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Higher order (p > 2) Suzuki-Trotter(ST) decompositions with Zﬁ/[:s‘ib Vi = Zyzs‘ib Nn = 1,
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With PQMC, we analyze the ground state of the Hubbard Hamiltonian Carlo[5] decouples the interaction. For slices with negative prefactors, the HST for

H =~ Z (C:;r,acj,a T C;,Jciaa) +U Z Ni a1, negative U is used|4|. For the resulting Greens-functions, particles cannot be discrim-
(17),0 2 inated, in contrast to ‘World-line’ approaches, where ‘individual particle trajectories’

with various orders of ST-decompositions|4], using the correspondence between time-slice- ip imaginary time are simulated, which violates the principle of indiscriminability of
decompositions for symplectic differential equations and operator exponentials|2]. particles in quantum mechanics!
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the applicability QMC. The
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While the error for decompositions of exp(—0H) is well For different test wave functions, we get different sign,

after the MC-sampling, which corresponds to a reweigh-
ing procedure. The sign was by Furukawa et al |6] due
to bad correspondence between PQMC-results without
sign and exact diagonalization results, nevertheless, the
likely cause was the unstable matrix inversion: we have
argued|7| that the ‘inclusion of the sign’ leads to er-
ror compensation, as error-affected measurements have
about equal probability to have positive or negative sign.
We find consistent results both with and without sign,
with better accuracy than Furukawa et al. with ‘opti-
mized’ test wave functions|6]:
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The analytic form of probabilities for single spin-flips
shows that negative configurations only occur when local
densities for a single Suzuki-Trotter-slice become larger
than 1 or smaller than zero: If such unphysical densities
are eliminated, the values for sampling with with sign
come closer to the values for sampling without sign.

O X 6 systems

While for 4 x 4-systems, ‘reweighing’ gives ‘only larger error
bars’, for 6 X 6 systems the results are downright implausible
(Note that the error bars are computed via the standard
deviation, which assumes normal distributed samples, while
the actual scat-
tering between
individual sim-
ulation results
is actually much
smaller):  This
shows that the 0.2
A] = (AS)/(S) T
1S actually
an unphysical
correlation,

and (A) is the
true observable
value.
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Energy per site

known, t the accuracy of the observables is LOWER. In
the case of the Hamiltonian H, the accuracy is

H=Hs+ Hp + %{HAaHB}+O(72)7
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with the anti-commutator {-}, one order lower than for
exp(—7H)|[8]. For a first-order approximation of the ex-
ponential, the Hamiltonian is of zeroth order, which is
independent of 7 ! In 2nd order, one has|§|

T2 1
H=Hjs+Hp+ 5 {{HA,HB},HB + §HA} +0(14).

W
error

a.s.o. for higher order|9|. Due to the commutators in
the error term, PQMC does not converge uniquely ‘from
above’ or ‘from below’ to the ground-state energy.

We have focused on the Energy, as the Hohenberg-Kohn
theorem states that the energy is a unique functional
of the electron densities: If the energies are wrong, the
electron densities are also wrong, and the computation
of other quantities is meaningless.

Suzuki-Trotter; (first order) deviates much from FEexact
even with reasonable (S) (magenta): This shows that
zero-order for H for first order of exp(—7H), is realistic.
The sign decays with the absolute sum of the Suzuki-
Trotter-timesteps ) . |nn| for the interaction U.

While for ‘exact’ Suzuki-Trotter decomposition for order
3 or higher, at least one slice must be negative, ‘pseudo-
symplectic’ decompositions allow purely positive slices

with ) |nn| =1, with ‘benign’ sign.
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which shows that the sign is a not a quantity which de-
pends on the decomposition alone. ‘More symmetric’ de-
composition formulae (respectively HS-fields in PQMC)

lead to a ‘higher average sign’:
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Whether |[E| gives results closer to Fexact depends on
the physical parameters. Negative fermion determinants
can be attributed to the loss of symmetry in the prod-
uct matrix of itself symmetric matrices, i.e. asymmetry
of ST-product with the potentials of the auxiliary field
method.

The determinant quantum Monte-Carlo methods make
extensive use of linear algebra. In the past, unstable
matrix-inversion and orthogonalizations have been used;
In the case of ‘samling with sign’, the numerical errors
were distributed between ‘positive’ and ‘negative’ config-
urations. The resulting error compensation was mistaken
as a ‘success’ and justification of the minus-sign method.
There is no theoretical argument why the sign should
be included in the sampling:

1) The sign varies by orders of magnitude depending on
the Suzuki-Trotter decomposition, so it is not a physical
observable and has no place in the observable computa-
tion.

2) Including the sign corresponds to a reweighing proce-
dure, and there is no argument in MC that reweighing
is obligatory: Reweighing is in the choice of the pro-
grammer, to obtain more accurate results, not to make
simulations impossible.

3) For each configuration, the sign of the determi-
nant depends on the sign of all singular values (SV) of
the Fermion matrices, while the observables depend on
the largest ones: The error introduced by the Suzuki-
Trotter decomposition O(7PT1) is much larger than the
one by changing the smallest Eigen-(Singular-)value of
exp(—60H).

4) The unphysical correlation (AS) in [A] = (AS)/(S)
can for some systems actually lead to estimates for the
energy which are much further off the plausible values

than (A) itself.



