Novel Field-Induced Quantum Phase Transitions in the Kagome-Lattice Antiferromagnet and Related Systems

> Toru Sakai<sup>A,B</sup> and Hiroki Nakano<sup>B</sup> <sup>A</sup>JAEA, SPring-8, <sup>B</sup>University of Hyogo

H. Nakano and TS: JPSJ 79 (2010) 053707 (arXiv:1004.2528)
TS and H. Nakano: PRB 83 (2011) 100405(R) (arXiv:1102.3486)
H. Nakano and TS: JPSJ 80 (2011) 053704 (arXiv: 1103.5829)
H. Nakan, T. Shimokawa, TS, JPSJ 80 (2011) 033709
M. Isoda, H. Nakano and TS: JPSJ 80 (2011) 084704
H. Nakano, M. Isoda and TS, JPSJ 83 (2014) 053702 (arXve: 1403.5008)
H. Nakano, TS and Y. Hasegawa, to appear JPSJ

## Novel Field-Induced Quantum Critical Phenomena in Kagome-Lattice Antiferromagnet

Toru Sakai<sup>A,B</sup> and Hiroki Nakano<sup>B</sup> <sup>A</sup>JAEA, SPring-8, <sup>B</sup>University of Hyogo

H. Nakano and TS: JPSJ 79 (2010) 053707 (arXiv:1004.2528)
TS and H. Nakano: PRB 83 (2011) 100405(R) (arXiv:1102.3486)
H. Nakano and TS: JPSJ 80 (2011) 053704 (arXiv: 1103.5829)
H. Nakan, T. Shimokawa, TS, JPSJ 80 (2011) 033709
M. Isoda, H. Nakano and TS: JPSJ 80 (2011) 084704
H. Nakano, M. Isoda and TS, JPSJ 83 (2014) 053702 (arXve: 1403.5008)
H. Nakano, TS and Y. Hasegawa, to appear JPSJ

## Contents

- Introduction
- Spin gap issue
- Magnetization process
- Related frustrated models

#### 2D frustrated systems

• Heisenberg antiferromagnets

Triangular lattice



Classical ground state 120 degree structure



Kagome lattice



Macroscopic degeneracy (a global plane is not fixed)

#### S=1/2 Kagome Lattice AF

- Herbertsmithite ZnCu<sub>3</sub>(OH)<sub>6</sub>Cl<sub>2</sub> impurities Shores et al. J. Am. Chem. Soc. 127 (2005) 13426
- Volborthite CuV<sub>2</sub>O<sub>7</sub>(OH)<sub>2</sub>•2H<sub>2</sub>O lattice distortion
   Hiroi et al. J. Phys. Soc. Jpn. 70 (2001) 3377
- Vesignieite BaCu<sub>3</sub>V<sub>2</sub>O<sub>8</sub>(OH)<sub>2</sub> ideal ?

Okamoto et al. J. Phys. Soc. Jpn. 78 (2009) 033701



# Methods Frustration Exotic phenomena

Kagome lattice

**Triangular lattice** 



**Pyrochlore** lattice

Numerical approach

Numerical diagonalization

Quantum Monte Carlo (negative sign problem) Density Matrix Renormalization Group (not good for dimensions larger than one)

#### Spin gap issue of kagome-lattice AF

#### Gapped Valence Bond Crystal (VBC)[MERA] Z<sub>2</sub> Spin Liquid [Sachdev, DMRG] Chiral Liquid [Messio et al. PRL 108 (2012) 207204]



Chiral symmetry (Z2) breaking





Classical

S=1/2 Schwinger boson MF

#### 



## **Computational costs**

#### *N*=42, total Sz=0

Dimension of subspace d = 538,257,874,440

Δ= 0.14909214 cf. A. Laeuchli cond-mat/1103.1159 Memory cost

> d \* 8 Bytes \* at least 3 vectors ~ 13TB 4 vectors ~ 20TB

#### Time cost

d \* # of bonds \* # of iterations

*d* increases exponentially with respect to *N*. Parallelization with respect to *d* 

## Classification of finite-size data



## Analysis of our finite-size gaps



Two extrapolated results disagree from odd  $N_s$  and even  $N_s$  sequences.

Feature of a **gapless** system

## Magnetization process of S=1/2 kagome lattice AF

Hida: JPSJ 70 (2001) 3673

Honecker et al: JPCM 16(2004)S749



1/3 plateau ?



### Not a plateau

H. Nakano and TS: JPSJ 79 (2010) 053707 Reexamination from the viewpoint of Field derivative of magnetization  $\partial M$ Mas a function of m $\overline{a}_{H}$  $M_{s}$ 1.5 (b) Anomaly at m=1/3 N=36  $\approx$  $M/M_{sat}$ 0.5 N=36 N=33 1=30 0 0.5 0 0 h  $M/M_{sat}$ 

## Magnetization ramp

#### Ski jump

#### Jump ramp





#### Magnetization curve of Kagome lattice AF

M/Ms



### **Results for Rhombic Clusters**



Characteristics of the ramp appear clearly for N=39.

## **Triangular lattice**

N=39, 36, and 27

Rhombus



Typical magnetization plateau at  $M/M_{sat}=1/3$ 



#### Features of Magnetization Ramp



### Critical exponent

 $|m-mc|=|H-Hc|^{1/\delta}$ 

 $\delta=2$  1D Affleck 1990, Tsvelik 1990, TS-Takahashi 1991  $\delta=1$  2D Katoh-Imada 1994

1/3 magnetization plateau m $m - \frac{1}{3} \sim (H - H_{c2})^{1/\delta_+},$  $H_{c1} = H_{c2}$ ?



#### Estimation of $\delta$ cf. TS and M. Takahashi: PRB 57 (1998) R8091 $f_{\pm}(N) \equiv \pm [E(N, \frac{N}{3} \pm 2) + E(N, \frac{N}{3}) - 2E(N, \frac{N}{3} \pm 1)],$ $f_{\pm}(N) \sim \frac{1}{N^{\delta_{\pm}}}$

Numerical diagonalization of rhombic clusters for N=12, 21, 27, 36, 39



Kagome lattice



#### H<sub>c1</sub>=H<sub>c2</sub>? (Plateau vs Ramp)

**Triangular lattice** 

 $H_{c2} - H_{c1} = 0.3 \pm 0.2$  $H_{c1} \neq H_{c2}$ 1/3 plateau

Kagome lattice

 $H_{c2} - H_{c1} = -0.3 \pm 0.5$ 

 $H_{c1} = H_{c2}$ No plateau

$$\begin{array}{ll} \Delta \sim k \; \Rightarrow \; \Delta \rightarrow 1/N^{1/2} \; (N \rightarrow \infty) \\ & \text{if gapless} \end{array}$$



#### DMRG on cylinder kagome lattice

Nishimoto et al. Nature Communications 4 (2013) 2287



Capponi et al. PRB 88 (2013) 144416

Plateaux at 1/3, 5/9, 7/9



by 京コンピューター









Siddharthan and Georges: PRB 65 (2001) 014417

#### Shuriken lattice HN and T. Sakai: JPSJ 82 (2013) 083709 (Le



## Method

#### Unbiased methods beyond approximations

#### Numerical diagonalization

(Lanczos algorithm) Large dimension of matrix

#### ⇒Huge-scale parallelization

MPI/OpenMP Data transfer between nodes

#### cf.) Quantum Monte Carlo

(Negative sign problem)

**Frustration** 

#### Density Matrix Renormalization Group (powerful to 1D systems) 20

2D systems

### **Finite-Size Clusters**





N<sub>s</sub>=24





 $N_s = 30$ 







N<sub>s</sub>=36

#### **Ground-State Energy**



## **Magnetization Process**



A jump of *M* during its increase







## Cairo pentagon lattice



J :  $\alpha$ - $\alpha$  bond J':  $\alpha$ - $\beta$  bond

 $\eta = J'/J$ 

## Magnetization jump



Higher side of 1/3 plateau

Critical point  $\eta \sim 0.8$ 

lower side of 1/3 plateau

Jump  $\Leftrightarrow$  Classical long-range order

### Quantum phase transition



Cairo pentagon lattice AF

Critical ration J'/J ~ 0.8 quantum phase transition Spin flop after 1/3 plateau for J'/J < 0.8 Spin flop before 1/3 plateau for J'/J > 0.8

- Square-kagome lattice AF
- Cairo pentagon lattice AF

## Spin-flop phenomenon in the case when the system is isotropic in spin space.

Cairo pentagon lattice AF Critical ration J'/J ~ 0.8 quantum phase transition Spin flop after 1/3 plateau for J'/J < 0.8 Spin flop before 1/3 plateau for J'/J > 0.8

**Publication** 

- H. Nakano and TS: JPSJ 82 (2013) 083709 (Letter)
- H. Nakano, M. Isoda and TS JPSJ to appear (arXve:1403.5008)
- H. Nakano, TS and Y. Hasegawa in preparation.