Inhomogeneous noncentrosymmetric superconductors PS-10 in magnetic fields ^a Young Researcher Development Center, Kyoto University, Japan

K. Aoyama^{a,b}, L. Savary^c and M. Sigrist^d

^b Department of Physics, Kyoto University, Japan ^c Department of Physics, University of California, Santa Barbara, USA ^d Institute for Theoretical Physics, ETH Zurich, Switzerland

Non-centrosymmetric superconductor (NCS)

Heavy-fermion superconductor CePt₃Si E. Bauer, Phys. Rev. Lett. 92, 027003 ('04) 3D system

$H_{c2}(T)$ is enhanced (suppressed) at the twin boundary with positive (negative) $\delta N_0/N_0$

Anisotropic potential gradient: $\mathbf{E} = \nabla V$ •••Rashba spin-orbit coupling (RSOC): $\boldsymbol{\sigma} \cdot (\mathbf{k} \times \mathbf{E})$

Lack of an inversion center

 $= \alpha_{\rm R} \, \boldsymbol{\sigma} \cdot (\mathbf{k} \times z)$

Coupling constant $\alpha_{\rm R} \propto \nabla_z V$

Sign and strength of Rashba spin-orbit coupling depend on the direction of the mirror symmetry breaking.

NCS in a magnetic field

Spatially inhomogeneous NCS in a magnetic field

•Shift of $H_{c2}(T)$ at the twin boundaries becomes remarkable. $H_{c2}(T)$ is suppressed by the paramagnetic pair-breaking effect.

Effective magnetic length l_n

 l_0 is longer (shorter) for positive (negative) $\delta N_0 / N_0$

Bulk: $l_0 = r_H = 1/\sqrt{2eH}$

Twin boundary: $l_0 \sim 1/\sqrt{2e} H_{eff}$

Internal field introduced at the twin boundary with positive (negative) $\delta N_0/N_0$ weakens (strengthens) the external field.

Lower critical field $H_{c1}(T)$ Vortex-line energy: $e_v = 2\pi \int_0^\infty r dr \left[\frac{|\Delta_0|^2 K_\perp \hbar^2}{\xi^2} f_{\rm GL} - \left(-\frac{|a^{(2)}|^2}{4a^{(4)}} \right) \right] \qquad \mathbf{H}_{c1}(\mathbf{T}): \quad \frac{H_{c1}(T)}{H_{orb}(0)} = \frac{4\pi}{\Phi_0} e_v \Big/ \frac{\Phi_0}{2\pi\xi_0^2} = \left(\frac{\xi_0}{\xi} \right)^2 \left(\frac{\xi}{\lambda_L} \right)^2 \frac{1}{2} \int_0^\infty \tilde{r} d\tilde{r} \left(f_{\rm GL} + \frac{1}{2} \right) d\tilde{r} d\tilde{r} \left(f_{\rm GL} + \frac{1}{2} \right) d\tilde{r} d\tilde$ 0.008 $\alpha_{M}=8$ H_{c1}(T) is enhanced (suppressed) at the twin boundary with 0.006 positive (negative) $\delta N_0 / N_0$ 0.004But, the shift of $H_{c1}(T)$ is very small. H_{c1} $\frac{e_v}{e_{v0}} \simeq 1 + R_v \, \frac{\delta N_0}{N_0} \frac{\alpha_M \sqrt{1 - T/T_c}}{(\lambda_L/\xi) \, \ln \left(\lambda_L/\xi\right)}$ 0.002

 λ_L / ξ : large ---> δe_v : small

Spatial dependences of c_n and a_m

0.92

T/Tc

0.96

0.92 T/Tc

0.88

0.84

Upper critical field $H_{c2}(T)$

Variational approximation

 $R_{v} = 0.215$

(a)

 \odot^{H}

 $\mathbf{H} \parallel \mathbf{y} : \mathbf{A} = zH\hat{x} \qquad \Delta(\mathbf{r}) = \sum C_n(z) e^{i\frac{2\pi n}{L_x}x}$

Theoretical framework

Ginzburg Landau free energy $dz d\mathbf{r}_{\perp} \left| a^{(2)} |\Delta|^2 + a^{(4)} |\Delta|^4 + K_{\perp} |\mathbf{\Pi}_{\perp} \Delta|^2 + K_z |\mathbf{\Pi}_z \Delta|^2 \right|^2$ $\mathcal{F}_{GL} =$

