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How localized electrons interact with delocalized electrons is a
central question to many problems in sold-state physics1–3. The
simplest manifestation of this situation is the Kondo effect, which
occurs when an impurity atom with an unpaired electron is placed
in a metal2. At low temperatures a spin singlet state is formed
between the unpaired localized electron and delocalized electrons
at the Fermi energy. Theories predict4–7 that a Kondo singlet
should form in a single-electron transistor (SET), which contains
a confined ‘droplet’ of electrons coupled by quantum-mechanical
tunnelling to the delocalized electrons in the transistor’s leads. If
this is so, a SET could provide a means of investigating aspects of
the Kondo effect under controlled circumstances that are not
accessible in conventional systems: the number of electrons can be
changed from odd to even, the difference in energy between the
localized state and the Fermi level can be tuned, the coupling to
the leads can be adjusted, voltage differences can be applied to
reveal non-equilibrium Kondo phenomena7, and a single localized
state can be studied rather than a statistical distribution. But for
SETs fabricated previously, the binding energy of the spin singlet
has been too small to observe Kondo phenomena. Ralph and
Buhrman8 have observed the Kondo singlet at a single accidental
impurity in a metal point contact, but with only two electrodes
and without control over the structure they were not able to
observe all of the features predicted. Here we report measure-
ments on SETs smaller than those made previously, which exhibit
all of the predicted aspects of the Kondo effect in such a system.

When the channel of a transistor is made very small and is
isolated from its leads by tunnel barriers it behaves in an unusual
way. A transistor can be thought of as an electronic switch that is on
when it conducts current and off when it does not. Whereas a
conventional field-effect transistor, such as one in a computer
memory, turns on only once when electrons are added to it, the
SET turns on and off again every time a single electron is added to
it9,10. This increased functionality may eventually make SETs tech-
nologically important.

The unusual behaviour of SETs is a manifestation of the quanti-
zation of charge and energy caused by the confinement of the
droplet of electrons in the small channel. As similar quantization
occurs when electrons are confined in an atom, the small droplet of
electrons is often called an artificial atom11,12.

We have fabricated SETs using multiple metallic gates (electrodes)
deposited on a GaAs/AlGaAs heterostructure (Fig. 1a) containing a
two-dimensional electron gas, or 2DEG. First, the electrons are
trapped in a plane by differences in the electronic properties of the
heterostructure’s layers. Second, they are excluded from regions of
the plane beneath the gates when negative voltages are applied to

Figure 1 a, Scanning electron microscope image showing top view of sample.

Three gate electrodes, the one on the right and the upper and lower ones on the

left, control the tunnel barriers between reservoirs of two-dimensional electron

gas (at top and bottom) and the droplet of electrons. The middle electrode on the

left is used as a gate to change the energy of the droplet relative to the two-

dimensional electron gas. Source and drain contacts at the top and bottom are

not shown. Although the lithographic dimensions of the confined region are

150 nm square, we estimate lateral depletion reduces the electron droplet to

dimensions of 100nm square. The gate pattern shown was deposited on top of a

shallow heterostructure with the following layer sequence grown on top of a thick

undoped GaAs buffer: 5 nm Al0.3Ga0.7As, 5 3 1012 cm2 1 Si d-doping, 5 nm

Al0.3Ga0.7As, d-doping, 5 nm Al0.3Ga0.7As, 5 nm GaAs cap (H.S., D.G.-G. and U.M.,

manuscript in preparation). Immediately before depositing the metal, we etched

off the GaAs cap in the areas where the gates would be deposited, to reduce

leakage between the gates and the electron gas. b, Schematic energy diagram of

the artificial atom and its leads. The situation shown corresponds to Vds , kT=e,

for which theFermi energies in sourceanddrainarenearlyequal, and to avalueof

Vg near a conductance minimum between a pair of peaks corresponding to the

same spatial state. For this case there is an energy cost ,U to add or remove an

electron. To place an extra electron in the lowest excited state costs ,U þ De.
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ARPES: Spectral function of solids

temperature, momentum, and energy, with high-
precision measurements of the polar Kerr effect
(PKE) and time-resolved reflectivity (TRR). Bi2201
was chosen to avoid the complications resulting
from bilayer splitting and strong antinodal bosonic
mode coupling inherent to Bi2Sr2CaCu2O8+d

(Bi2212) (1).WhereasARPES is a surface probe,
PKE enables us to monitor a bulk, thermody-
namic (via the fluctuation-dissipation theorem)
property that has proven (28) to be a sensitive
probe of the onset of a broken-symmetry state,
and TRR gives complementary information on
the bulk, near-equilibrium dynamics of the system.

We will first analyze our ARPES data col-
lected in different temperature regions. Above
T*, Pb-Bi2201 has a simple one-band band struc-
ture (right side of Fig. 1). For each cut in mo-
mentum space perpendicular to G-M [(0,0)-(p,0)]
(C1 to C7 in Fig. 1), the only distinct feature in
the corresponding Fermi-function–divided (27)
energy distribution curves (EDCs) is a maximum
(red circles in Fig. 2, A to G). As a function of the
y component of the wave vector (ky), the maxima
have an approximately parabolic dispersion for

Fig. 1. Fermi surface maps mea-
sured below Tc at 10 K (left) and
above T* at 172 K (right) in the
same momentum-space region
(flipped for display). Dashed white
lines labeled C1 to C7 depict the
cuts along which the EDCs shown in
Fig. 2, A toN,weremeasured.Magenta
squares labeled P1 to P16 along M-G
indicate momenta where EDCs in Fig.
2, V and W, were measured. Red and
blue squares on the left indicate mo-
menta of the Fermi-level crossing kF
(kF1 and kF2 in Fig. 2, A to G) at 172
K and back-bending kG (black arrows
in Fig. 2, O to S) at 10 K of the dis-
persion of the EDC maximum along
cuts C1 to C7. Red and blue circles
on the right indicate momenta of
identifiable peaks in the momentum
distribution curves (measured along
cuts parallel to cut C7) at EF at 172 K and 10 K, respectively. The solid red curves are a guide to the eye for the
red squares and circles, whereas the dashed blue curve is the guide for the blue squares; together they show
an increased kG−kF misalignment going away from the nodal toward the antinodal region. The magenta-
shaded region is approximately where multiple EDC features are found at 10 K.
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Fig. 2. (A to G) and (H toN) Selected EDCs at 172 K and at 10 K, respectively,
for cuts C1 to C7, nearly perpendicular to G-M (Fig. 1). Each EDC corresponds to
a white point in the cuts in Fig. 1. EDCs inmagenta and orange are located close
to kF. (O toU) Dispersions of the EDC features in (A) to (N) for cuts C1 to C7. For
each dispersion curve, every other symbol corresponds to an EDC in (A) to (N).

Error bars are estimated based on the sharpness of features, to be T3 meV
minimum and T8 meV maximum [examples shown in (O)] based on different
EDC analyses (27). (V andW) EDCs at momenta P1 to P16 along M-G (Fig. 1) at
172 K and 10 K, respectively. Circles denote the EDC shoulder feature (solid
green) and the EDC maximum feature at 10 K (blue) and at 172 K (red).
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He et al., Science 331, 1579 (2011)

E - EF (eV) E - EF (eV)

172 K (NS) 10 K (SC)

each cut (red circles in Fig. 2, O to U); the band
bottom lies on the G-M axis, and the dispersion
crosses the Fermi level (EF) at two momenta, kF
(kF1 and kF2). The binding energy of the band

bottom monotonically decreases from near G to
M (Fig. 2, O to U). We take the Fermi-level
crossings of this single band to define the Fermi
surface. Despite the simplicity of the electronic

structure above T*, the width and energy-
dependent broadening of the EDC maximum
features, along with the familiar strange metal
behavior seen in transport, imply that the system
is not well described as a Fermi liquid.

We now turn to the temperature region below
Tc. Here, the entire Fermi surface is gapped ex-
cept at the nodal points (kF lying on the zone
diagonal). In the nodal region, consistent with
previous reports (4, 5, 11, 12), a d-wave–like gap
along the Fermi surface is observed that we quan-
tify as the energy position of the EDC maximum
(blue circles) at kF (Fig. 2, L to N). This max-
imum is still the only identifiable feature in the
EDC. By comparing the EDCs in Fig. 2, E to G,
with those in Fig. 2, L to N, we see that the peaks
of EDCs near kF are much sharper below Tc than
above T*; however (perhaps surprisingly), the
peaks well away from kF appear broader but with
larger experimental uncertainties (also see Fig. 2,
Vand W).

Away from the nodal region, the dispersion
along each cut rises to a minimum binding en-
ergy and then bends back (Fig. 2, H to K). These
back-bendings (black arrows in Fig. 2, O to S)
occur at momenta kG (kG1 and kG2), which are
increasingly separated from the Fermi surface
(compare blue and red squares on the left side of
Fig. 1) toward the antinodes (kF lying on the zone
boundary). Note that, for a superconducting gap,
as a consequence of the particle-hole symmetry,
one would expect kG ≅ kF (fig. S6), as is the case

Fig. 4. (A and B)
Selected EDCs at 40 K
and 22 K along cut C1
(Fig. 1). See Fig. 2, A
and H, for data at 172 K
and 10 K, and fig. S1, A
to E, for other interme-
diate temperatures. (C)
Antinodal EDCs at 10 K
after dividing by the 40
K counterparts, covering
themomentum range in-
dicated by the gray bar
in (H), in comparisonwith
those in (D) taken in a
similar range at 30 K on
an OP Bi2212 sample.
Nondispersive peaks are
seen in both cases de-
spite different sharpness
and energy positions. (E
to G) EDCs at different
fixedmomenta [specified
in (A) and (H)] and tem-
peratures around Tc. The
counterintuitive increase
of the antinodal gap, de-
fined by the energy posi-
tion of the EDCmaximum
in (F) and (G), with temperature rising above Tc, cannot be understood with a
single energy scale assumed. (Insets) Corresponding EDCs divided by the 60 K
counterpart, showing the peaks losing definition above Tc (fig. S2E). (H) Summary
for the dispersions of related EDC features across and below Tc. Vertical arrows

specify momenta M, kF2 at 172 K, and kG2 at 10 K. Apparent asymmetry of the
dispersions across M is due to a finite deviation of the cut from the high-symmetry
direction and a subtle balance of spectral weight between different features in the
EDC. All EDC features and error bars are similarly determined as in Fig. 2.
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Fig. 3. Temperature
dependence of Kerr ro-
tation (qK) measured by
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that of the binding en-
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ARPES [reproduced from
fig. S1F and (29)]. ARPES
results are normalized to
the80Kvalues (free from
the interference of fluc-
tuating superconductivity).
The dashed black curve
is a guide to the eye for
the PKE data, showing a
mean-field–like critical
behavior close to T* [see
additional discussion in
(27)]. (Left inset) Tem-
perature dependence of
the transient reflectivity
changemeasured by TRR
(right axis). The dashed
black curve (left axis) is reproduced from the main panel. Error bars (if not visible) are smaller than the
symbol size. (Right inset) Dispersion of the EDC maximum at various temperatures above Tc, summa-
rizing the results of Figs. 2A and 4A and fig. S1, A to E. All data were taken on samples from the same
growth and annealing batch, except those reproduced from (29) on differently annealed samples.
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temperature, momentum, and energy, with high-
precision measurements of the polar Kerr effect
(PKE) and time-resolved reflectivity (TRR). Bi2201
was chosen to avoid the complications resulting
from bilayer splitting and strong antinodal bosonic
mode coupling inherent to Bi2Sr2CaCu2O8+d

(Bi2212) (1).WhereasARPES is a surface probe,
PKE enables us to monitor a bulk, thermody-
namic (via the fluctuation-dissipation theorem)
property that has proven (28) to be a sensitive
probe of the onset of a broken-symmetry state,
and TRR gives complementary information on
the bulk, near-equilibrium dynamics of the system.

We will first analyze our ARPES data col-
lected in different temperature regions. Above
T*, Pb-Bi2201 has a simple one-band band struc-
ture (right side of Fig. 1). For each cut in mo-
mentum space perpendicular to G-M [(0,0)-(p,0)]
(C1 to C7 in Fig. 1), the only distinct feature in
the corresponding Fermi-function–divided (27)
energy distribution curves (EDCs) is a maximum
(red circles in Fig. 2, A to G). As a function of the
y component of the wave vector (ky), the maxima
have an approximately parabolic dispersion for

Fig. 1. Fermi surface maps mea-
sured below Tc at 10 K (left) and
above T* at 172 K (right) in the
same momentum-space region
(flipped for display). Dashed white
lines labeled C1 to C7 depict the
cuts along which the EDCs shown in
Fig. 2, A toN,weremeasured.Magenta
squares labeled P1 to P16 along M-G
indicate momenta where EDCs in Fig.
2, V and W, were measured. Red and
blue squares on the left indicate mo-
menta of the Fermi-level crossing kF
(kF1 and kF2 in Fig. 2, A to G) at 172
K and back-bending kG (black arrows
in Fig. 2, O to S) at 10 K of the dis-
persion of the EDC maximum along
cuts C1 to C7. Red and blue circles
on the right indicate momenta of
identifiable peaks in the momentum
distribution curves (measured along
cuts parallel to cut C7) at EF at 172 K and 10 K, respectively. The solid red curves are a guide to the eye for the
red squares and circles, whereas the dashed blue curve is the guide for the blue squares; together they show
an increased kG−kF misalignment going away from the nodal toward the antinodal region. The magenta-
shaded region is approximately where multiple EDC features are found at 10 K.
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Fig. 2. (A to G) and (H toN) Selected EDCs at 172 K and at 10 K, respectively,
for cuts C1 to C7, nearly perpendicular to G-M (Fig. 1). Each EDC corresponds to
a white point in the cuts in Fig. 1. EDCs inmagenta and orange are located close
to kF. (O toU) Dispersions of the EDC features in (A) to (N) for cuts C1 to C7. For
each dispersion curve, every other symbol corresponds to an EDC in (A) to (N).

Error bars are estimated based on the sharpness of features, to be T3 meV
minimum and T8 meV maximum [examples shown in (O)] based on different
EDC analyses (27). (V andW) EDCs at momenta P1 to P16 along M-G (Fig. 1) at
172 K and 10 K, respectively. Circles denote the EDC shoulder feature (solid
green) and the EDC maximum feature at 10 K (blue) and at 172 K (red).
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Figure 1 Symmetrized EDCs for underdoped samples along the Fermi surface. a, Tc = 90 K sample in the superconducting state at T = 40 K. b, Tc = 90 K sample in the
pseudogap phase at T = 140 K. The bottom EDC is at the node, whereas the top is at the antinode, as defined in e. c, Symmetrized EDCs for a very underdoped, Tc = 25 K,
sample (corresponding to kF points 4–15), measured at 55 K in the pseudogap state. For this sample, the spectral weight is much reduced relative to higher doping values.
We therefore removed the extrinsic background19. d, Variation of the gap around the Fermi surface extracted from a and b. The uncertainty in the gap is ±4 meV for the
pseudogap, and ±2 meV for the superconducting gap. e, Location of the momentum cuts (red lines), Fermi surface (blue curves), and special points (node and antinode) in
the zone.

the fits (as in Fig. 1d). Indeed, at 200 K, the onset of the gap at
the end of the Fermi arc is steeper than at 110 K, and the arc
is longer. Note that the gap size remains roughly constant in the
straight section of the Fermi surface near the antinode. In this
region, the Fermi surface is essentially parallel to the Brillouin-zone
axis (Fig. 1e).

We now discuss our most important finding. As shown in
Figs 1 and 2, the anisotropy of the pseudogap around the Fermi
surface is temperature and doping dependent. Despite this, we find
the rather remarkable result that the momentum dependence of
the gaps from samples with different temperatures and different
doping values can be scaled by defining a reduced temperature
t = T/T∗(x) and by normalizing the gap by its value at the
antinode. To demonstrate this scaling, we show six data sets in Fig. 3

with different temperatures and doping, but which are divided
into two groups, one with t = 0.9 and the other with t = 0.45.
For comparison, we show the angular anisotropy of the d-wave
superconducting gap (blue dashed line). It is well known10 that
the magnitude of the pseudogap at the antinode tracks T∗ as a
function of x. Surprisingly, the entire momentum and temperature
dependence of the normalized pseudogap ∆(φ)/∆(0) only
depends on T/T∗(x), whereas the Tc of the sample does not
play a role. We note that scaling with T∗ has been observed for
susceptibility and transport data11–13.

However, the gap size alone does not provide a full description
of the low-energy excitations in the pseudogap state, for which we
also need to consider the temperature dependence of the intensities.
The inset of Fig. 2c shows symmetrized EDCs for a Tc = 89 K
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Figure 1 Symmetrized EDCs for underdoped samples along the Fermi surface. a, Tc = 90 K sample in the superconducting state at T = 40 K. b, Tc = 90 K sample in the
pseudogap phase at T = 140 K. The bottom EDC is at the node, whereas the top is at the antinode, as defined in e. c, Symmetrized EDCs for a very underdoped, Tc = 25 K,
sample (corresponding to kF points 4–15), measured at 55 K in the pseudogap state. For this sample, the spectral weight is much reduced relative to higher doping values.
We therefore removed the extrinsic background19. d, Variation of the gap around the Fermi surface extracted from a and b. The uncertainty in the gap is ±4 meV for the
pseudogap, and ±2 meV for the superconducting gap. e, Location of the momentum cuts (red lines), Fermi surface (blue curves), and special points (node and antinode) in
the zone.

the fits (as in Fig. 1d). Indeed, at 200 K, the onset of the gap at
the end of the Fermi arc is steeper than at 110 K, and the arc
is longer. Note that the gap size remains roughly constant in the
straight section of the Fermi surface near the antinode. In this
region, the Fermi surface is essentially parallel to the Brillouin-zone
axis (Fig. 1e).

We now discuss our most important finding. As shown in
Figs 1 and 2, the anisotropy of the pseudogap around the Fermi
surface is temperature and doping dependent. Despite this, we find
the rather remarkable result that the momentum dependence of
the gaps from samples with different temperatures and different
doping values can be scaled by defining a reduced temperature
t = T/T∗(x) and by normalizing the gap by its value at the
antinode. To demonstrate this scaling, we show six data sets in Fig. 3

with different temperatures and doping, but which are divided
into two groups, one with t = 0.9 and the other with t = 0.45.
For comparison, we show the angular anisotropy of the d-wave
superconducting gap (blue dashed line). It is well known10 that
the magnitude of the pseudogap at the antinode tracks T∗ as a
function of x. Surprisingly, the entire momentum and temperature
dependence of the normalized pseudogap ∆(φ)/∆(0) only
depends on T/T∗(x), whereas the Tc of the sample does not
play a role. We note that scaling with T∗ has been observed for
susceptibility and transport data11–13.

However, the gap size alone does not provide a full description
of the low-energy excitations in the pseudogap state, for which we
also need to consider the temperature dependence of the intensities.
The inset of Fig. 2c shows symmetrized EDCs for a Tc = 89 K
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insights into the microscopic nature of this
2DCO and its relationship to the single-particle
excitations in k-space. We performed ARPES
studies of Na-CCOC (x 0 0.05, 0.10, and
0.12), allowing us to combine information
from the complementary real- and k-space
electronic probes. Our results reveal a strong
momentum anisotropy, in which the 2DCO
is associated with strongly suppressed anti-
nodal electronic states that have a nesting
wave vector of kqk È 2p/4a0, whereas the
nodal states dominate the low-energy spec-
tral weight in k-space.

ARPES measurements were performed at
Beamline 5-4 of the Stanford Synchrotron

Radiation Laboratory with the use of single
crystals with typical dimensions of 1 ! 1 !
0.1 mm grown by a high-pressure flux method
(7). Na-CCOC is devoid of complications
such as superlattice modulations, bilayer
splitting, and orthorhombic distortions and is
highly 2D with a resistivity anisotropy rc/rab
of 104 (8). The x 0 0.10 and 0.12 samples had
Tc_s of 13 and 22 K, respectively (maximum
Tc 0 28 K), whereas the x 0 0.05 composi-
tion was nonsuperconducting. Typical ener-
gy and momentum resolutions were 14 meV
and 0.35- (corresponding to Dk È 0.02 p/a0),
and samples were measured at pressures lower
than 5 ! 10j11 torr.

In Fig. 1, A to C, we show the momen-
tum distribution of spectral weight within a
T10-meV window around the Fermi energy,
EF. The predominance of the nodal states can
be seen in the raw data, as the intensity is
maximum along the (0,0)-(p,p) nodal direction
and drops off rapidy toward (p,0), the anti-
node. To better quantify the Fermi surface
(FS), we have taken the maximal position in
each momentum distribution curve (MDC) at
EF, which intersected the FS and identified this
as a Fermi wave vector, kF. To minimize the
effects of photoelectron matrix elements or
sample-dependent variations, we confirmed
our results on additional samples by varying
photon energies (between 16.5 and 28 eV) or
acquiring data with polarizations parallel to the
Cu-O bond direction, or in the second Brillouin
zone. All results are summarized in Fig. 1, D
to F, and representative MDCs are overlaid
in Fig. 1E. Despite the much weaker intensity
of the antinodal MDC, its momentum structure
nevertheless allows one to define kF and es-
tablish a continuous contour reminiscent of the
predicted noninteracting FS (9). Although this
approach is robust in extracting the normal-
state FS for conventional metallic or even
gapped systems, the situation is less clear for
strongly correlated systems where the quasi-
particle (QP) residue, Z, can be much less
than 1. However, we will still refer colloquially
to these extracted contours as Fermi surfaces
throughout this work (10).

The manifestation of the 2DCO in the
ARPES spectra can be observed in Fig. 1, D to
F, where the weak antinodal segments appear
to be well nested and separated by approx-
imately kqk È 2p/4a0 (Fig. 2A). In Fig. 2, A
and B, we compare a schematic of the low-
energy intensity with the real space dI/dV map
(6). This correspondence is exhibited not only
in the wave vectors, but also in the unusual
energy (w) dependence of this pattern. The tun-
neling data exhibit a surprising bias indepen-
dence (6), and our antinodal MDCs (Fig. 2C)
also demonstrate a similar insensitivity to w
below 50 meV, in contrast to the dispersive
nodal MDCs (Fig. 2D). This unphysical ver-
tical dispersion of the antinodal excitations is
highly atypical and almost certainly does not
represent the behavior of the actual QP band,
as will be discussed later. The doping depen-
dence of the nodal and antinodal kF_s is
summarized in Fig. 2E. The relatively weak
doping and w dependence of the antinodal kF
is in stark contrast to the expected behavior of
a near-EF van Hove singularity, where both the
doping and w dependence of the MDCs should
be sizable. Moreover, the contrast between the
strong nodal states and weak antinodal seg-
ments is surprising given that the low-energy
STM spectra are almost entirely dominated by
the commensurate 2DCO (6).

This anisotropy can also be observed in the
energy distribution curves (EDCs) along the

Fig. 2. (A) Schematic of
the low-lying spectral
intensity for x 0 0.10.
The hatched regions
show the nested por-
tions of FS, and the FS
angle is defined in the
lower right quadrant. (B)
An STM dI/dVmap from
(6) is shown from
Ca1.9Na0.1CuO2Cl2, ta-
ken at 24 meV and
100 mK, exhibiting the
4a0 ! 4a0 ordering.
MDCs along the anti-
nodal (C) and nodal (D)
directions are shown for
Ca1.88Na0.12CuO2Cl2, ta-
ken at 15 K with hu 0
25.5 eV. (E) The doping
dependence of the kF
wave vectors along the
(0,0)-(p,p) (blue trian-
gles) and (p,0)-(p,p)
(red circles) directions.
Error bars show the SD
from sample to sample.
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Fig. 1. (A to C) The
momentum distribu-
tion of spectral weight
within a T10-meV
window around EF for
x 0 0.05, 0.10, and
0.12 in one quadrant
of the first Brillouin
zone. Data were taken
at 15 K with hu 0 25.5
eV and a polarization
45- to the Cu-O bond,
normalized to a fea-
tureless background at
high binding energies
(–1 eV), and symme-
trized along the (0,0)-
(p,p) line. The data
acquisition range is
shown within the black
lines. The FS contours shown in (D to F) were compiled from more than four samples for each
composition with photon energies between 16.5 and 28 eV and photon polarizations both parallel to
and at 45- to the Cu-O bond direction. Data from these samples constitute the individual points; the
best fit is shown as a solid line. The region in which a low-energy peak was typically observed is
marked by gold circles. The gray shaded areas in (E) represent the momentum distribution of
intensity at EF T10 meV along the (0,0)-(p,p) and (p,0)-(p,p) high-symmetry directions.
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ARPES: Shen et al., 
Science 307, 901 
(2005)

in high-Tc materials: 
Electronic spectral 
function is suppressed 
along the BZ face, but 
not along zone diagonal."

Key physics 
dependence on 
momentum around 
Fermi surface, 
Difference of spectral 
function around Fermi 
surface."

Doping dependence of 
region with 
quasiparticles



Question to theory

Can we say something about 
spectral functions of interacting 

materials?

How well does dI/dV measure 
A(omega)?

…………we will present a potential answer in this talk………

Does a voltage split the 
Kondo peak?

Can we say something about 
non-equilibrium correlation 

physics?

Can we make these statements robust 
and reliable? (and what does that even 
mean?)



Theory: Anderson Impurity Model
Quantum dot coupled to a non-interacting environment (‘leads’ or ‘bath’):

Impurity described by Coulomb 
interaction U, level energies ε0σ.!

Leads described by bath dispersion, 
chemical potential, non-interacting.!

Coupling of dot to lead via 
‘hybridization strength’ V.

Hbath =
X

↵=L,R

X

p�

("↵p� � µ↵)c
↵†
p�c

↵
p�

Hhyb =
X

↵=L,R

X

p�

V ↵
p�c

↵†
p�d� + h.c.

H
loc

=
X

�

"
0�n� + Un"n #

left lead dot right lead 

✏0� UV ↵
p�

V ↵
p�

"Lp� � µL "Rp� � µR

How much of the physics on the previous slides can we address with this setup?



Technique: Perturbation theory

Perturbation theory,  Diagrammatic expansion:

H = Ha + HbInteraction representation:

2tF
0

tF

Diagrams on the real-time contour. 
Prep the system in an initial state, let go & simulate transients and steady state

‘Diagrammatic’ or ‘Continuous-Time’ 
quantum Monte Carlo methods

Finite (low) order perturbative 
expansions, performed analytically

Semi-analytic infinite partial 
summations

2tF
0

tF

Rev. Mod. Phys 83, 349 (2011)

http://rmp.aps.org/abstract/RMP/v83/i2/p349_1


Finite order perturbative 
expansions

Semi-analytic infinite partial 
summations

‘Traditional’ techniques

• Obvious advantage where higher order 
terms are small. !

• Simple, but !

• Not able to capture a ‘correlated’ regime

Partial summation of infinite series of terms 
(diagrams) of a certain type.

Phys. Rev. B 82, 075109 (2010)

• Good answers (hopefully) where resummed diagrams are relevant.!

• Comparatively cheap to compute!

• In wide use: RPA, non-crossing approximation, FLEX, GW, …!

• However: Uncontrolled!

http://prb.aps.org/abstract/PRB/v82/i7/e075109


Continuous-Time Quantum Monte Carlo

General idea: 

• Identify a convergent diagrammatic 
expansion.!

• Realize that it is just a high order 
integral.!

• Define a Monte Carlo importance 
sampling procedure for diagrams.!

• Sample all diagrams stochastically.
0 25 50 75 100

expansion order
0

0.01

0.02

0.03

0.04

0.05

p(
or

de
r)

32-site cluster
 U/t=8, βt=2
half filling

diagrams with 
order ≳100 

exponentially 
suppressed

diagrams with 
order ≲25 

exponentially 
suppressed

Advantages:!
• As long as all diagrams are sampled, 

the only error is a stochastic sampling 
error.!

• Stochastic sampling errors converge 
like 1/sqrt(N)!

• Perfect control over results. Actual Limitation:!
• Sampling in diagram space may be 

inefficient (‘sign/phase problem’).

Perceived limitation:!
• There are very many diagrams and an 

infinite dimensional space?!
• Luckily the dimensionality of the space 

does not enter Monte Carlo estimates.

Rev. Mod. Phys 83, 349 (2011)

http://rmp.aps.org/abstract/RMP/v83/i2/p349_1


Limitations of CT-QMC out of equilibrium – 
Motivation for diagrammatic bold-line MC
Limiting factor with CT-QMC out of equilibrium: Complex sign (phase) problem!

Marco Schiro !
Phys. Rev. B 81, 085126 (2010)

‘bare’ CT-QMC: average sign 
decays exponentially as a function 
of real time.!
!
Hard cutoff in times that can be 
reached, exponential cost for longer 
times

Mühlbacher, Rabani, Phys. Rev. Lett. 100, 176403 (2008)
Werner, Oka, Millis, Phys. Rev. B 79, 035320 (2009)

B. Charge and spin dynamics in the Anderson model
after a local quantum quench

We start by considering the noninteracting case, the so
called resonant level model with U−=U+=0, which allows
for an exact solution and can be therefore used to benchmark
the algorithm. We consider for this simple resonant level
model a quench of the energy level !d that we tune from the
on-resonance value !−=0 to the off-resonance one !+!0.
We note that this kind of quench can be realized in optical
absorption experiments with quantum dots, as recently pro-
posed in Ref. 45. In Fig. 6, we plot the real-time dynamics of
the impurity density n!t" for two different quenches, respec-
tively, above and below the on-resonance value !d=0, and
compare the result of diagMC !data points" with the exact
dynamics, which can be obtained using standard methods.49

The excellent agreement with exact results confirms the re-
liability of our numerical approach.

We then move to the interacting case, namely, consider a
local quantum quench in the Anderson model with local
Hamiltonian !49". In Fig. 7 we show the dynamics of the
double occupation D!t"= #n↑!t"n↓!t"$ after a sudden quench
of the local interaction strength U. Two different cases are
considered. In the upper panel of Fig. 7, we start from the
same initial preparation, U−=10", and quench to different
final values of the interaction U+ /"=0,2.5,5 !from top to
bottom". In the lower panel of the same figure, we start from
different initial preparations U− /"=2,4 ,6 !from top to bot-
tom" and quench to the same final state U+=0.

The dynamics at short times, soon after the quench, is
controlled by the initial density matrix as expected on gen-
eral grounds. After a short time scale, tshort%0.1 /", the sys-
tem starts feeling the quench and in fact the curves in the
upper/lower panel start to deviate from/approach to each
other. The time scale controlling the approach to the steady
state is set mainly by 1 /"—without coupling to the bath no
dynamics for the charge would arise at all. However, the final
value of the interaction also affects the dynamics, as one can
see from data in the top panel of Fig. 7. We also compare
these findings with the noninteracting case, where the quench
is performed on the energy level, which is suddenly placed
out of resonance !see lower panel black curve". In this situ-
ation, the dynamics appears much slower than the previous
cases, at least a factor of two. In Fig. 8, the problem of
quenching the impurity energy level is considered for differ-
ent values of the Coulomb repulsion U, starting from a level,
which is initially half-filled. As compared to the noninteract-
ing U=0 case, the effect of interaction is to make the whole
relaxation dynamics much faster and the steady state value
closer to the starting one, resulting in some sense into a less
pronounced deviation from equilibrium. This can be rational-
ized by considering how the density depends, in equilibrium,
on the energy level !see inset": upon increasing the interac-
tion the curve n!!d" becomes flat around !d=0, a signature of
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FIG. 5. !Color online" Average sign as a function of time t for
different initial preparations. We clearly see an exponential decay
on a very short-time scale. Left panel shows data obtained fixing the
final value of the interaction U+=0 and tuning the initial value U
=0,5 ,10. We see a slight increase in the average sign. Right panel
shows the dependence of #̄ from the bandwidth of conduction elec-
trons and suggest that much longer time scales can be reached in the
regime W%".
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FIG. 6. !Color online" Quench dynamics in a Resonant Level
Model after a sudden change of the energy level from !d−=0 to
!d+!0. Dashed lines is the exact solution for n!t" as obtained by a
standard methods. Points are diagMC results obtained at T=0.1".
We also add the dynamics for the trivial case !d+=!d−=0 to show
that unitarity is actually preserved by diagMC.
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FIG. 7. !Color online" Nonequilibrium dynamics of double oc-
cupancy D!t" in the Anderson impurity model after a local quantum
quench of the interaction strength at T=0.1" and particle-hole sym-
metry. In the upper panel we start from an initial state with U−
=10" and a very low double occupation and quench to different
values of U+ /"=0,2.5,5 from top to bottom. In the lower panel,
the opposite protocol is considered, namely, we start from different
values of U− /"=2,4 ,6 from top to bottom and quench to the same
final U+=0. In both cases we see that after a rather short transient
the system relaxes to a new equilibrium state.

MARCO SCHIRÓ PHYSICAL REVIEW B 81, 085126 !2010"

085126-10

Dynamic sign problem:  
direct consequence of oscillation of 
real time propagation

http://prb.aps.org/abstract/PRB/v81/i8/e085126
http://prl.aps.org/abstract/PRL/v100/i17/e176403
http://prb.aps.org/abstract/PRB/v79/i3/e035320


Bold-line Monte Carlo

‘Diagrammatic’ or ‘Continuous-Time’ 
quantum Monte Carlo methods

Semi-analytic infinite partial 
summation

See also related iterative bold-line MC method, Prokof’ev and Svistunov, PRL 99, 250201 (2007).

Phys. Rev. B 82, 075109 (2010)

General idea:!
• Two-step procedure!

• First step: run a semi-analytic 
infinite partial summation!

• Second step: Stochastically sample 
all corrections to the partial 
summation

Consequences:!
• Numerically exact! (all diagrams are 

considered)!
• Closer starting guess reduces sign 

problem, size of relevant configuration 
space!

• Observable estimates more precise.

2tF
0

tF

tF
2tF
0

‘bare’ diagram
‘bold’ diagram

http://prl.aps.org/abstract/PRL/v99/i25/e250201
http://prb.aps.org/abstract/PRB/v82/i7/e075109


Bold Expansion
Phys. Rev. B 82, 075109 (2010)

• Underlying partial summation: Non-crossing 
approximation (NCA). !

• See Martin Eckstein’s talk later today!

• Bold-line Monte Carlo expansion: BoldNCA method 
based on the non-crossing approximation  

In this talk:

Summing up all ‘crossing’ corrections stochastically makes the method numerically exact.

http://prb.aps.org/abstract/PRB/v82/i7/e075109


‘Diagrammatic’ or ‘Continuous-Time’ 
quantum Monte Carlo methods

Semianalytic infinite partial 
summations

Bold Diagrammatics – Bold NCA

1.Use the non-crossing approximation  to sum up all non-crossing hybridization 
lines (using coupled integral equations)

⌃|0i(⌧) = G|"i(⌧)�"(⌧) + G|#i(⌧)�#(⌧),
⌃|�i(⌧) = G|0i(⌧)��(�⌧) + G|"#i(⌧)���(⌧),
⌃|"#i(⌧) = G|"i(⌧)�#(�⌧) + G|#i(⌧)�"(⌧).

G|ji = G0
|ji + G0

|ji⌃|jiG|ji

Phys. Rev. B 82, 075109 (2010)

Obtain NCA propagators and self-energies.

http://prb.aps.org/abstract/PRB/v82/i7/e075109


‘Diagrammatic’ or ‘Continuous-Time’ 
quantum Monte Carlo methods

Semianalytic infinite partial 
summations

Bold Diagrammatics – Bold NCA

2.Use a continuous-time quantum Monte 
Carlo algorithm to sum up all crossing 
terms stochastically, replacing bare 
propagators with NCA propagators

Phys. Rev. B 82, 075109 (2010)

Bold NCA propagator: stands for: + +…

Includes all non-crossing diagrams (to all orders)

0 �

Each bare diagram uniquely associated 
with a diagram that contains only crossing 
parts. All these crossing diagrams summed 
up stochastically.

Perform continuous-time QMC algorithm: Insert / remove hybridization lines, measure 
Green’s functions,...

http://prb.aps.org/abstract/PRB/v82/i7/e075109


‘Diagrammatic’ or ‘Continuous-Time’ 
quantum Monte Carlo methods

Semianalytic infinite partial 
summations

Bold Diagrammatics – Bold NCA
Phys. Rev. B 82, 075109 (2010)

0 � G|"i(�) NCA propagator for 
‘up’ state, for time β

Contained in NCA, 
diagram rejected

0
0 �

Perform random walk in bold diagram space. Exact: each bare diagram can be uniquely 
decomposed into crossing and non-crossing parts. Diagrams that contain crossings are not 
sampled.

0 �

G|"i(⌧1)G|"#i(⌧2 � ⌧1)G|#i(⌧3 � ⌧2)
G|0i(⌧4 � ⌧3)G|"i(� � ⌧4)
⇥�#(⌧3 � ⌧1)�"(⌧4 � ⌧2)

0 �

Contains a non-crossing 
part, diagram rejected0

Diagrams weight

http://prb.aps.org/abstract/PRB/v82/i7/e075109


Bold NCA – The Keldysh Contour

2tF
0

tF

NCA equations in real time sum up non-crossing diagrams on double contour.

tF
2tF
0

Bold Method sums up terms not treated by the NCA, replaces bare by bold propagators.

2tF
0

tF

Consider analytically computed vertex functions to sum additional diagrams connecting 
upper and lower contour.

Phys. Rev. B 84, 085134 (2011)

http://prb.aps.org/abstract/PRB/v84/i8/e085134


Real Time Bold NCA – Sign Problem
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t
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Bold
Bold 3rd order
Bold 4th order
Bold 5th order
Bold 6th order
Hyb

Bold vs bare:!

• Sign better by order of magnitude (blue line).!
• For same sign: twice longer time accessible (red line).!
• If bold expansion is truncated at a fixed order (3rd, 4th, 5th, 6th order): sign problem 

plateau, arbitrarily long times accessible if converged.

current expansion

Phys. Rev. B 84, 085134 (2011)

http://prb.aps.org/abstract/PRB/v84/i8/e085134


Real Time Bold NCA – Current

Current as a function of time, starting from the empty dot                       . Inset: starting from 
an NCA density matrix             .
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Real Time Bold NCA – Density Matrix
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Combination with Memory Function Methods
Monte Carlo:!

• extremely precise answers for short t!
• exponential cost for long t!
• Can we use short-t knowledge to obtain long-t behavior?

Phys. Rev. B 87, 195108 (2013)

Plan: Check if memory kernel converges within simulation time, use it to propagate density 
matrix to steady state: Numerically exact results in the Kondo regime.
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Numerically exact long-time magnetization dynamics at the nonequilibrium Kondo crossover
of the Anderson impurity model
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We investigate the dynamical and steady-state spin response of the nonequilibrium Anderson model to magnetic
fields, bias voltage, and temperature using a numerically exact method combining a bold-line quantum Monte
Carlo technique with a memory function formalism. We obtain converged results in a range of previously
inaccessible regimes, in particular calculating the spin dynamics for a range of temperatures down to the
crossover to the Kondo domain. We provide predictions for nonequilibrium phenomena, including nonmonotonic
temperature dependence of observables at high bias voltage and oscillatory quench dynamics at high magnetic
fields.
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Strongly correlated open quantum systems appear in a
wide variety of physical situations, including quantum dots
in semiconductor heterostructures,1,2 molecular electronics,3,4

and the dynamics of cold atoms.5 These systems consist
of a finite, interacting region coupled to a continuous set
of noninteracting “bath” or “lead” states which may be
maintained at differing thermodynamic states. It is natural to
describe open systems in terms of quantum impurity models,
which have been used in the description of magnetic impurities
in metals,6 the adsorption of atoms on a surface7 and as
auxiliary problems in the dynamical mean field approximation
to extended lattice systems.8 More recently, quantum impurity
models have also been of interest in the nonequilibrium context
of mesoscopic transport9,10 and of nanosystems coupled to
broad leads.2

While attempts are being made to connect nonequilibrium
physics to equilibrium concepts,11 the nonequilibrium steady-
state properties of correlated quantum systems continue to
present a formidable challenge to our theoretical understand-
ing. The main difficulty is that a rigorous evaluation of the
long-time and steady-state properties requires an accurate time
propagation, starting from some known initial state and reach-
ing all the way to the steady state. When this relaxation occurs
quickly, a range of powerful semianalytical12–14 and numerical
methods15–25 are applicable. However, dynamics in strongly
correlated systems may exhibit a separation of time scales—for
example, the spin-relaxation dynamics in the Kondo regime of
a quantum dot are orders of magnitude slower than those of the
corresponding charge relaxation. Existing theoretical methods
are unable to resolve these time scales reliably in the general
case (though progress in analytical methods26–28 can teach us
much about generic aspects of the problem).

In this paper we show that a combination of bold-line
diagrammatic Monte Carlo methods24,29 and the memory-
function approach25 enables us to significantly extend the
time regime accessible to numerical simulation and can, in
some cases, access steady-state information within the Kondo
regime (though not deep within the strong-coupling regime).

The method is numerically exact and provides unbiased error
estimates. While the calculations presented here are for the
single impurity Anderson model, a minimal model for strong
interactions in the presence of baths, the methodology is
applicable to any quantum impurity model.30

The Anderson impurity model is defined by the Hamilto-
nian

H = HS + HB + V, (1)

where HS describes the interacting system (or dot) part, HB

the noninteracting bath (or leads) part, and V the system-bath
coupling part:

HS =
∑

i=↑↓
εid

†
i di + Ud

†
↑d↑d

†
↓d↓, (2)

HB =
∑

k,i=↑↓
εika

†
ikaik, (3)

V =
∑

k,i=↑↓
tikdia

†
ik + t∗ikaikd

†
i . (4)

Here ↑ and ↓ represent electronic spin, the di and d
†
i are

fermionic system operators for dot states with energy εi , aik

and a
†
ik are fermionic lead operators for levels with energy

εik , and the tik are coupling constants. k is an index iterating
over the lead states. The relevant aspect of the εik and tik are
encoded in " (ε) ≡ 2π

∑
k |tk|2 δ (ε − εik).

References 31–33 have shown that the reduced density
matrix σ (t) = TrB {ρ (t)} [ρ (t) being the full density matrix
and TrB {...} denoting a trace over all bath degrees of freedom]
of any system of the form of Eq. (1) exactly obeys the
Nakajima–Zwanzig–Mori equation

ih̄
dσ (t)

dt
= LHS

σ (t) + ϑ (t) − i

h̄

∫ t

0
dτ κ (τ ) σ (t − τ ) .

(5)

Here, the Liouvillian superoperator LHS
A ≡ [HS,A] denotes

a commutation with the system Hamiltonian HS , with the
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This implies:!
• obtain exact impurity density matrix IF memory kernel is accessible for all times!
• If memory kernel goes to zero in short time: obtain exact impurity density matrix for 

all times using short time simulation  

• Memory kernel is a function of current observables – straightforwardly accessible
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FIG. 2. (Color online) (Top left panel) The steady-state magneti-
zation obtained from the memory formalism at several temperatures
plotted as a function of the inverse cutoff time, and compared in
the equilibrium cases to exact RT-PIMC results shown as circles, for
h = 0.01! and V = 0. (Bottom left panel) The same plot at β! = 1
and h = 0.1!, for several voltages. (Right panels) Equilibrium
memory kernel κ (top) and populations σi (bottom) as a function of
time for β! = 1 and h = 0.01!. The inset shows the memory kernel
at short times. The squares in the bottom right panel are approximate
OCA results.

exhibits the longest memory while at larger voltages the
plateau is reached at shorter cutoff times.

An independent approach to verifying convergence relies
on direct examination of individual elements of the memory
kernel as a function of time. Several representative elements
are displayed at h = 0.01! and β! = 1 in the top right panel
of Fig. 2, with the inset highlighting short times. Within the
times accessible by BoldOCA, the memory kernel elements go
to zero within the numerical accuracy. Below this, on the same
time scale and for the same parameters, the time dependence
of the three distinct elements of the reduced density matrix σ is
plotted for an initially magnetized dot in the lower right panel
of Fig. 2. With this initial condition and within the symmetric
Anderson impurity model, the diagonal density matrix entries
σ0 and σ3, which express charging dynamics, are identical.
They both relax so rapidly that their steady-state values could
have been obtained to very good accuracy without recourse
to memory techniques. The difference in scale between the
spin relaxation time of σ1,σ2 and the memory decay in the
upper panel, however, is striking—and is why memory kernel
methods are essential for obtaining long-time behavior. To
obtain a reasonable converged steady state directly, one would
need to reach times !t ! 20 with errors of similar magnitude
compared to what we have obtained at !t = 2 with the current
approach. The exponential scaling in time typical of all general
exact methods makes this unfeasible.

We now turn to the presentation of results. The left panels
of Fig. 3 show the time evolution of the magnetization from
an initially polarized state at different voltages and magnetic
fields, with β! = 1. At low voltages two separate relaxation
time scales are apparent: immediate fast relaxation followed
by later slow relaxation. At high enough fields (bottom), an
overshoot effect appears along with oscillatory behavior which
is seen more clearly in the upper right panel. As we increase the
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FIG. 3. (Color online) (Left panels) Time dependence of the
cutoff-converged magnetization at β! = 1 starting from a fully
magnetized dot, at different magnetic fields h and bias voltages
V . (Top right) Comparison with NCA and OCA at h = 2! and
V = 0. (Bottom right) Temperature dependence of the h = 0.01!

steady-state magnetization at different voltages.

voltage the second time scale is suppressed and eventually the
relaxation becomes exponential. However, the voltage required
in order to reach this regime is surprisingly large. In the top
right panel of Fig. 3, we show that the nonequilibrium OCA
and the simpler non-crossing approximation or NCA (neither
supplemented by QMC) are poor approximations for h ̸= 0,
in contrast to the numerically-exact approach introduced here.

In the lower right panel of Fig. 3, we show an example of the
temperature dependence of the t → ∞ limit of the magnetiza-
tion at constant magnetic field and a range of bias voltages. In-
terestingly, at higher voltages (but substantially below V

2 ≈ εc

where the lead chemical potentials approach the band cutoff)
the temperature dependence becomes nonmonotonic. We
believe this is a population switching effect,43 which leads
to a suppression of the magnetization by population transfer
from the magnetized |1⟩ and |2⟩ states to the unmagnetized
|0⟩ and |3⟩ states which are activated for V ! U . The rate
for this transfer process is approximately proportional to
the lead occupation at the energy difference between the
states: f (β,&E,µ) = 1

1+eβ(&E−µ) , with &E equal to half the
interaction energy U

2 and µ = V
2 or −V

2 , depending on the
lead. f is therefore an increasing function of temperature for
V < U and a decreasing one for V > U . At small voltages
the effect of the population transfer results in a reduction
of the magnetization (as expected), while at large voltages
the population transfer enhances the intermediate-temperature
magnetization. At still larger temperatures, the nonequilibrium
effects are washed away and normal thermal suppression of
the magnetization occurs.

In Fig. 4 we display the steady-state voltage dependence of
the generalized magnetic susceptibility χ ≡ m

h
. At small h this

quantity is h independent. The top panel shows clearly how
the regime in which m is linear in h depends on voltage at a
constant temperature. The bottom panel of Fig. 4 shows the
voltage dependence at different temperatures within the linear
regime. One immediately noticeable feature is the decrease
of χ with increasing β at high voltage, which corresponds to
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FIG. 4. (Color online) Generalized magnetic susceptibility
χ ≡ m

h
as a function of voltage for (Top panel) different magnetic

fields and (Bottom panel) different temperatures, at h = 0.1".
Approximate results from a master equation calculation are shown
in dotted lines for the lowest and highest temperatures in the lower
panel.

the nonmonotonic temperature dependence discussed in the
bottom panel of Fig. 4. A second interesting feature is the
fact that the plots have a simple, Lorentzian-like structure,
suggesting that the results may be in a regime accessible to
analytical methods based on performing logarithmic correc-
tions around rate equations:44 in the dotted lines in the bottom
panel we show for comparison results obtained by solving
the classical rate equations (obtained by perturbation theory
to second order in the hybridization). The large discrepancy
between the master equation and numerically exact results
at β" = 1 demonstrates the need to accurately account for
non-Markovian effects, as illustrated by the method introduced
here.

In conclusion, by unifying numerically exact bold Monte
Carlo methods with the exact memory approach we have
developed a numerically exact formalism free from system-
atic errors and well suited for the real time solution of

nonequilibrium quantum impurity models. In practice, the
capabilities of this formalism are unparalleled: the method
generates precise, converged results at all time scales, in cases
where state-of-the-art approximate methods clearly fail. For
the nonequilibrium Anderson impurity model, the formalism
performs well even as one enters the Kondo regime, a regime
previously inaccessible with accurate numerical methods. It
should, however, be noted that the computational difficulty in-
creases at low temperatures; in the strong coupling regime TK

becomes very small, eventually dropping below our accessible
temperature range (though at the absolute temperature used in
this paper, strong coupling remains accessible).

Our formalism has allowed us to explore the detailed
behavior of the nonequilibrium magnetization, and we have
made predictions regarding multiscale, oscillatory quenching
dynamics at high magnetic fields; the effect of voltage on
dynamical relaxation; and population-driven reversal of the
magnetization’s temperature dependence at high voltages.
These results are obtained at parameters where other currently
available methods are not reliable. As the temperature is
further lowered, one expects to encounter the formation of
Kondo peaks at the chemical potential. How this will affect
the behavior described here remains an interesting and open
question, and work is currently being carried out to further
investigate this issue. Future research will address lower
temperatures and a wider variety of observables; it is also
worth stressing that both bold techniques and the memory
formalism are not specific to the Anderson impurity model,
and are expected to have many more applications.
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FIG. 2. (Color online) (Top left panel) The steady-state magneti-
zation obtained from the memory formalism at several temperatures
plotted as a function of the inverse cutoff time, and compared in
the equilibrium cases to exact RT-PIMC results shown as circles, for
h = 0.01! and V = 0. (Bottom left panel) The same plot at β! = 1
and h = 0.1!, for several voltages. (Right panels) Equilibrium
memory kernel κ (top) and populations σi (bottom) as a function of
time for β! = 1 and h = 0.01!. The inset shows the memory kernel
at short times. The squares in the bottom right panel are approximate
OCA results.

exhibits the longest memory while at larger voltages the
plateau is reached at shorter cutoff times.

An independent approach to verifying convergence relies
on direct examination of individual elements of the memory
kernel as a function of time. Several representative elements
are displayed at h = 0.01! and β! = 1 in the top right panel
of Fig. 2, with the inset highlighting short times. Within the
times accessible by BoldOCA, the memory kernel elements go
to zero within the numerical accuracy. Below this, on the same
time scale and for the same parameters, the time dependence
of the three distinct elements of the reduced density matrix σ is
plotted for an initially magnetized dot in the lower right panel
of Fig. 2. With this initial condition and within the symmetric
Anderson impurity model, the diagonal density matrix entries
σ0 and σ3, which express charging dynamics, are identical.
They both relax so rapidly that their steady-state values could
have been obtained to very good accuracy without recourse
to memory techniques. The difference in scale between the
spin relaxation time of σ1,σ2 and the memory decay in the
upper panel, however, is striking—and is why memory kernel
methods are essential for obtaining long-time behavior. To
obtain a reasonable converged steady state directly, one would
need to reach times !t ! 20 with errors of similar magnitude
compared to what we have obtained at !t = 2 with the current
approach. The exponential scaling in time typical of all general
exact methods makes this unfeasible.

We now turn to the presentation of results. The left panels
of Fig. 3 show the time evolution of the magnetization from
an initially polarized state at different voltages and magnetic
fields, with β! = 1. At low voltages two separate relaxation
time scales are apparent: immediate fast relaxation followed
by later slow relaxation. At high enough fields (bottom), an
overshoot effect appears along with oscillatory behavior which
is seen more clearly in the upper right panel. As we increase the
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FIG. 3. (Color online) (Left panels) Time dependence of the
cutoff-converged magnetization at β! = 1 starting from a fully
magnetized dot, at different magnetic fields h and bias voltages
V . (Top right) Comparison with NCA and OCA at h = 2! and
V = 0. (Bottom right) Temperature dependence of the h = 0.01!

steady-state magnetization at different voltages.

voltage the second time scale is suppressed and eventually the
relaxation becomes exponential. However, the voltage required
in order to reach this regime is surprisingly large. In the top
right panel of Fig. 3, we show that the nonequilibrium OCA
and the simpler non-crossing approximation or NCA (neither
supplemented by QMC) are poor approximations for h ̸= 0,
in contrast to the numerically-exact approach introduced here.

In the lower right panel of Fig. 3, we show an example of the
temperature dependence of the t → ∞ limit of the magnetiza-
tion at constant magnetic field and a range of bias voltages. In-
terestingly, at higher voltages (but substantially below V

2 ≈ εc

where the lead chemical potentials approach the band cutoff)
the temperature dependence becomes nonmonotonic. We
believe this is a population switching effect,43 which leads
to a suppression of the magnetization by population transfer
from the magnetized |1⟩ and |2⟩ states to the unmagnetized
|0⟩ and |3⟩ states which are activated for V ! U . The rate
for this transfer process is approximately proportional to
the lead occupation at the energy difference between the
states: f (β,&E,µ) = 1

1+eβ(&E−µ) , with &E equal to half the
interaction energy U

2 and µ = V
2 or −V

2 , depending on the
lead. f is therefore an increasing function of temperature for
V < U and a decreasing one for V > U . At small voltages
the effect of the population transfer results in a reduction
of the magnetization (as expected), while at large voltages
the population transfer enhances the intermediate-temperature
magnetization. At still larger temperatures, the nonequilibrium
effects are washed away and normal thermal suppression of
the magnetization occurs.

In Fig. 4 we display the steady-state voltage dependence of
the generalized magnetic susceptibility χ ≡ m

h
. At small h this

quantity is h independent. The top panel shows clearly how
the regime in which m is linear in h depends on voltage at a
constant temperature. The bottom panel of Fig. 4 shows the
voltage dependence at different temperatures within the linear
regime. One immediately noticeable feature is the decrease
of χ with increasing β at high voltage, which corresponds to
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Real Time Bold NCA – Order Contribution

Contribution to the current as a function of expansion order:
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‘Bare’ Continuous-Time algorithms
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