Improved STLS approach to the correlation energy of the spin polarized electron gas

K. Yoshizawa¹, H. Maebashi², Y. Yuzawa², and Y. Takada²

¹Department of Physics, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102, Japan ²Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan

yoshiz-k@sophia.ac.jp

The exchange-correlation energy functional $E_{\rm XC}[n]$ is the key quantity in the Kohn-Sham density functional theory, but it must be supplied from some external source. So far, by use of the Monte-Carlo (MC) data for the exchange-correlation energy of the homogeneous electron gas for a wide range of the density parameter r_s , LDA and its improved version, GGA, are proposed and found to provide a fairly good description of cohesive properties of molecules and solids. As for the dependence on spin polarization ζ , however, it must be noted that the fundamental MC data are obtained only at both unpolarized ($\zeta=0$) and fully-polarized ($\zeta=1$) situations; some interpolation scheme is employed to generate the correlation energy of the homogeneous electron gas at arbitrary r_s and ζ , $\varepsilon_c(r_s,\zeta)$, based on either the ζ -dependence in the exchange energy or that in $\varepsilon_c(r_s,\zeta)$ in RPA [1]. Since RPA is not reliable for r_s larger than unity, we need to calculate $\varepsilon_c(r_s,\zeta)$ at arbitrary ζ with using a better theoretical tool.

As an attempt in this direction, we have revisited the Singwi-Tosi-Land-Sjölander (STLS) scheme [2], in which $\varepsilon_c(r_s,\zeta)$ can be obtained in a self-contained manner by self-consistently determining the local-field factor G(q) and the static structure factor S(q). The scheme is known to provide a very accurate $\varepsilon_c(r_s,\zeta)$ at $\zeta=0$, but not so accurate at $\zeta=1$. We have explored the physical reason why the STLS scheme does not work well at $\zeta=1$ and come to the observation that it is due to the violation of the Pauli principle, as manifestly shown by the negative parallel-spin radial distribution function at zero separation, $g_{\uparrow\uparrow}(0)<0$. With the recognition of the major problem of the original STLS in this way, we have invented a framework for adding a procedure to enforce the Pauli principle in the STLS scheme and succeeded in reproducing the MC data for $\varepsilon_c(r_s,\zeta)$ at $\zeta=1$ as shown in Fig. 1. In the near future, our new improved version of the STLS scheme will be used to give more reliable data for $\varepsilon_c(r_s,\zeta)$ at arbitrary ζ , based on which we shall reconsider a suitable functional form for $E_{\rm XC}[n]$.

Fig. 1: correlation energy $\varepsilon_c(r_s,\zeta)$ in fully polarized systems ($\zeta=1$) in various methods

- [1] J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).
- [2] K. S. Singwi, M. P. Tosi, R. H. Land, and A. Sjölander, Phys. Rev. 176 (1968).