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Higher order (p > 2) Suzuki-Trotter(ST) decompositions with
∑Msub

n=1
γn =

∑Msub
n=1

ηn = 1,

e−τ(K̂+Û) =

Msub∏

n=1

e−γnτK̂e−ηnτÛ +O
(
τp+1

)
,

for a time slice τ have been shunned for Quantum Monte Carlo (QMC) as cumbersome and
computationally expensive[1]. In projector quantum Monte Carlo (PQMC), the operator

e−θĤ ‘filters’ the ground state |0〉 from a trial state |t〉 and exponentially suppresses higher
states

e−θĤ |t〉 = e−θE0 〈0|t〉 · |0〉 +
∑

m>0

e−θEm 〈m|t〉 · |m〉

With PQMC, we analyze the ground state of the Hubbard Hamiltonian

Ĥ = −t
∑

〈ij〉,σ

(

c†i,σcj,σ + c†j,σci,σ
)

+ U
∑

i

ni,↑ni,↓,

with various orders of ST-decompositions[4], using the correspondence between time-slice-
decompositions for symplectic differential equations and operator exponentials[2].

The discrete Hubbard-Stratonovich transformation (HST) summed with Monte-
Carlo[5] decouples the interaction. For slices with negative prefactors, the HST for
negative U is used[4]. For the resulting Greens-functions, particles cannot be discrim-
inated, in contrast to ‘World-line’ approaches, where ‘individual particle trajectories’
in imaginary time are simulated, which violates the principle of indiscriminability of
particles in quantum mechanics!

QMC sampling with sign
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statistical weight = fermion determinant 
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. . . was first adopted by H.
De Raedt et al. as ‘only
a trick’[3] to increase the
scattering so that the error-
bars fit the theoretical pre-
dictions. While in MC
and QMC, always positive
quantities are used as tran-
sition probabilities for the
Markov chain, it is now
claimed that for the sam-
pling, that the sign must
be introduced. For most
cases this leads to division
by an ‘average sign’ close to
zero, the so-called ‘minus-
sign problem’, hampering
the applicability QMC. The
sign is reintroduced ad hoc

after the MC-sampling, which corresponds to a reweigh-
ing procedure. The sign was by Furukawa et al [6] due
to bad correspondence between PQMC-results without
sign and exact diagonalization results, nevertheless, the
likely cause was the unstable matrix inversion: we have
argued[7] that the ‘inclusion of the sign’ leads to er-
ror compensation, as error-affected measurements have
about equal probability to have positive or negative sign.
We find consistent results both with and without sign,
with better accuracy than Furukawa et al. with ‘opti-
mized’ test wave functions[6]:
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The analytic form of probabilities for single spin-flips
shows that negative configurations only occur when local
densities for a single Suzuki-Trotter-slice become larger
than 1 or smaller than zero: If such unphysical densities
are eliminated, the values for sampling with with sign
come closer to the values for sampling without sign.

6× 6 systems
While for 4× 4-systems, ‘reweighing’ gives ‘only larger error
bars’, for 6×6 systems the results are downright implausible
(Note that the error bars are computed via the standard
deviation, which assumes normal distributed samples, while
the actual scat-
tering between
individual sim-
ulation results
is actually much
smaller): This
shows that the
[A] = 〈AS〉/〈S〉
is actually
an unphysical
correlation,
and 〈A〉 is the
true observable
value.
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6x6  U=4

Energies for 4× 4 N↑ = N↓ = 5 with U = 8; Eexact = −1.2238

Ground state energy
for N↑ = N↓ = 5
with U = 4, com-
puted with Intel ex-
tended precision (10
Byte double preci-
sion).
Sign 〈S〉 ∝

∑
n |ηn|

(cyan), pseudo-
symplectic decom-
positions with only
positive coefficients
produce 〈S〉 ≈ 1
(blue).

Method p 〈E〉sign ignored [E] with sign average sign 〈S〉
∑

n |γn| for K̂
∑

n |ηn| for Û

Suzuki-Trotter1 1 -1.2418±0.0008 -1.2420±0.0008 0.9954±0.0004 1.0 1.0

McLachlan2 2 -1.2229±0.0008 -1.2232±0.0008 0.9954±0.0004 1.0 1.0

Suzuki-Trotter2 2 -1.2237±0.0008 -1.2240±0.0008 0.9955±0.0004 1.0 1.0

McLachlan3 3 -1.222±0.001 -1.225±0.001 0.952±0.001 1.3760 1.3760

Ruth3 3 -1.205±0.001 -1.225±0.002 0.502±0.004 1.0833 2.3333

Blanes & Moan4 4 -1.201±0.001 -1.223±0.002 0.425±0.005 1.1562 2.4007

Calvo & Sanz-Serna4 4 -1.222±0.001 -1.224±0.001 0.9735±0.0009 1.2811 1.2418

Candy & Rozmus4⋆ 4 -1.167±0.002 -1.6±2.3 0.002±0.002 1.7024 4.4048

Chambers4A 4 -1.2239±0.0009 -1.2242±0.0009 0.9953±0.0004 1.0 1.0

Chambers4B 4 -1.2240±0.0007 -1.2243±0.0007 0.9949±0.0004 1.0 1.0

McLachlan4 4 -1.2234±0.0009 -1.2242±0.0009 0.9838±0.0008 1.4496 1.1716

Suzuki fractal4 4 -1.204±0.002 -1.227±0.002 0.462±0.004 1.4869 2.3159

McLachlan5 5 -1.198±0.001 -1.221±0.002 0.440±0.004 1.4606 2.3833

Tselios5⋆ 5 -1.225±0.004 -1.4±0.3 -0.000±0.001 1.9717 10.8147

Blanes & Moan6A 6 -1.217 ±0.001 -1.223±0.001 0.860±0.003 2.0118 1.6592

Blanes & Moan6B 6 -1.200 ±0.002 -1.225±0.003 0.372±0.004 1.2061 2.4935

Chambers6A 6 -1.2229±0.0008 -1.2231±0.0008 0.9949±0.0004 1.0 1.0

Chambers6B 6 -1.2252±0.0008 -1.2257±0.0008 0.9941±0.0005 1.0 1.0

Yoshida6A⋆ 6 -1.158±0.003 -0.8±0.6 0.002±0.001 2.8842 5.7107

Laskar & Robutel8A 8 -1.2236±0.0008 -1.2240±0.0008 0.9945±0.0005 1.0 1.0

Yoshida8D⋆ 8 -0.878±0.005 -2.0±1.2 -0.000±0.004 10.3491 15.2548

Errors for exp(−θH), H
While the error for decompositions of exp(−θH) is well
known, t the accuracy of the observables is LOWER. In
the case of the Hamiltonian H, the accuracy is

H = HA +HB +
τ

2
{HA, HB}

︸ ︷︷ ︸

error

+O(τ2),

with the anti-commutator {·}, one order lower than for
exp(−τH)[8]. For a first-order approximation of the ex-
ponential, the Hamiltonian is of zeroth order, which is
independent of τ ! In 2nd order, one has[8]

H = HA +HB +
τ2

12

{

{HA,HB},HB +
1

2
HA

}

︸ ︷︷ ︸

error

+O(τ4).

a.s.o. for higher order[9]. Due to the commutators in
the error term, PQMC does not converge uniquely ‘from
above’ or ‘from below’ to the ground-state energy.
We have focused on the Energy, as the Hohenberg-Kohn
theorem states that the energy is a unique functional
of the electron densities: If the energies are wrong, the
electron densities are also wrong, and the computation
of other quantities is meaningless.
Suzuki-Trotter1 (first order) deviates much from Eexact

even with reasonable 〈S〉 (magenta): This shows that
zero-order for H for first order of exp(−τH), is realistic.
The sign decays with the absolute sum of the Suzuki-
Trotter-timesteps

∑

n |ηn| for the interaction U .
While for ‘exact’ Suzuki-Trotter decomposition for order
3 or higher, at least one slice must be negative, ‘pseudo-
symplectic’ decompositions allow purely positive slices
with

∑

n |ηn| = 1, with ‘benign’ sign.

Influence of the test function
For different test wave functions, we get different sign,
which shows that the sign is a not a quantity which de-
pends on the decomposition alone. ‘More symmetric’ de-
composition formulae (respectively HS-fields in PQMC)
lead to a ‘higher average sign’:
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Summary and Conclusions
Whether [E] gives results closer to Eexact depends on
the physical parameters. Negative fermion determinants
can be attributed to the loss of symmetry in the prod-
uct matrix of itself symmetric matrices, i.e. asymmetry
of ST-product with the potentials of the auxiliary field
method.
The determinant quantum Monte-Carlo methods make
extensive use of linear algebra. In the past, unstable
matrix-inversion and orthogonalizations have been used;
In the case of ‘samling with sign’, the numerical errors
were distributed between ‘positive’ and ‘negative’ config-
urations. The resulting error compensation was mistaken
as a ‘success’ and justification of the minus-sign method.
There is no theoretical argument why the sign should
be included in the sampling:

1) The sign varies by orders of magnitude depending on
the Suzuki-Trotter decomposition, so it is not a physical
observable and has no place in the observable computa-
tion.
2) Including the sign corresponds to a reweighing proce-
dure, and there is no argument in MC that reweighing
is obligatory: Reweighing is in the choice of the pro-
grammer, to obtain more accurate results, not to make
simulations impossible.
3) For each configuration, the sign of the determi-
nant depends on the sign of all singular values (SV) of
the Fermion matrices, while the observables depend on
the largest ones: The error introduced by the Suzuki-
Trotter decomposition O(τp+1) is much larger than the
one by changing the smallest Eigen-(Singular-)value of
exp(−θH).
4) The unphysical correlation 〈AS〉 in [A] = 〈AS〉/〈S〉
can for some systems actually lead to estimates for the
energy which are much further off the plausible values
than 〈A〉 itself.
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