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First-Principles Simulations 

• Our goal: Simulate high-Z metals (Mo, Ta, Pu, …) from 
first principles, without input from experiments

• The approach: Molecular dynamics: an atomic-scale 
simulation method
– Compute the trajectories of all atoms
– extract statistical information from the trajectories

Atoms move according to 
Newton’s law:

i i im =R F��
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First-Principles Simulations

• Why “First-Principles”?
– Avoid empirical models and adjustable parameters

• Goal: applications to extreme conditions (high pressure, etc.) 
where no experimental data is available

– Use fundamental principles: Quantum Mechanics
– Must describe ions and electrons consistently and 

simultaneously

At each time step:

1) Compute the electronic 
structure

2) Derive interatomic forces

3) Move atoms



FG 4

First-Principles Simulations

• The approach is applicable to very diverse problems
– Chemistry
– Nanotechnology
– Semiconductors
– Biochemistry
– High-pressure physics

Growth of a carbon nanotube

on an iron catalyst
Biotin on silicon carbide

Ice-water interface

Silicon quantum dot
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First-Principles Simulations

• The computation of the electronic structure is 
the most expensive part of the simulation

At each time step:

1) Compute the electronic 
structure

2) Derive interatomic forces

3) Move atoms

>99% of CPU time
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Computing the electronic 
structure
• Density Functional Theory: the Kohn-Sham equations

– solutions represent molecular orbitals (one per electron)
– molecular orbitals are complex scalar functions in R3

– coupled, non-linear PDEs
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Computing the electronic 
structure
• Periodic boundary conditions: all solutions of the 

form 

must be included (Bloch theorem)
• Solutions are represented as Fourier series

• Electronic charge density
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Computing the electronic 
structure

• A periodic solution is represented by the matrix of 
complex Fourier coefficients cqn

• The matrix of coefficients cqn must have 
orthogonal columns

• Dimensions of C: 106x104
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Controlling Numerical Errors

• The goal is high accuracy
• All numerical errors must be controlled

– Convergence of Fourier series

– Convergence of system size (number of atoms)

– Convergence of k-space integration

• We need to systematically increase
– Plane-wave energy cutoff
– Number of atoms
– Number of k-points in the Brillouin zone integration
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Algorithms used in FPMD

• Solving the KS equations: 
a constrained optimization 
problem in the space of 
coefficients cqn

• Poisson equation: 3-D FFTs
• Computation of the 

electronic charge: 3-D FFTs
• Orthogonality constraints 

require dense, complex 
linear algebra (e.g. A = CHC)
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The Platform: BlueGene/L

• 65,536 nodes, 128k CPUs
• 3D torus network
• 512 MB/node
• 367 TFlop peak

Chip
(2 processors)

Compute Card
(2 chips, 2x1x1)

Node Board
(32 chips, 4x4x2)

16 Compute Cards

System
(64 cabinets, 64x32x32)

Cabinet
(32 Node boards, 8x8x16)

2.8/5.6 GF/s
4 MB

5.6/11.2 GF/s
0.5 GB DDR

90/180 GF/s
8 GB DDR

2.9/5.7 TF/s
256 GB DDR

180/360 TF/s
16 TB DDR
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Qbox code: main features

• C++/MPI implementation of First-Principles Molecular 
Dynamics

• DFT/GGA exchange-correlation
• Plane-wave, norm-conserving pseudopotentials
• Designed for large-scale parallel platforms
• Main design constraint: small memory footprint 

(< 512MB per task)
• Built on optimized parallel libs: PBLAS, ScaLAPACK
• XML interface
• Used on various parallel platforms (BG/Ls, Linux clusters)
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Qbox code structure

Qbox

ScaLAPACK/PBLAS

BLACS

MPI

BLAS/MASSV

XercesC

(XML parser)

FFTW lib

DGEMM lib
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Qbox communication patterns
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• Single k-point wavefunction:
– ScaLAPACK matrix block distribution

• Dimensions of C: 106x104

• Typical process grid: 512x16

Qbox communication patterns

( )

2
cut

,( ) i
n n

E

c eϕ ⋅

<

= ∑ k+G r
k k+G

k+G

r

Data layout

n

G



FG 16

MPI_Alltoallv

Qbox communication patterns

• 3-D Fourier transforms

Communication patterns
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MPI_Allreduce

Qbox communication patterns

• Accumulation of electronic charge density

Communication patterns
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PDGEMM/PZGEMM

Qbox communication patterns

• Other operations: (orthogonalization, non-local 
potential energy, Ritz diagonalization)
– use the ScaLAPACK linear algebra library

PDSYRK

PDTRSM

Communication patterns
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The Platform: BlueGene/L

• 65,536 nodes, 128k CPUs
• 3D torus network
• 512 MB/node
• 367 TFlop peak

Chip
(2 processors)

Compute Card
(2 chips, 2x1x1)

Node Board
(32 chips, 4x4x2)

16 Compute Cards

System
(64 cabinets, 64x32x32)

Cabinet
(32 Node boards, 8x8x16)

2.8/5.6 GF/s
4 MB

5.6/11.2 GF/s
0.5 GB DDR

90/180 GF/s
8 GB DDR

2.9/5.7 TF/s
256 GB DDR

180/360 TF/s
16 TB DDR
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Mapping tasks to physical nodes

• Mapping a 2-D process grid to a 3-D torus

?
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Mapping tasks to physical nodes

• Mapping a 2-D process grid to a 3-D torus
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Mapping tasks to physical nodes

• Mapping a 2-D process grid to a 3-D torus
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Mapping tasks to physical nodes
65536 nodes, in a 
64x32x32 torus

512 tasks per MPI 
subcommunicator

x

y

z bipartite y-z
htbixy

default xyz

quadpartite
8x8x8
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Single-node kernels

• Dual core
• Dual FPU
• Three-level cache 

memory hierarchy
• L1 caches not 

coherent
• L2, L3 coherent
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Single-node kernels

• Exploiting the BG/L hardware
– Use double FPU instructions (“double hummer”)
– Use both CPUs on the node

• use virtual node mode, or
• program for two cores 

– We use BG/L in co-processor mode
• 1 MPI task per node
• Use second core using dual-core kernels

• DGEMM/ZGEMM kernel (John Gunnels, IBM)
– Hand optimized, uses double FPU very efficiently
– Algorithm tailored to make best use of L1/L2/L3
– Dual-core version available: uses all 4 FPUs on the node

• FFTW kernel (Technical University of Vienna)
– Uses hand-coded intrinsics for DFPU instructions
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ZGEMM Performance

• ZGEMM on one processor per node
– In excess of 98% of peak (2.76/2.80 GF/node)

• ZGEMM in co-processor mode
– 97% of peak (5.43/5.60 GF/node)
– Uses fork/join construct
– Flushes caches to maintain coherence

• Kernel performance
– Over 99.5% of peak
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The Test Problem

• Electronic structure of a 
1000-atom Molybdenum 
sample

• p semi-core electrons 
included

• 12,000 electrons
• 32 non-local projectors for 

pseudopotentials
• 112 Ry plane-wave energy 

cutoff
• High-accuracy parameters 

Mo1000
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Qbox performance results

• Single k-point calculation 
(k=0)

• single-core dgemm library
• co-processor mode
• bipartite y-z mapping at 64k 

nodes
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Qbox performance results

• Single k-point calculation 
(k=0)

• dual-core dgemm library
• co-processor mode
• bipartite y-z mapping

0
2
4
6
8

10
12
14
16
18
20

0 8 16 24 32 40 48 56 64

knodes

Sp
ee

du
p

Measured
Ideal

64.0 TFlops on 64k nodes



FG 30

Qbox performance results

8 k-points: 207.3 TFlop/s (56% of peak)

4 k-points: 187.7 TFlop/s (51% of peak)

• Multiple k-point calculations
• complex arithmetic
• dual-core zgemm library
• co-processor mode

1 k-point: 108.8 TFlop/s (30% of peak)
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Node mapping impacts 
performance

bipartite
64.0 TF

“htbixy”
50.0 TF

quadpartite
64.7 TF

8x8x8
38.2 TF

65536 nodes, in a 
64x32x32 torus

1.64x speedup

512 tasks per MPI 
subcommunicator

xyz (default)
39.5 TF

Node mapping significantly affects performance

x

y

z
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Node Mapping Optimization

• Analysis of the MPI tree broadcast 
algorithm in sub-communicators

• The performance of MPI_Bcast is 
unsatisfactory for checkerboard 
mappings: the tree  algorithm results in 
communication bottlenecks

– Using a space-filling curve to assign 
tasks to nodes improves performance

– performance gain: ~7 TFlops

• Modifications of the BLACS communication 
library
– unnecessary Type_commit operations were removed 

in the BLACS
– performance gain: ~3 TFlops
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History of First-Principles MD 
performance

CPMD/BGL

CP/NEC SX/4

GP/NEC SX/3

Paratec/ES

Qbox/BGL

Qbox/BGL

GP/ASCI Blue
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The performance of 
FPMD codes has 
doubled every 8 months

207.3 TFlops

sustained
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History of FPMD performance

Car & 
Parrinello, 

1985

CPMD/BGL

CP/NEC SX/4

GP/NEC SX/3
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Computational cost of first-
principles simulations
• The computational cost of solving the Kohn-

Sham equations is O(N3)
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O(N3) algorithms onlarge
parallel platforms
• Storage of electronic wavefunctions: O(N2)

(N wavefunctions described in a volume O(N))
• Number of operations: O(N3) (orthogonalization)

Problem size # ops # CPUs ops/CPU storage storage/CPU

N2 N

1

1/N

N2

N2

N2

N

N N3 N3 1

N3

N3

N N

N N2
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Linear-scaling methods

• Achieve linear scaling: O(N) operations
• Introduce approximations to reduce the 

computational cost from O(N3) to O(N).
• Several approaches proposed in the past 10 years
• Most successful approach: represent the solutions of 

the Kohn-Sham equations in terms of non-
orthogonal, localized functions.

• An important goal is controlled accuracy, i.e.
– Simple parameters (e.g. grid spacing) to control numerical 

accuracy
– As robust as O(N3) methods
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Linear-scaling methods

• Domain decomposition approach: 
wavefunctions are localized in spherical, 
overlapping domains. 
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• Spherical domains 
are attached to 
atoms or bonds

• “Linear-Scaling First-Principles Molecular Dynamics with Controlled 
Accuracy”, J.L.Fattebert and F.Gygi, Comp. Phys. Comm. 162, 24 
(2004).

Localization of orbitals
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• Errors in computed 
ionic forces are 
decaying 
exponentially for 
large localization 
radii

• Errors are computed 
by comparison with 
O(N3) method with 
same numerical 
approximations

O(N) with controlled accuracy
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O(N) with controlled accuracy

• The accuracy of ionic forces is critical for molecular 
dynamics simulations

J.L. Fattebert and F. Gygi, Phys. Rev. B 73, 115124 (2006)

Reference: 400Ry 
Plane-wave 
calculation

H2O, 32 
molecules
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• Spherical domains 
move during the MD 
simulation

• The positions of the 
centers are 
recalculated at each 
time step using the 
center of charge of 
each orbital

J.L. Fattebert and F. Gygi, Phys. Rev. B 73, 115124 (2006)

MD: using adaptive localization 
centers (ALC)
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O(N) Molecular Dynamics

• H2O 32 molecules MD simulation with adaptive 
localization centers
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Controlling energy drift in MD

• H2O 32 molecules MD simulation
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Comparison with O(N3): 
simulations of liquid water

(H2O)512 in 10 s./iteration
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Linear-scaling methods

• Review articles:
– G.Galli, “Linear Scaling Methods For Electronic Structure 

Calculations and Quantum Molecular Dynamics Calculations”, 
Current Opinion in Solid State and Materials Science, 1, 864 
(1996).

– S.Goedecker, “Linear Scaling Electronic Structure Methods”, 
Rev. Mod. Phys. 71, 1085 (1999).

• Our recent work on O(N) with controlled accuracy
– J.L.Fattebert and F.Gygi, Comp. Phys. Comm. 162, 24 (2004).
– J.L. Fattebert and F. Gygi, Phys. Rev. B 73, 115124 (2006)
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Linear-scaling methods

• Outstanding remaining issues
– The choice of localization radii is difficult a priori

• Some orbitals may require larger radii than others
• The description of unoccupied orbitals is more difficult than 

occupied orbitals

– The description of metallic systems is not satisfactory
– The initial choice of localization centers is not obvious

• Use atoms in some systems, bonds in others

– Moving localization centers in a smooth, continuous way

More research is needed to develop linear-scaling electronic

structure methods that are suitable for MD simulations
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Summary

• High-performance implementations of First-Principles 
Molecular Dynamics can be developed on large scale 
computers (up to 128k CPUs)

• Highly tuned single-node kernels are used
• Node mapping is critical for this application
• Linear scaling (O(N)) FPMD is the subject of more 

investigations to achieve controlled accuracy

Thanks to:
•Lawrence Livermore National Laboratory
•DOE ASC
•University of California Lawrence Livermore National Laboratory 
Contract W-7405-Eng-48
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