-
scopic measurements performed above Co
clusters supported by intrinsic semiconduct-
ing SWNTs exhibited no features at EF. This
observation suggests that the peak feature at
EF is not due to the bare Co d-orbital reso-
nance and emphasizes the necessity of con-
duction electrons in the host needed to inter-
act with the magnetic cluster in order to
observe the Kondo resonance.

To interpret the tunneling spectroscopy of
small Co clusters on the nanotubes, we fol-
low the theoretical model of (16) that con-
siders the Anderson picture of a magnetic
impurity in a nonmagnetic host (22). Within
the framework of this model, a Co atom on a
nanotube can be described as a discrete d-
orbital in resonance with the continuum of

the nanotube’s conduction band states. The
d-orbital spreads into a relatively broad d
resonance that lies below the Fermi level, EF;
for temperatures below TK, some of the d-
orbital density is shifted to EF, forming a
nearly Lorentzian resonance (23), the Kondo
resonance. Similar to previous STM experi-
ments of magnetic impurities on noble metal
surfaces (15–17), in our experiment, two dif-
ferent paths are available for the electrons to
tunnel from an STM tip: to the d-orbital of
the Co magnetic impurity and to the contin-
uous states of the nanotube. Because the final
state of the electron can occupy two energet-
ically degenerate possible states, this can lead
to quantum interference. Fano’s model of
interference between a noninteracting dis-
crete channel and a continuum may be ex-
pressed in terms of the rate of transition to a
final state of energy ε (24)

R$ε% &
$ε̃ ! q%2

ε̃2 ! 1
(1)

where ε̃ ! (ε ' εo)/((/2) is the dimensionless
energy parameter detuned from resonance, εo

is the resonance energy, ( is the width of the
d resonance, and q is the interference param-
eter. The magnitude of q is proportional to the
ratio of the matrix elements between the ini-
tial state to the discrete and continuum parts
of the final state. In accordance with the
theoretical results of (16), which includes an
interacting resonant level, near the Kondo
resonance (T " TK)

Fig. 1. STM topographic images and spectroscopic measurements on small clusters situated on
SWNTs. (A) Atomically resolved image of 0.5-nm Co clusters on an individual nanotube. (B)
Differential conductance dI/dV versus V, calculated from I-V curves taken over the bare nanotube
#7 nm away from the Co and above the Co cluster in (A). The feature identified as a Kondo
resonance appears above the Co. (C) Constant current image of slightly larger Co clusters ("1 nm
in diameter) situated on resolved carbon nanotubes. (D) Differential conductance dI/dV as a
function of position along the tube in (C) (indicated by the symbols F, Œ, ■, }, and E), starting
with I-V performed above the cluster (F). The effect of the Co on the nanotube spectra is nearly
gone after 2 nm. (E) Constant current image of a small Ag cluster on an individual nanotube. (F)
Differential conductance dI/dV taken above the Ag cluster (Ag) and at bare nanotube 2 nm from
the Ag (SWNT). The presence of the Ag cluster generates no spectroscopic peaks.

Fig. 2. Spectroscopic measurements performed
above Co clusters of different sizes and their
fits to a modified Fano theory as described in
the text. (A) A dI/dV spectrum of Co on SWNT
shown in Fig. 1A and its fit with parameters q!
–2.7, ) ! –20 meV, and kBTK ! 8 meV. (B) A
dI/dV spectrum of a slightly larger Co cluster on
a SWNT with fit parameters q ! 3.3, ) ! 8
meV, and kBTK ! 16 meV.
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Tunable Nonlocal Spin Control in
a Coupled–Quantum Dot System

N. J. Craig,1 J. M. Taylor,1 E. A. Lester,1 C. M. Marcus,1*
M. P. Hanson,2 A. C. Gossard2

The effective interaction between magnetic impurities in metals that can
lead to various magnetic ground states often competes with a tendency for
electrons near impurities to screen the local moment (known as the Kondo
effect). The simplest system exhibiting the richness of this competition, the
two-impurity Kondo system, was realized experimentally in the form of two
quantum dots coupled through an open conducting region. We demonstrate
nonlocal spin control by suppressing and splitting Kondo resonances in one
quantum dot by changing the electron number and coupling of the other dot.
The results suggest an approach to nonlocal spin control that may be
relevant to quantum information processing.

Gate-confined quantum dots have emerged
as important systems for the study of the
Kondo effect, a subtle many-electron effect
in which conduction electrons in the vicin-
ity of a spin impurity screen the spin to
form a collective entangled ground state at
low temperatures (1). The connection be-
tween Kondo physics and quantum dots is
most evident when an odd number of elec-
trons confined within the dot act as a single
spin coupled to electron reservoirs (2–5).
Recently, molecule-like double quantum
dots have also generated wide interest as
controllable systems for studying exchange
between coupled localized states (6–8) and
as potential basic building blocks for quan-
tum information processing, with proposed
schemes for using double dots as sources of
entangled electrons (9) and for two-qubit
quantum gate operations (10).

It is known from bulk systems that mag-
netic impurities embedded in an electron
sea interact with one another by means of
an effective spin-spin interaction known as
the Ruderman-Kittel-Kasuya-Yoshida
(RKKY) interaction, mediated by conduc-
tion electrons (11–13). The RKKY interac-
tion competes with local interactions
between the impurity and conduction elec-
trons that lead to the Kondo effect, and
when dominant over Kondo interactions
can give rise to complex bulk magnetic
states such as spin glasses (14). Over the
past two decades, the multiple-impurity
Kondo system has proven to be a rich

theoretical problem, exhibiting, among oth-
er features, a quantum phase transition
between Kondo and RKKY regimes at a
critical ratio of J/TK of order unity (depend-
ing on the particular geometry), where J is
the RKKY interaction strength and TK is
the single-impurity Kondo temperature
(15–17). Recent theory has begun to extend
the study of the two-impurity Kondo model
to double quantum dots and related artifi-
cial spin systems (18–24). Experiments
have explored the competition between the
Kondo effect and exchange in directly cou-
pled double quantum dots (7–8). However,
a nonlocal RKKY-like interaction mediated
by an interceding electron sea has not been
described in an artificial system.

The device consists of two smaller pe-
ripheral quantum dots connected to a larg-
er, open central dot, as shown in Fig. 1A
(25). Measurements were made in a dilu-
tion refrigerator with a base electron tem-
perature of !85 mK, estimated from ther-
mally broadened Coulomb blockade peaks
measured on individual dots. Voltage bias
spectroscopy on the left and right dots in
the Coulomb blockade regime give Cou-
lomb charging energies U ! 800 "eV and
level spacings # ! 100 "eV for both dots.
Differential conductances dI/dVL(R) of the left
(L) and right (R) dots were measured si-
multaneously by applying voltage-bias ex-
citations, V, consisting of dc, 11-Hz, and
27-Hz signals, to the open (bottom) lead of
the center dot and measuring ac currents at
11 Hz and dc currents at the left reservoir,
and ac currents at 27 Hz and dc currents at
the right reservoir (both at virtual ground).
Modeling the three-dot system as a voltage
divider allowed the dc voltages VL(R) that
were dropped across the left and right dots
to be readily extracted.

Setting the bottom point contact to one
fully conducting spin-degenerate mode
(conductance on the 2e2/h plateau, where
e2/h is the conductance quantum) config-
ured the central dot to act as a confined but
open conducting region coupling the two
peripheral dots. Couplings of the left and
right peripheral dots were set in the asym-
metric Coulomb blockade regime, with rel-
atively strong tunnel couplings $L(R)

(c)

toward the central region (c) and weak
“outward” couplings $L(R)

(l) to the leads (l)
($L(R)

(l) %% $L(R)
(c) ! #L(R)). This was

done to ensure that any Kondo effect ob-
served in the peripheral dots was associated
with conduction electrons in the central dot
and not in the left and right leads. The left
dot was tuned to contain either an odd
number, N, or an even number, N & 1, of
electrons by changing the voltage applied
to gate, VgL; the right dot was tuned to
contain either an odd number, M, or an
even number, M & 1, of electrons by

1Department of Physics, Harvard University, Cam-
bridge, MA 02138, USA. 2Materials Department, Uni-
versity of California, Santa Barbara (UCSB), Santa
Barbara, CA 93106, USA.

*To whom correspondence should be addressed. E-
mail: marcus@harvard.edu
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Fig. 1. (A) Scanning electron micrograph of a
device identical in design to one measured,
with schematic ovals indicating locations of
dots upon gate depletion. Gate voltages VgL
and VgR change the energies and occupancies
of the left and right dots; Vgc tunes the cou-
pling of the right dot to the central region. IR
and IL represent measured ac and dc currents in
left (L) and right (R) leads, respectively. (B) Dif-
ferential conductance dI/dVL of the left dot for an
odd number of electrons, N. When the right dot
contains an even number of electrons (M & 1), a
zero-bias peak in dI/dVL is seen, indicating a
Kondo state. When the right dot contains an odd
number of electrons (M), the Kondo state in the
left dot is suppressed. The states M – 1, M, and
M' 1 for the right dot are consecutive Coulomb
blockade valleys.
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FIG. 1. Constant current STM images (250 mV bias, I !
2 nA) of Co adatoms on the Cu(100) (three atoms) and the
Cu(111) surface (two atoms). The Friedel oscillations of the
Cu(111) surface state electrons can be easily detected up to
10 nm. The inset compares line cuts in the z signal over the
adatoms on the two different surfaces for typical tip conditions.

core, makes up only one part of the tunneling current; the
other part is from tunneling into the conduction electron
LDOS of the substrate modified by the presence of the
Kondo impurity. These two tunneling channels interfere
and the resulting tunneling LDOS, which is proportional
to the measured dI!dV signal, has a Fano line shape. In
contrast to the atomic excitation spectra studied by Fano,
the tunneling line shape is not fixed but varies with the
lateral tip-adatom distance r. We describe the tunneling
conductance close to zero bias as

dI!dV"r , V # ! c 1 a"r#
q"r#2 2 1 1 2q"r#e

e2 1 1
, (1)

with e ! "eV 1 DE#!kBTK. Here, c is the background
dI!dV signal, and DE is a small shift of the resonance
from the Fermi energy due to level repulsion between the
d level and the Kondo resonance. The Fano line shape

FIG. 2. Atom differential conductance (dI!dV ) spectra for
Co!Cu"100# and Co!Cu"111#. The tunneling resistance was
10 MV. The spectra are normalized to their lowest values. The
solid lines are Fano line shape fits according to Eq. (1); average
parameters are summarized in Table I.

parameter q is given by [5,8]

q"r# !
ReG"r# 1 t"r#

ImG"r#
, (2)

with G"r# a modified conduction electron Green’s func-
tion as seen by the tip, and t is a function proportional to
the matrix element for direct tunneling into the localized
state. t"r# depends on the overlap of the tip wave func-
tion with this state and will fall off rapidly with r. It is
modeled as t"r# ! t0 exp$2d"r#!a%, with a decay length
a and the overall tip-adatom distance d"r# (see inset of
Fig. 3). With q defined as in Eq. (2), a"r# is proportional
to $ImG"r#%2. The Fano line shape is a negative Lorentzian
for q ! 0, a positive Lorentzian for q ! 6`, and most
asymmetric for q ! 61. Even for t ! 0, i.e., no direct
tunneling into the localized state, any Fano line shape can
result due to the first part of q, ReG!ImG, which describes
an indirect tunneling from the tip to the adsorbate by con-
duction electron propagation. This first part gives rise
to rapid oscillations of q between asymmetric Fano and
symmetric Lorentzian line shapes with a period of p!kF
(p!kb

F ! 2.6 Å for the free bulk electrons) [4,5]. But, as
we will see below, these oscillations are not resolved by

TABLE I. Mean Fano line shape parameters and Kondo tem-
peratures TK from fits of Eq. (1) to scanning tunneling spectra
of ten different Co adatoms on Cu(100) and Cu(111). n is the
number of nearest neighbor Cu atoms.

Co!Cu"111# Co!Cu"100# Co in bulk

TK $K% 54 6 2 88 6 4 &500 [9]
53 6 5 [6]

n 3 4 12
q 0.18 6 0.03 1.13 6 0.06

DE $meV% 1.8 6 0.6 21.3 6 0.4
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FIG. 1. Constant current STM images (250 mV bias, I !
2 nA) of Co adatoms on the Cu(100) (three atoms) and the
Cu(111) surface (two atoms). The Friedel oscillations of the
Cu(111) surface state electrons can be easily detected up to
10 nm. The inset compares line cuts in the z signal over the
adatoms on the two different surfaces for typical tip conditions.

core, makes up only one part of the tunneling current; the
other part is from tunneling into the conduction electron
LDOS of the substrate modified by the presence of the
Kondo impurity. These two tunneling channels interfere
and the resulting tunneling LDOS, which is proportional
to the measured dI!dV signal, has a Fano line shape. In
contrast to the atomic excitation spectra studied by Fano,
the tunneling line shape is not fixed but varies with the
lateral tip-adatom distance r. We describe the tunneling
conductance close to zero bias as

dI!dV"r , V # ! c 1 a"r#
q"r#2 2 1 1 2q"r#e

e2 1 1
, (1)

with e ! "eV 1 DE#!kBTK. Here, c is the background
dI!dV signal, and DE is a small shift of the resonance
from the Fermi energy due to level repulsion between the
d level and the Kondo resonance. The Fano line shape

FIG. 2. Atom differential conductance (dI!dV ) spectra for
Co!Cu"100# and Co!Cu"111#. The tunneling resistance was
10 MV. The spectra are normalized to their lowest values. The
solid lines are Fano line shape fits according to Eq. (1); average
parameters are summarized in Table I.

parameter q is given by [5,8]

q"r# !
ReG"r# 1 t"r#

ImG"r#
, (2)

with G"r# a modified conduction electron Green’s func-
tion as seen by the tip, and t is a function proportional to
the matrix element for direct tunneling into the localized
state. t"r# depends on the overlap of the tip wave func-
tion with this state and will fall off rapidly with r. It is
modeled as t"r# ! t0 exp$2d"r#!a%, with a decay length
a and the overall tip-adatom distance d"r# (see inset of
Fig. 3). With q defined as in Eq. (2), a"r# is proportional
to $ImG"r#%2. The Fano line shape is a negative Lorentzian
for q ! 0, a positive Lorentzian for q ! 6`, and most
asymmetric for q ! 61. Even for t ! 0, i.e., no direct
tunneling into the localized state, any Fano line shape can
result due to the first part of q, ReG!ImG, which describes
an indirect tunneling from the tip to the adsorbate by con-
duction electron propagation. This first part gives rise
to rapid oscillations of q between asymmetric Fano and
symmetric Lorentzian line shapes with a period of p!kF
(p!kb

F ! 2.6 Å for the free bulk electrons) [4,5]. But, as
we will see below, these oscillations are not resolved by

TABLE I. Mean Fano line shape parameters and Kondo tem-
peratures TK from fits of Eq. (1) to scanning tunneling spectra
of ten different Co adatoms on Cu(100) and Cu(111). n is the
number of nearest neighbor Cu atoms.

Co!Cu"111# Co!Cu"100# Co in bulk

TK $K% 54 6 2 88 6 4 &500 [9]
53 6 5 [6]

n 3 4 12
q 0.18 6 0.03 1.13 6 0.06

DE $meV% 1.8 6 0.6 21.3 6 0.4

096804-2 096804-2

Manoharan et al., !
Nature 403, 512 (2000)
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FIG. 1. Constant current STM images (250 mV bias, I !
2 nA) of Co adatoms on the Cu(100) (three atoms) and the
Cu(111) surface (two atoms). The Friedel oscillations of the
Cu(111) surface state electrons can be easily detected up to
10 nm. The inset compares line cuts in the z signal over the
adatoms on the two different surfaces for typical tip conditions.

core, makes up only one part of the tunneling current; the
other part is from tunneling into the conduction electron
LDOS of the substrate modified by the presence of the
Kondo impurity. These two tunneling channels interfere
and the resulting tunneling LDOS, which is proportional
to the measured dI!dV signal, has a Fano line shape. In
contrast to the atomic excitation spectra studied by Fano,
the tunneling line shape is not fixed but varies with the
lateral tip-adatom distance r. We describe the tunneling
conductance close to zero bias as

dI!dV"r , V # ! c 1 a"r#
q"r#2 2 1 1 2q"r#e

e2 1 1
, (1)

with e ! "eV 1 DE#!kBTK. Here, c is the background
dI!dV signal, and DE is a small shift of the resonance
from the Fermi energy due to level repulsion between the
d level and the Kondo resonance. The Fano line shape

FIG. 2. Atom differential conductance (dI!dV ) spectra for
Co!Cu"100# and Co!Cu"111#. The tunneling resistance was
10 MV. The spectra are normalized to their lowest values. The
solid lines are Fano line shape fits according to Eq. (1); average
parameters are summarized in Table I.

parameter q is given by [5,8]

q"r# !
ReG"r# 1 t"r#

ImG"r#
, (2)

with G"r# a modified conduction electron Green’s func-
tion as seen by the tip, and t is a function proportional to
the matrix element for direct tunneling into the localized
state. t"r# depends on the overlap of the tip wave func-
tion with this state and will fall off rapidly with r. It is
modeled as t"r# ! t0 exp$2d"r#!a%, with a decay length
a and the overall tip-adatom distance d"r# (see inset of
Fig. 3). With q defined as in Eq. (2), a"r# is proportional
to $ImG"r#%2. The Fano line shape is a negative Lorentzian
for q ! 0, a positive Lorentzian for q ! 6`, and most
asymmetric for q ! 61. Even for t ! 0, i.e., no direct
tunneling into the localized state, any Fano line shape can
result due to the first part of q, ReG!ImG, which describes
an indirect tunneling from the tip to the adsorbate by con-
duction electron propagation. This first part gives rise
to rapid oscillations of q between asymmetric Fano and
symmetric Lorentzian line shapes with a period of p!kF
(p!kb

F ! 2.6 Å for the free bulk electrons) [4,5]. But, as
we will see below, these oscillations are not resolved by

TABLE I. Mean Fano line shape parameters and Kondo tem-
peratures TK from fits of Eq. (1) to scanning tunneling spectra
of ten different Co adatoms on Cu(100) and Cu(111). n is the
number of nearest neighbor Cu atoms.

Co!Cu"111# Co!Cu"100# Co in bulk

TK $K% 54 6 2 88 6 4 &500 [9]
53 6 5 [6]

n 3 4 12
q 0.18 6 0.03 1.13 6 0.06

DE $meV% 1.8 6 0.6 21.3 6 0.4

096804-2 096804-2

Knorr et al., PRL 88, 096804 (2002)
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Figure 1 |Distance dependency of pairwise RKKY interaction energy.
Measured (blue circles) and KKR-calculated (red triangles, renormalized by
a factor of 1/2) exchange energy Jij in pairs of Fe atoms on Cu(111) as a
function of separation. The dashed line indicates a fit of the AFM
experimental data to a sinusoidal RKKY model, taking into account the
Fermi wavelength of the Cu(111) surface state. The inset shows the
renormalized KKR-calculated values for closer separations.

pair, which have been measured using SAM, the interaction energy
within each pair was extracted (see Methods) and is plotted in
Fig. 1 as a function of separation J

ij

(d) (blue circles). The measured
interaction is on the order of tens of µeV for separations larger than
three lattice spacings (0.767 nm) and oscillates between FM and
AFM coupling, reminiscent of RKKY interaction25. Theoretically, it
has been predicted that the exchange is dominated by the electrons
of the isotropic Cu(111) surface state24,27,33, for separations in the
asymptotic range starting from 1–2 nm (ref. 34). We accordingly
tried to fit the measured AFM data to a sinusoidal RKKY function
(Fig. 1, dashed line)

J

ij

(d)= J0 ·
cos(2kFd+↵)

(2kFd)2
(1)

where d is the separation of atoms in a pair, J0 is the overall
interaction strength, ↵ is a phase offset, and the Fermi wavelength
⌦F = 2⇡/kF has been fixed to the value known from the Cu(111)
surface state ⌦ssF = 2.9 nm (ref. 35). Indeed, the sinusoidal fit
remarkably reproduces most of the data. However, a qualitative
deviation occurs around d = 1.28 nm, where the measured data
reverses to the FM interaction. This indicates contributions from
bulk states which dominate at small separations25,27.

To account for the total substrate electronic structure, including
contributions from bulk states, we performed calculations within
density functional theory using the full-potential Korringa–Kohn–
Rostoker (KKR) Green function method36 (see Methods). The
theoretical J

ij

(Fig. 1, red triangles) have been extracted considering
infinitesimal rotations of the magnetic moments37 and were
renormalized by a factor of 1/2. The discrepancy between the
experimental and theoretical results could be induced by the
difference in the scattering amplitude of the adatoms. The
underestimation of electron-correlations in common exchange
and correlation approximations within density functional theory
could lead to such effects38. A similar renormalization of the
calculated J

ij

is necessary for the case of Co atoms on Pt(111)
(ref. 25). The so-renormalized exchange energy perfectly matches
the experimental data over the whole distance range. In particular,
it reproduces the measured deviations from the sinusoidal
behaviour mentioned above.

Considering the orders of magnitude of the magnetic anisotropy
K ⇡ 1meV, RKKY exchange interaction J

ij

⇡ 0.1meV, and
temperature kBT = 0.025meV, we can conclude that nanomagnets
built from RKKY-coupled Fe atoms on Cu(111) will behave
approximately like Ising magnets. Therefore, an Ising model,
in combination with the measured interactions (Supplementary
Information), can be used to predict the properties of tailored
nanomagnets. We initially used an approximate Ising model, which
is called ‘pair-KKR Ising model’ in the following. It takes into
account the interactions to all neighbours, that is first, second, third,
and so on nearest neighbours, but the interaction J

ij

between atom i

and j in the nanomagnet is taken equal to the interaction for an in-
dependent pair of atoms having the same separation (superposition
principle). In other words, the J

ij

were taken from the renormalized
ab initio calculation of Fig. 1. It is important to note that, because
the system is in the Ising limit, the relevantmagnetic field scale of the
nanomagnet is approximately given by |Bc| = |JNN|/m, which is the
critical magnetic field strength at which Zeeman energy overcomes
the nearest neighbour exchange interaction JNN.

Even and odd antiferromagnetic chains
As a first example, chains with AFM nearest neighbour interaction
JNN < 0 have been studied. The top left panels in Fig. 2 show
the expected ground states from the pair-KKR Ising model at a
magnetic field slightly larger than |Bc| (pointing down), where

J

and
N

correspond to the spin-up and spin-down states of each
atom, respectively. It is obvious that odd and even chains show
distinct behaviour: whereas the odd chains are stabilized into an
AFM ground state |NJN ···i, the even chains are in a mixed
state of |NJ···NNi and |NNJ···Ni, occurring with almost
equal probability. To verify this ‘even–odd effect’, we built chains of
three to seven Fe atoms onCu(111)with identical nearest neighbour
separations of dNN = 0.922 nm, corresponding to JNN ⇡ �100 µeV.
Magnetic images recorded for a magnetic field slightly larger in
magnitude than Bc = �0.5 T are shown in the top right panels of
Fig. 2. The odd chains (Fig. 2a,c,e) show a dI/dV signal which is
strictly alternating between dark and bright from atom to atom
along the chain, confirming the AFM ground state. For the even
length chains (Fig. 2b,d), the overall contrast between the atoms is
considerably weaker and not strictly alternating when compared
with the odd chains, which is consistent with the prediction. A
vanishing contrast between the inner atoms expected from the
mixed state of the even chains is only observed for the four-atom,
but not for the six-atom chain. This indicates the importance of
including the precise next-nearest neighbour interactions, as will
be discussed in the following.

To further investigate the B-dependent ground states of these
chains, SAM has been used to measure the magnetization curves
(see Methods and Supplementary Movie S1) of each individual Fe
atom for all five chains, as shown in the bottom panels of Fig. 2. For
the sake of classification, measured magnetization curves showing
the same general shape have been plotted in the same colour. The
measured curves can be compared to the pair-KKR Ising model,
which is included in the figure and reproduces most of the general
trends observed in the experiment. In particular, for intermediate
magnetic fields B⇡±|Bc| the curves confirm the distinct difference
between odd and even chains found in the magnetic images (see
dashed vertical lines).

However, there are notable deviations: (1) at B ⇡ ±1 T the
magnetization curves of the longer chains show strong additional
oscillations (see atom three in the five-atom chain, atoms two
and five in the six-atom chain and atoms three and five in the
seven-atom chain). (2) In amagnetic field range close toB=0 T (see
grey shaded areas) the slope of the measured magnetization curves
of all odd chains is opposite to the slope of the Ising curves and for all
even chains there are oscillations not captured by the Ising model,
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Figure 4 | Probing the phases of the SU(N) antiferromagnet on a 2D
square lattice. a, The phase diagram for the case nA +nB =N. Some points
on this diagram have been explored in earlier numerical studies29–31 and
are marked according to the ground state obtained: Néel (circles),
columnar VBS (shown schematically in b) (squares) and possibly critical
spin liquid (triangle)30,31. As for sufficiently large N quantum fluctuations
tend to destabilize long-range magnetic ordering, it is likely that VBS
ordering characterizes the ground state for all N> 4 (that is, above the
wavy line). b, Thick bonds connect spins that are more strongly correlated
than spins connected by thin bonds, and dashed lines encircle
(approximate) SU(N) singlets.

engineered in cold atoms by using a superlattice to adjust the depths
of the two sublattices favouring a higher filling factor in deeper
wells.H(p,q) then reduces to

H(p,0) =
2J 2g Ugg

U 2
gg � (Ugg (nA �nB)+1)2

X

hi,ji
S2ij (5)

where 1 is the energy offset between adjacent lattice sites. The cou-
pling constant can be made either positive (antiferromagnetic) or
negative (ferromagnetic) depending on the choice of parameters39.
Three-body recombination processes will probably limit the life-
time of the atomswhen nj �3 (see Supplementary Information).

We focus on the 2D square lattice in the antiferromagnetic
regime. The case nA + nB = N shares with the SU (2) Heisenberg
model the crucial property that two adjacent spins can form
an SU (N ) singlet, and has thus been studied extensively as a
large-N generalization of SU (2) magnetism27,28. Figure 4a shows
the expected phase diagram for the case nA + nB = N , which
features Néel (circles), VBS (squares) (Fig. 4b) and possible critical
spin-liquid (triangle)30,31 ground states. To access various ground
states of the system, the initial state must be carefully prepared
so that the conserved quantities Smm take values appropriate
for these ground states. Another interesting and experimentally
relevant case, nA = nB 6= N/2, which can also show spin-liquid
and VBS-type ground states, is discussed in the Supplementary
Information and in ref. 34.

As one can vary N just by choosing the number of initially
populated Zeeman levels (for example, through a combination
of optical pumping and coherent manipulation), alkaline-earth
atoms offer a unique arena to probe the phase diagram of
H(p,0), including exotic phases such as VBS (Fig. 4b), as well as
competing magnetically ordered states. We propose to load a
band insulator of N g atoms per site, then slowly split each well
into two to form an array of independent SU (N ) singlets in a
pattern shown in Fig. 4b. The intersinglet tunnelling rate should
then be adiabatically increased up to the intrasinglet tunnelling
rate. As N increases, the magnetic or singlet nature of the state
can be probed by measuring the Néel order parameter (see the
description of the Kugel–Khomskii double-well experiment in
the Methods section) and spin–spin correlations by means of
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Figure 5 |KLM for the case N= 2. a, Schematic of the set-up. g atoms are
green; e atoms are yellow; the spin basis is {",#}. b, Schematic
representation of the competition between RKKY magnetism versus Kondo
singlet formation in the SU(2) antiferromagnetic (AF) KLM (see refs 16, 25,
26 and references therein). In this model, the localized spin-1/2 e atoms
couple antiferromagnetically to the delocalized g atoms through an onsite
exchange interaction proportional to V

ex

. This coupling favours the
formation of localized Kondo singlets between e and g atoms, with
characteristic energy scale kBTK ⇠ J

g

exp(�cJ

g

/|V
ex

|), with c being a
dimensionless constant of order one25. On the other hand, the g atoms can
mediate long-range RKKY interactions between the e atoms, giving rise to
magnetic order (which can be antiferromagnetic or ferromagnetic
depending on the density of g atoms), where the characteristic energy is
kBTRKKY ⇠V

2
ex

/J
g

. The competition between the Kondo effect and RKKY
magnetism leads to very rich physics. For small values of |V

ex

|/J
g

, the RKKY
interaction is dominant and the system orders magnetically. At
intermediate values of |V

ex

|/J
g

, the energy scales T
K

and TRKKY are of
comparable strength, and a variety of new quantum phenomena are
expected to arise, including quantum criticality and non-Fermi liquid (NFL)
physics25,26. With a further increase of the |V

ex

|/J
g

coupling, magnetic
order is suppressed, the localized e atoms become screened into singlet
states and melt into the g-atom Fermi sea, forming the so-called HFL state.
The large Fermi volume21, which is set by the total number of g atoms plus
e atoms, can be directly probed by measuring the momentum distribution
by means of time-of-flight imaging.

noise spectroscopy in the time-of-flight40 (which directly measuresP
j,khSmn (j,g )Snm(k,g )ieiQ(j�k)).

The Kondo latticemodel (KLM)
The SU (N ) KLM (refs 15, 17) is another example of the rich
physics, beyond the Mott regime, that could be simulated with
alkaline-earth atoms. The KLM is one of the canonical models used
to study strongly correlated electron systems, such as manganese
oxide perovskites20 and rare-earth and actinide compounds classed
as heavy-fermion materials25.

For its implementation with cold atoms (for N = 2, see also
refs 23, 24), we propose to put one e atom (localized spin) per site
in a deep lattice such that Je ⌧ Uee , so that we can set Je = 0 and
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• Fermionic alkaline earth atoms!
• simulation of the Kondo-lattice model
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FIG. 1. (Color online) Schematic zero temperature phase diagram
for the 1D KLM [16]. FM is a ferromagnetic phase, and PM is
a paramagnetic phase closely related to heavy fermions in higher
dimensions.

well established, and can be drawn consistently from a variety
of numerical studies and several exact results [16]. At strong
coupling ferromagnetism prevails, but the weak-coupling limit
is paramagnetic (PM). The boundary ng = 1 is insulating,
having spin and charge gaps for arbitrarily small nonzero
coupling. To our knowledge, the one-dimensional (1D) model
is not realized in condensed-matter systems, but it could be
explored with AEMAs in a three-dimensional (3D) optical
lattice if both the e and g lattices were made deep in two of
the dimensions (an array of 1D tubes).

Heavy fermions. We begin our analysis in the PM phase,
which is closely related to heavy fermion behavior in higher
dimensions [16]. The mass enhancement can be understood
qualitatively through a hybridization mean-field decoupling
[17] in which the quasiparticles near the Fermi surface have
a strongly localized character. While the mean-field theory
(MFT) does not capture the Luttinger liquid nature of the PM
phase at low energies, we believe it nonetheless provides a
reasonable guide to the phenomena discussed here; effects
beyond MFT are left for future study. Moreover, in work to
be presented elsewhere, the calculations to follow have been
extended to a two-dimensional geometry where MFT is more
reliable, with no qualitative change to the results.

The MFT can be obtained by a (nonunique) decoupling of
the interaction term in HK , leading to

HMFT = −Jg

∑

⟨i,j⟩σ
c
†
igσ cjgσ +

∑

iσ

["i2nig + µi(nie − 1)]

+Vex

∑

iσ

Ṽi(c
†
igσ cieσ + H.c.) − Vex

∑

i

Ṽ 2
i . (2)

In Eq. (2) we have defined Ṽi = 1
2

∑
σ ⟨c†ieσ cigσ + H.c.⟩, where

the expectation value is taken in the Slater determinant of the
(Ne + Ng)/2 lowest-energy single-particle states (and the 1/2
accounts for spin degeneracy). We have also introduced chem-
ical potentials µi to enforce the local constraints ⟨nie⟩ = 1.
This decoupling is paramagnetic and therefore cannot capture
any magnetism, but it does describe the tendency toward
singlet formation at strong coupling. In addition, it turns out to
be the exact N → ∞ solution of the SU(N ) generalization
of the KLM [which can be implemented with AEMAs
having nuclear spin I = (N − 1)/2] [18,19]. Because HMFT is
quadratic it can be diagonalized, but it is necessary to choose
the Ṽi self-consistently.
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FIG. 2. (Color online) The hybridization gap #H induces a
plateau in the g atom density distribution (ng , red solid line) and
the hybridization (Ṽ , blue dotted line). Lines are from self-consistent
MFT and open shapes from LDA. The parameters used for this plot
were Ng = 25, q = 40, v = 8.

In the translationally invariant problem it is customary to
assume Ṽi = Ṽ and µi = µ, in which case analytic progress is
possible. With the trap we retain the site-dependent Ṽi and µi ,
and self-consistent solutions must be obtained numerically.
The procedure involves an initial guess for the Ṽi based on
the local-density approximation (LDA): We treat the trap as a
site-dependent chemical potential and infer the energy on each
site from a translationally invariant problem. LDA results are
obtained by minimization of the energy thus obtained, while
obeying a constraint on the total particle number. We then
solve for the µi that satisfy the local constraints [20], diago-
nalize HMFT, and recalculate the Ṽi using the definition. By
iterating this procedure we arrive at a self-consistent solution.

From the MFT ground states we can easily compute the
⟨nig⟩, which give us density profiles in the trap. For Ng or
" sufficiently large, these show plateaus (Fig. 2) similar to
what is observed for the repulsive Hubbard model, although
here they reflect the gap of a Kondo insulator, not a Mott
insulator. The Kondo insulator is often understood within the
MFT: Unit filling of g atoms corresponds to completely filling
a hybridized band, and there is a charge gap of #H . LDA
considerations then imply that "(j 2

2 − j 2
1 ) = #H (Fig. 2).

Exact results for the v = ∞ KLM give "(j 2
2 − j 2

1 ) = 3|Vex|;
in this limit #H tends to 2|Vex|, so the MFT underestimates
the plateau size. For the bosonic Hubbard model, where the
relevant gap is the on-site interaction U , such plateau struc-
tures have already been imaged via microwave spectroscopy
[12,13]. We therefore expect that for large v the plateau can
be observable experimentally.

At lower fillings, where the plateau does not form, we
are everywhere in the heavy fermion metallic state. Under
these conditions we consider an experiment where the trap
center is suddenly displaced, causing dipole oscillations of
the g atom center of mass (COM). This type of experiment
has been implemented in alkali-metal atoms to study 1D and
3D transport of interacting bosons and fermions [9–11], and
used to probe different quantum many-body regimes in these
systems. We calculate these dynamics self-consistently, start-
ing with the MFT ground states and shifting the Hamiltonian.
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FIG. 1. (Color online) Schematic zero temperature phase diagram
for the 1D KLM [16]. FM is a ferromagnetic phase, and PM is
a paramagnetic phase closely related to heavy fermions in higher
dimensions.

well established, and can be drawn consistently from a variety
of numerical studies and several exact results [16]. At strong
coupling ferromagnetism prevails, but the weak-coupling limit
is paramagnetic (PM). The boundary ng = 1 is insulating,
having spin and charge gaps for arbitrarily small nonzero
coupling. To our knowledge, the one-dimensional (1D) model
is not realized in condensed-matter systems, but it could be
explored with AEMAs in a three-dimensional (3D) optical
lattice if both the e and g lattices were made deep in two of
the dimensions (an array of 1D tubes).

Heavy fermions. We begin our analysis in the PM phase,
which is closely related to heavy fermion behavior in higher
dimensions [16]. The mass enhancement can be understood
qualitatively through a hybridization mean-field decoupling
[17] in which the quasiparticles near the Fermi surface have
a strongly localized character. While the mean-field theory
(MFT) does not capture the Luttinger liquid nature of the PM
phase at low energies, we believe it nonetheless provides a
reasonable guide to the phenomena discussed here; effects
beyond MFT are left for future study. Moreover, in work to
be presented elsewhere, the calculations to follow have been
extended to a two-dimensional geometry where MFT is more
reliable, with no qualitative change to the results.

The MFT can be obtained by a (nonunique) decoupling of
the interaction term in HK , leading to

HMFT = −Jg

∑

⟨i,j⟩σ
c
†
igσ cjgσ +

∑

iσ

["i2nig + µi(nie − 1)]

+Vex

∑

iσ

Ṽi(c
†
igσ cieσ + H.c.) − Vex

∑

i

Ṽ 2
i . (2)

In Eq. (2) we have defined Ṽi = 1
2

∑
σ ⟨c†ieσ cigσ + H.c.⟩, where

the expectation value is taken in the Slater determinant of the
(Ne + Ng)/2 lowest-energy single-particle states (and the 1/2
accounts for spin degeneracy). We have also introduced chem-
ical potentials µi to enforce the local constraints ⟨nie⟩ = 1.
This decoupling is paramagnetic and therefore cannot capture
any magnetism, but it does describe the tendency toward
singlet formation at strong coupling. In addition, it turns out to
be the exact N → ∞ solution of the SU(N ) generalization
of the KLM [which can be implemented with AEMAs
having nuclear spin I = (N − 1)/2] [18,19]. Because HMFT is
quadratic it can be diagonalized, but it is necessary to choose
the Ṽi self-consistently.
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FIG. 2. (Color online) The hybridization gap #H induces a
plateau in the g atom density distribution (ng , red solid line) and
the hybridization (Ṽ , blue dotted line). Lines are from self-consistent
MFT and open shapes from LDA. The parameters used for this plot
were Ng = 25, q = 40, v = 8.

In the translationally invariant problem it is customary to
assume Ṽi = Ṽ and µi = µ, in which case analytic progress is
possible. With the trap we retain the site-dependent Ṽi and µi ,
and self-consistent solutions must be obtained numerically.
The procedure involves an initial guess for the Ṽi based on
the local-density approximation (LDA): We treat the trap as a
site-dependent chemical potential and infer the energy on each
site from a translationally invariant problem. LDA results are
obtained by minimization of the energy thus obtained, while
obeying a constraint on the total particle number. We then
solve for the µi that satisfy the local constraints [20], diago-
nalize HMFT, and recalculate the Ṽi using the definition. By
iterating this procedure we arrive at a self-consistent solution.

From the MFT ground states we can easily compute the
⟨nig⟩, which give us density profiles in the trap. For Ng or
" sufficiently large, these show plateaus (Fig. 2) similar to
what is observed for the repulsive Hubbard model, although
here they reflect the gap of a Kondo insulator, not a Mott
insulator. The Kondo insulator is often understood within the
MFT: Unit filling of g atoms corresponds to completely filling
a hybridized band, and there is a charge gap of #H . LDA
considerations then imply that "(j 2

2 − j 2
1 ) = #H (Fig. 2).

Exact results for the v = ∞ KLM give "(j 2
2 − j 2

1 ) = 3|Vex|;
in this limit #H tends to 2|Vex|, so the MFT underestimates
the plateau size. For the bosonic Hubbard model, where the
relevant gap is the on-site interaction U , such plateau struc-
tures have already been imaged via microwave spectroscopy
[12,13]. We therefore expect that for large v the plateau can
be observable experimentally.

At lower fillings, where the plateau does not form, we
are everywhere in the heavy fermion metallic state. Under
these conditions we consider an experiment where the trap
center is suddenly displaced, causing dipole oscillations of
the g atom center of mass (COM). This type of experiment
has been implemented in alkali-metal atoms to study 1D and
3D transport of interacting bosons and fermions [9–11], and
used to probe different quantum many-body regimes in these
systems. We calculate these dynamics self-consistently, start-
ing with the MFT ground states and shifting the Hamiltonian.
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Multi-impurity Kondo model
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Kondo vs. RKKY in a quantum box
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“Inverse” indirect magnetic exchange
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Lieb-Mattis theorem

Lieb, Mattis (1962):!
Heisenberg model on a bipartite lattice!
antiferromagnetic coupling between A and B sites!
arbitrary dimension!
!
        ground state is non-degenerate (apart from spin degeneracy)!
        Stot=0 (singlet) if NA=NB, Stot=1/2(NA-NB) else!
        !
proof: “spin-reflection positivity” and Perron-Frobenius theorem!
!
Lieb (1989):!
generalization to the Hubbard model !
(bipartite lattice, half-filling, arbitrary dimension)!
!
Yanagisawa, Shimoi (1995), Shen (1996), Tsunetsugu (1997)!
generalization to the correlated Kondo lattice model!
(bipartite lattice, half-filling, arbitrary dimension)!
!
         unique ground state with Stot=1/2(NA-NB)!
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Depleted Kondo lattice in D=1
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DMRG study:!
!
• Kondo impurities and!
Anderson impurities!
!

• L=49, R=25 
spins commensurate 
with RKKY period!
!

• convergence check:!
L=89, R=49!
!

• Stot=(R-1)/2=const.!
!

• weak J: one spin is!
Kondo screened!
!

• strong J: R-1 local 
moments coupled by 
IIME

RKKY limit                                    IIME limit

A. Schwabe, I. Titvinidze, M.P., PRB 88, 121107(R) (2013)



IIME in a 2D array

real-space DMFT:!
!
magnetic adatoms on metal 
surface, strong J (J=5)!
!
substrate: 18x22 array (PBC)!
!
R=57 impurities!
!
NA-NB=36-21=15, 2Stot=15.06   !
!
IIME:!
• ferromagnetic chain!
• oscillatory distance    
 dependence!

• proximity effect!
• confinement is essential!
• odd-even effects!
• interference pattern
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Strong-coupling perturbation theory
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FIG. 2: (Color online) Crossover from the RKKY regime
at weak coupling to the (IIME) regime at strong coupling.
Calculated ordered magnetic moments on di↵erent sites of a
tight-binding chain with spin-1/2 Kondo impurities as func-
tions of J (solid lines, filled symbols) and with Anderson impu-
rities as functions of 8V2/U at Hubbard U = 8 (dashed, open)
– see pictogram for system geometry. Symbols: Density-
matrix renormalization group (DMRG) for a system with
L = 49 uncorrelated sites (A and B), R = 24 impurities (large
symbols at J = 5: L = 89, R = 44), open boundary conditions.
Lines: Dynamical mean-field theory (DMFT) for L = 100
R = 50, periodic boundary conditions. Energy scale: t = 1.

tire J range, indicating metallic behavior, but decreases
with increasing J and vanishes in the J = 1 limit where
electrons are perfectly localized. need calculations, check
Note that the situation is contrary to a “dense” Kondo
lattice (where R = L) at half-filling where we have a spin-
singlet Kondo insulator for any J [26]. skip?

Low-energy model. To analyze the mechanism gen-
erating a ferromagnetic coupling between magnetic mo-
ments at next-nearest neighboring A-sites i and j, we
treat the hopping term / t in Eq. (1) perturbatively.
The starting point is the highly degenerate ground state
of the t = 0 model consisting of local Kondo singlets and
an arbitrary electron configuration. A non-trivial e↵ec-
tive model capturing the low-energy sector of H in the
limit 0 < t ⌧ J is obtained at fourth order in t through
processes where e.g. an electron is hopping from i via the
neighboring B site to j and, again via B, back to i. Here,
the local Kondo singlet at B must be excited at an en-
ergy cost / J first and restored again on the way back.
Calculations are lengthy but straightforward and will be
published elsewhere [27]. For J > 0 and keeping terms
up to O(t4/J3) we find:

H
e↵

/↵ = -
X

i<j2A

(sisj - titj) +
X

i2A

(ni" -
1

2
)(ni# -

1

2
)

-
1

2

X

i<j2A

X

�

(c†i�cj� + H.c.)(1- ni-� - nj-�) .(2)

This e↵ective model describes spin and charge degrees
of freedom on the A sites only and is governed by a
single energy scale ↵ ⌘ 32t4/9J3. check + supplemen-
tary material The first term represents a Heisenberg-
type ferromagnetic spin interaction and indeed explains
the ferromagnetic IIME through a local Kondo singlet.
Ferromagnetism due to the IIME competes with forma-
tion of a charge-density wave or ⌘ pairing [26] as fa-
vored by the second term. This includes the local isospin
ti = 1

2 (c
†
i", (-1)ici#) · � · (ci", (-1)ic†i#)

T . Note that

(-1)i = 1 on A-sites, and note that the total isospin
T
tot

=
P

i ti and the total spin S
tot

are the generators of
the SO(4) symmetry group of the half-filled Kondo model
on the bipartite lattice [26] – and of the e↵ective model as
well. The e↵ective isospin interaction is “antiferromag-
netic”. Analogous to the Mermin-Wagner theorem [28],
and opposed to ferromagnetic spin order, antiferromag-
netic (staggered) isospin order would be suppressed by
quantum fluctuations of the order parameter for D = 1.
The necessary formation of local isospin moments in the
ground state is suppressed anyway by the repulsive Hub-
bard term (third term in Eq. (??)). On the contrary, the
Hubbard interaction favors formation of local magnetic
moments. Finally, there is a correlated hopping term
in H

e↵

which is active only between a spin at i and an
isospin at j or vice versa. It vanishes for a ferromagnetic
state with fully polarized A-site moments as well as for
a fully polarized charge-density wave. This discussion is
corroborated by exact diagonalization of H

e↵

for systems
with a few A-sites which yield a ferromagnetic ground
state with S

tot,0 = (R- 1)/2 and an isospin singlet.

Charge fluctuations. The IIME mechanism is robust
against charge fluctuations on the impurities. This is
demonstrated by DMRG calculations where the spin-
1/2 Kondo impurities are replaced by Anderson impu-
rities, i.e. the coupling term in the Hamiltonian, Eq.
(1), is replaced by U

PR
r=1(nr" - 1/2)(nr# - 1/2) +

V
PR

�,r=1 d
†
r�cir�+H.c.. Here, d†

r� creates an electron at
the r-th impurity site, namely a correlated site with Hub-
bard interaction U coupled to the conduction electrons by
a hybridization V . The weak-V limit is the Kondo limit
of the resulting periodic Anderson model with diluted im-
purities at “ferromagnetic distances”. Indeed, as is seen
in Fig. 2 for 8V2/U = J ⌧ t and as it is prescribed by the
Schrie↵er-Wol↵ transformation [29], the results for the
two models (filled and open symbols) agree. Beyond the
Kondo limit, i.e. for finite U (calculations are performed
for U = 8) and increasing V , the results for Kondo and
for Anderson impurities start to deviate from each other.
However, we again find a crossover from RKKY-coupled
magnetic moments formed at the impurity sites for weak
V to IIME-coupled moments formed at the A-sites for
strong V , producing a ferromagnetic ground state in both
limits. For Kondo impurities the crossover roughly takes
place between J/t = 2 and J/t = 4 while in the Anderson
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FIG. 2: (Color online) Crossover from the RKKY regime
at weak coupling to the (IIME) regime at strong coupling.
Calculated ordered magnetic moments on di↵erent sites of a
tight-binding chain with spin-1/2 Kondo impurities as func-
tions of J (solid lines, filled symbols) and with Anderson impu-
rities as functions of 8V2/U at Hubbard U = 8 (dashed, open)
– see pictogram for system geometry. Symbols: Density-
matrix renormalization group (DMRG) for a system with
L = 49 uncorrelated sites (A and B), R = 24 impurities (large
symbols at J = 5: L = 89, R = 44), open boundary conditions.
Lines: Dynamical mean-field theory (DMFT) for L = 100
R = 50, periodic boundary conditions. Energy scale: t = 1.

tire J range, indicating metallic behavior, but decreases
with increasing J and vanishes in the J = 1 limit where
electrons are perfectly localized. need calculations, check
Note that the situation is contrary to a “dense” Kondo
lattice (where R = L) at half-filling where we have a spin-
singlet Kondo insulator for any J [26]. skip?

Low-energy model. To analyze the mechanism gen-
erating a ferromagnetic coupling between magnetic mo-
ments at next-nearest neighboring A-sites i and j, we
treat the hopping term / t in Eq. (1) perturbatively.
The starting point is the highly degenerate ground state
of the t = 0 model consisting of local Kondo singlets and
an arbitrary electron configuration. A non-trivial e↵ec-
tive model capturing the low-energy sector of H in the
limit 0 < t ⌧ J is obtained at fourth order in t through
processes where e.g. an electron is hopping from i via the
neighboring B site to j and, again via B, back to i. Here,
the local Kondo singlet at B must be excited at an en-
ergy cost / J first and restored again on the way back.
Calculations are lengthy but straightforward and will be
published elsewhere [27]. For J > 0 and keeping terms
up to O(t4/J3) we find:

H
e↵

/↵ = -
X

i<j2A

(sisj - titj) +
X

i2A

(ni" -
1

2
)(ni# -

1

2
)

-
1

2

X

i<j2A

X

�

(c†i�cj� + H.c.)(1- ni-� - nj-�) .(2)

This e↵ective model describes spin and charge degrees
of freedom on the A sites only and is governed by a
single energy scale ↵ ⌘ 32t4/9J3. check + supplemen-
tary material The first term represents a Heisenberg-
type ferromagnetic spin interaction and indeed explains
the ferromagnetic IIME through a local Kondo singlet.
Ferromagnetism due to the IIME competes with forma-
tion of a charge-density wave or ⌘ pairing [26] as fa-
vored by the second term. This includes the local isospin
ti = 1

2 (c
†
i", (-1)ici#) · � · (ci", (-1)ic†i#)

T . Note that

(-1)i = 1 on A-sites, and note that the total isospin
T
tot

=
P

i ti and the total spin S
tot

are the generators of
the SO(4) symmetry group of the half-filled Kondo model
on the bipartite lattice [26] – and of the e↵ective model as
well. The e↵ective isospin interaction is “antiferromag-
netic”. Analogous to the Mermin-Wagner theorem [28],
and opposed to ferromagnetic spin order, antiferromag-
netic (staggered) isospin order would be suppressed by
quantum fluctuations of the order parameter for D = 1.
The necessary formation of local isospin moments in the
ground state is suppressed anyway by the repulsive Hub-
bard term (third term in Eq. (??)). On the contrary, the
Hubbard interaction favors formation of local magnetic
moments. Finally, there is a correlated hopping term
in H

e↵

which is active only between a spin at i and an
isospin at j or vice versa. It vanishes for a ferromagnetic
state with fully polarized A-site moments as well as for
a fully polarized charge-density wave. This discussion is
corroborated by exact diagonalization of H

e↵

for systems
with a few A-sites which yield a ferromagnetic ground
state with S

tot,0 = (R- 1)/2 and an isospin singlet.

Charge fluctuations. The IIME mechanism is robust
against charge fluctuations on the impurities. This is
demonstrated by DMRG calculations where the spin-
1/2 Kondo impurities are replaced by Anderson impu-
rities, i.e. the coupling term in the Hamiltonian, Eq.
(1), is replaced by U

PR
r=1(nr" - 1/2)(nr# - 1/2) +

V
PR

�,r=1 d
†
r�cir�+H.c.. Here, d†

r� creates an electron at
the r-th impurity site, namely a correlated site with Hub-
bard interaction U coupled to the conduction electrons by
a hybridization V . The weak-V limit is the Kondo limit
of the resulting periodic Anderson model with diluted im-
purities at “ferromagnetic distances”. Indeed, as is seen
in Fig. 2 for 8V2/U = J ⌧ t and as it is prescribed by the
Schrie↵er-Wol↵ transformation [29], the results for the
two models (filled and open symbols) agree. Beyond the
Kondo limit, i.e. for finite U (calculations are performed
for U = 8) and increasing V , the results for Kondo and
for Anderson impurities start to deviate from each other.
However, we again find a crossover from RKKY-coupled
magnetic moments formed at the impurity sites for weak
V to IIME-coupled moments formed at the A-sites for
strong V , producing a ferromagnetic ground state in both
limits. For Kondo impurities the crossover roughly takes
place between J/t = 2 and J/t = 4 while in the Anderson
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Effective Hamiltonian

ferromagnetic ground state
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Static mean-field theory for Heff at T>0
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Static mean-field theory for Heff at T>0
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Depleted Anderson model: DMFT-QMC

full DMFT-CT-QMC-hyb-segment calculation!
for the depleted Anderson model

I. Titvinidze, A. Schwabe, M.P., arXiv:1402.6657
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FIG. 3: (Color online) Quasi-particle weight z� and on-site
energy shift a� for a half-filled two-dimensional depleted An-
derson lattice with L = 1000⇥ 1000 sites for U = 16 as func-
tions of V as obtained by DMFT (red circles, bottom and left
axis) and z�, a� for the case of Kondo impurities as a func-
tion of J (green circles, top and right axis). Spin dependence:
z� = z��, Anderson impurities: a# � U/2 = U/2 � a" > 0,
Kondo impurities: a# = �a" < 0. Dashed line: static mean-

field result for a� = Uhn(imp)

�� i in the Anderson case.

e↵ective hopping matrix, Eq. (20), is identical with the
hopping matrix in the non-interacting case except for a

renormalization V 7! z
1/2
� V of the hybridization. Hence,

we find a flat quasi-particle band at ! = 0. This is con-
sistent with the expectation that a correlation-induced
“band narrowing” of an already non-dispersive band does
not have any e↵ect.

However, this must be seen as an artifact of the DMFT
as generally the self-energy and thus the parameters z� =
zk� and a� = ak� acquire a k-dependence which directly
leads to a dispersion of the quasi-particle band. Anyway,
already on the DMFT level, the ferromagnetic long-range
order implies that the coherent part of the excitation
spectrum is dispersive since the spin-dependence of a�
also implies di↵erent e↵ective on-site energies of the A
and B sites of the bipartite lattice (see Sec. IV).

Fig. 3 displays the parameters z� and a� as obtained
from a DMFT calculation for a two-dimensional strongly
correlated system (U = 2W = 16) as functions of V (red
symbols). A lattice with L = 1000⇥1000 sites is su�cient
to ensure that the results are not a↵ected by finite-size
e↵ects. In the ferromagnetic state at half-filling we have
a spin-independent quasi-particle weight z� = z�� but
a" � U/2 < 0 while a# � U/2 > 0. The modulus of
the deviation from U/2 (plotted in the figure) is spin-
independent, similar but smaller than the corresponding

static mean-field result a� = Uhn(imp)
�� i.

In the weak-V limit, the system is e↵ectively equivalent
to the corresponding depleted Kondo lattice. Localiza-
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FIG. 4: (Color online) Coherent part of the spin-dependent
local density of states (solid lines) at the inequivalent sites
↵ = A,B, imp. Calculations for a two-dimensional depleted
Anderson lattice with L = 10000⇥ 10000 sites using the low-
frequency parameters z�, a� from a DMFT calculation for
U = 16 and V = 4 (see Fig. 3). Blue: spin-up, red: spin-down
coherent density of states. Dashed lines: the same but for the
case of Kondo impurities (DMFT calculation for J = 8).

tion of electrons at the impurity sites and local-moment
formation drive the system to a strongly correlated state
with z� ! 0. For large V , we find z� ! 1 and a� ! U/2:
Due to strong charge fluctuations on the impurity sites,
the system’s low-frequency one-electron excitation spec-
trum is well described by non-interacting values of the
parameters.

XII. COHERENT DENSITY OF STATES

Using the parameters from the DMFT calculation, we
obtain the “coherent” part of the spin-dependent local
density of states (DOS) projected onto A, B, and impu-
rity sites,

⇢(coh.)↵� (!) = � 1

⇡
Im

2

L

X

k

G
(coh)
k↵↵�(! + i0+) , (22)

see Fig. 4. A somewhat larger lattice (L = 10000⇥10000)
is necessary to completely suppress finite-size e↵ects on
the scale of the figure.
We discuss results for Hubbard interaction U = 16. In

this strong-coupling regime, the one-electron excitation
spectrum shows incoherent Hubbard bands separated by
an energy of the order of U . The coherent part of the
one-electron excitation spectrum consists of three quasi-
particle bands which are separated by an energy of the
order of V . Only the central band around the Fermi edge

DMFT-ED at T=0: !
low-energy excitation spectrum

M. Aulbach, I. Titvinidze, M.P., t.b.p. 



Flat band

“flat-band ferromagnetism”!
Mielke (1991), Tasaki (1992)!
!
• in certain geometries,  

not necessarily bipartite lattices!
• ground state is a polarized  

uncorrelated Fermi sea even at U>0
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FIG. 2: (Color online) Ordered magnetic moments on the
impurity sites, m

imp

, and on A and B sites, m
A

and m
B

, of
the D = 2 (top) and the D = 1 (bottom) lattice as functions
of the hybridization strength V/W where W = 8 (D = 2)
and W = 4 (D = 1) is the free band width. Dashed lines:
Fully polarized ground state of the non-interacting system
(U = 0). Solid lines: Results of a Hartree-Fock calculation
for U = 2W . Filled symbols for D = 1: DMRG calculation23

for U = 2W (L = 49 lattice sites, R = 25, open boundary
conditions, results are shown for the central unit cell). Dotted
line for D = 1: DMFT calculation23 for U = 2W (L = 100
lattice sites). Open symbols for D = 2: DMFT calculation
for U = 2W (L = 1000⇥ 1000). For the DMFT calculations,
periodic boundary conditions are assumed.

increasing the polarization at the impurity sites, m(HF)
imp >

m
(F0)
imp . Thereby, the interaction energy is lowered.

The magnetic polarizations at the di↵erent sites, as ob-
tained from Hartree-Fock theory, are shown by the solid
lines in Fig. 2. Calculations have been done for U = 8
(D = 1) and U = 16 (D = 2). One clearly notes that (i)

m
(HF)
imp is di↵erent from m

(F0)
imp for all V with 0 < V < 1,

which already reflects that |F0i cannot be the ground

state, and that (ii) m
(HF)
imp > m

(F0)
imp due to the reduced

double occupancy on the impurity sites. Opposed to
|F0i, one finds a non-zero but negative polarization at
the B sites. This is an indication of local antiferromag-
netic Kondo correlations. The total magnetization is still
unity, m = mimp +mA +mB = 1.

VII. DENSITY-MATRIX RENORMALIZATION
GROUP

For the one-dimensional case, the Hartree-Fock re-
sults can be compared with numerically exact data from
Ref. 23 obtained by the density-matrix renormaliiza-
tion group.14,15 DMRG calculations have been performed
with a standard implementation using matrix-product
forms for the trial many-body state as well as for the
operators (see Ref. 38 for some details). The data shown
in Fig. 2b (filled symbols) have been obtained for a sys-
tem with L = 49 sites and open boundaries.
DMRG indeed predicts a ferromagnetic ground state

with a total magnetization independent of V (see Secs.
VIII and IX for further discussion). The magnetic po-
larizations at the di↵erent sites have been plotted for the
central unit cell of the chain for the sector with maximum
magnetic quantum number Mtot = Stot. The DMRG
ground state is unique, apart from the 2Stot + 1-fold de-
generacy. On the scale used in Fig. 2, the DMRG results
are representative for an infinite chain as has been veri-
fied by comparing data for di↵erent system sizes.
For V ! 0 and for V ! 1, Hartree-Fock theory re-

produces the exact result for mA, mB mimp and for the
total magnetization m. For intermediate V , however,
there are strong deviations: Here, Hartree-Fock theory
overestimates the absolute strengths of the polarizations
on the impurity and on the B sites, and underestimates
mA.
We conclude that Hartree-Fock theory is able to

roughly describe the trends of the magnetic polarizations
with V but does not allow for quantitative predictions
and even qualitatively fails to describe the magnetic or-
der in terms of spin-correlation functions. The magnetic
ground state of the considered periodic Anderson model
with depleted magnetic impurities must therefore be seen
as being correlated. It cannot be described by a fully
polarized Fermi sea or by any other (variationally opti-
mized) Slater determinant.

VIII. LIEB-MATTIS THEOREM

Although the ground state is correlated, there are ex-
act statements available for the particular geometrical
and electronic structure considered here. This goes back
to the Lieb-Mattis theorem26 which states that the an-
tiferromagnetic spin-1/2 Heisenberg model on an arbi-
trary bipartite lattice has a unique singlet ground state
if the number LA of A sites equals the number LB of
B sites. For LA > LB, the ground state has total spin
Stot = (LA � LB)/2 and is unique apart from the trivial
(2Stot + 1)-fold degeneracy. The proof of the theorem is
based on the positivity of the Hamiltonian after a uni-
tary spin-reflection transformation which permits the ap-
plication of the Perron-Frobenius theorem. The concept
of “spin-reflection positivity” has been used to general-
ize the Lieb-Mattis theorem to the half-filled repulsive

Hartree-Fock vs. DMRG/DMFT



Inverse Indirect Magnetic Exchange

Irakli Titvinidze 
Andrej Schwabe!
Maximilian Aulbach!
Michael Potthoff
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conclusions!
• Kondo effect vs. indirect exchange: new phenomena due to confinement!
• IIME: Kondo effect helps (rather than competes)!
• effective Hamiltonian: spins on bonds, plaquettes, … !
• comprises the predictions of the Lieb-Mattis theorem!
• different from flat-band ferromagnetism
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