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Sound Propagation in Normal Fermi Systems

Boltzmann Equation

Since Landau predicted the existence of zero sound in 1957, there’s been a blossoming of theoretical and experimental research on a 
sound propagation in normal Fermi systems, but a lot remains to be established about a sound propagation in normal Bose systems. 
Here, we focus on sound in normal Bose systems to calculate its damping rate as a function of coupling constant by solving the 
Boltzmann equation numerically. We also study sound propagation in Maxwell-Boltzmann distribution.
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It had been widely believed that a sound in normal Fermi systems could not propagate at the 
absolute zero temperature, because of the collisionless regime achieved by Pauli blocking. 
However, Landau predicted in 1957 based on his Fermi-liquid theory that a sound could 
propagate in liquid 3He even at very low temperatures.

Recently, Watabe et al. studied a sound propagation in normal Fermi systems based 
on a moment method for the Boltzmann equation. It was shown that the moment 
method can describe the crossover between hydrodynamic and collisionless regimes 
at finite temperatures.
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Moment Method

We linearize the distribution function around the static 
equilibrium and use a relaxation time approximation.

→ We obtain the linearized Boltzmann equation for     .
And we expand the linearized Boltzmann equation in 
terms of the plane wave.
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Fluctuation from 
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3. Longitudinal wave

2. Multiplying the linearized Boltzmann equation 
by                         and integrating over

→Eigenvalue Equation (Moment Equation)

1. The spherical harmonics expansion

Fluctuation from 
Static Equilibrium

They are determined by 
using the conservation laws.

Results : Sound Damping Rate 
(Coupling Constant Dependence)
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The damping rate as a function of 
coupling constant behaves similarly 
as that of normal Fermi systems.
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The zero sound may also exist 
in normal Bose systems and 
Maxwell-Boltzmann distribution.
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The viscous relaxation contribute 
most to the density fluctuation.
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Viscous Relaxation

・Fermi Systems→We have confirmed the results of the preceding study.

・Bose Systems ・Maxwell-Boltzmann Distribution

The zero and first sound 
modes can be explicitly 
distinguished by the peak 
of sound damping rate.

Summary
We study sound propagation in normal dilute gases obeying Bose, 
Fermi, and Maxwell- Boltzmann statistics based on the Boltzmann 
equation.
The sound attenuation rate as a 
function of the coupling constant 
exhibits a peak also in normal Bose 
systems and Maxwell-Boltzmann 
distribution.

→The zero sound may exist not only in normal Fermi systems but 
also in normal Bose systems and Maxwell-Boltzmann distribution at 
low coupling constants.
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