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~— Introduction and Summary |

\

We study properties of a homogeneous dilute Bose gas based on a self-consistent perturbation expansion that satisfies Noether’s theorem and
Goldstone’s theorem simultaneously[1]. This formalism predicts that there should be a new class of Feynman diagrams for the self-energy
characteristic of BEC that has been overlooked so far, which will be shown to modify standard results based on the Bogoliubov theory[2] substantially.

First, these diagrams, which may be classified as “one-particle-reducible”(1PR), add an extra constant cip ~ O(1) to the well-known expressions of
the ground-state energy per particle £/N and condensate density no/n reported by Lee, Huang, and Yang[3] as
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where a, n, and m are are the s-wave scattering length, particle density, and particle mass, respectively.

Second, the lifetime of the one-particle excitation is also affected, as clarified by our calculation of the one-particle spectral function. It is shown that
each excitation should have a finite lifetime proportional to the s-wave scattering length a , instead of a? for the normal state. Thus, the 1PR diagrams
are predicted to change the nature of the one-particle excitation of BEC substantially from the Bogoliubov[2] mode with an infinite lifetime into a

“bubbling” mode with a considerable decay rate.

[1] T. D. Lee et.al., Phys. Rev. 106 (1957) 1135. [2] T. Kita, PRB 80 (2009) 214502.

[3] N. N. Bogoliubov, J. Phys. (USSR) 9 (1947) 23. |

~— Conserving-Gapless theory |

Self-energies
By carrying out functional differentiation for &, we obtain self-energies.

This theory is summarized below in two steps.
1. Construct the Luttinger-Ward functional ® by including diagrams
characteristic of condensed Bose system.
(numerical weights of diagrams characteristic of BEC are left undetermined.)

2. Determine these weights by using Goldstone’s theorem.
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1PR self-energy diagrams should be present.

| Diagrammatic structures of @ }—————

First-order

Second-order
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Third-order (without arrows)
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New class of Feynman diagrams
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r—[ Dilute Bose gas system }
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First-order analysis

First-order self-energies
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Reproduce the results by Lee et al.
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Structure of functional & (iP) giving 1PR self-energies
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—>These polygonal diagrams provide dominant contribution.

Self-energies
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- These self-energies add an extra constant Cip to results by Lee et. al.,
and give the one-particle excitation a finite lifetime proportional toa !

— Applications of some approximations }

1. one-particle spectral function [4]

=Spectral function of third-order
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= It has a sharp peak in the one-particle excitation.
-> The width of the peak A, corresponds to the
lifetime of one-particle excitation.

Momentum dependence of 64,
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The width proportional to @ !

Third-order FLEX approximation
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- lifetime of one-particle excitation changes with the own momentum!

2. Estimates of Cip [5]
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Physical quantities containing the Cip
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- Third-order: ¢, ~ 0.412

[4] K. T and T. Kita: J. Phys. Soc. Jpn. 83 (2014) 033001.
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FLEX: c¢ip ~ 0.563




