Implementation of First-Principles Molecular Dynamics on Large Scale Computers

> François Gygi University of California, Davis fgygi@ucdavis.edu http://eslab.ucdavis.edu

FADFT Workshop, July 23, 2007

- Our goal: Simulate high-Z metals (Mo, Ta, Pu, ...) from first principles, without input from experiments
- The approach: Molecular dynamics: an atomic-scale simulation method
 - Compute the trajectories of all atoms
 - extract statistical information from the trajectories

Atoms move according to Newton's law:

$$m_i \ddot{\mathbf{R}}_i = \mathbf{F}_i$$

- Why "First-Principles"?
 - Avoid empirical models and adjustable parameters
 - Goal: applications to extreme conditions (high pressure, etc.) where no experimental data is available
 - Use fundamental principles: Quantum Mechanics
 - Must describe ions and electrons consistently and simultaneously

- The approach is applicable to very diverse
 - Chemistry
 - Nanotechnology
 - Semiconductors
 - Biochemistry
 - High-pressure physics

Biotin on silicon carbide

Silicon quantum dot

Growth of a carbon nanotube on an iron catalyst

• The computation of the electronic structure is the most expensive part of the simulation

Computing the electronic structure

- Density Functional Theory: the Kohn-Sham equations
 - solutions represent molecular orbitals (one per electron)
 - molecular orbitals are complex scalar functions in R³
 - coupled, non-linear PDEs

$$\begin{cases} -\Delta \varphi_{i} + V(\rho, \mathbf{r})\varphi_{i} = \varepsilon_{i}\varphi_{i} & i = 1... N_{el} \\ V(\rho, \mathbf{r}) = V_{ion} (\mathbf{r}) + \int \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}' + V_{XC} (\rho(\mathbf{r}), \nabla \rho(\mathbf{r})) \\ \rho(\mathbf{r}) = \sum_{i=1}^{N_{el}} |\varphi_{i}(\mathbf{r})|^{2} \\ \int \varphi_{i}^{*}(\mathbf{r}) \varphi_{j}(\mathbf{r}) d\mathbf{r} = \delta_{ij} \end{cases}$$

Computing the electronic structure

Periodic boundary conditions: all solutions of the form

$$\psi_{\mathbf{k},n}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}}\varphi_{\mathbf{k},n}(\mathbf{r})$$

must be included (Bloch theorem)

• Solutions are represented as Fourier series

$$\varphi_{\mathbf{k},n}(\mathbf{r}) = \sum_{|\mathbf{k}+\mathbf{q}|^2 < E_{\text{cut}}} c_{\mathbf{k}+\mathbf{q},n} e^{i\mathbf{q}\cdot\mathbf{r}}$$

• Electronic charge density

$$\rho(\mathbf{r}) = \sum_{n} \int_{BZ} \left| \psi_{\mathbf{k},n}(\mathbf{r}) \right|^2 d^3 \mathbf{k}$$

Computing the electronic structure

 A periodic solution is represented by the matrix of complex Fourier coefficients c_{qn}

$$\varphi_n(\mathbf{r}) = \sum_{|\mathbf{q}|^2 < E_{\text{cut}}} c_{\mathbf{q},n} e^{i\mathbf{q}\cdot\mathbf{r}}$$

- The matrix of coefficients c_{qn} must have orthogonal columns
- Dimensions of C: 10⁶x10⁴

Controlling Numerical Errors

- The goal is high accuracy
- All numerical errors must be controlled
 - Convergence of Fourier series $\varphi_n(\mathbf{r}) = \sum_{|\mathbf{q}|^2 < E_{\text{cut}}} c_{\mathbf{q},n} e^{i\mathbf{q}\cdot\mathbf{r}}$
 - Convergence of system size (number of atoms)
 - Convergence of k-space integration

$$\rho(\mathbf{r}) = \int_{BZ} \left| \psi_{\mathbf{k},n}(\mathbf{r}) \right|^2 d^3 \mathbf{k}$$

- We need to systematically increase
 - Plane-wave energy cutoff
 - Number of atoms

BlueGene/L allows us to ensure convergence of all three approximations

Algorithms used in FPMD

- Solving the KS equations: a constrained optimization problem in the space of coefficients c_{qn}
- Poisson equation: 3-D FFTs
- Computation of the electronic charge: 3-D FFTs
- Orthogonality constraints require dense, complex linear algebra (e.g. A = C^HC)

The Platform: BlueGene/L

- 65,536 nodes, 128k CPUs
- 3D torus netwc
- 512 MB/node
- 367 TFlop peak

Obox code: main features

- C++/MPI implementation of First-Principles Molecular Dynamics
- DFT/GGA exchange-correlation
- Plane-wave, norm-conserving pseudopotentials
- Designed for large-scale parallel platforms
- Main design constraint: small memory footprint (< 512MB per task)
- Built on optimized parallel libs: PBLAS, ScaLAPACK
- XML interface
- Used on various parallel platforms (BG/Ls, Linux clusters)

Qbox code structure

Data layout

• Distributed plane-wave coefficients

$$\varphi_{n\mathbf{k}}(\mathbf{r}) = \sum_{|\mathbf{k}+\mathbf{G}|^2 < E_{\text{cut}}} c_{n,\mathbf{k}+\mathbf{G}} e^{i(\mathbf{k}+\mathbf{G})\cdot\mathbf{r}} \mathbf{G}$$

Data layout

- Single k-point wavefunction:
 - ScaLAPACK matrix block distribution

$$\varphi_{n\mathbf{k}}(\mathbf{r}) = \sum_{|\mathbf{k}+\mathbf{G}|^2 < E_{\text{cut}}} c_{n,\mathbf{k}+\mathbf{G}} e^{i(\mathbf{k}+\mathbf{G})\cdot\mathbf{r}}$$

- Dimensions of C: 10⁶x10⁴
- Typical process grid: 512x16

G

Communication patterns

• 3-D Fourier transforms $\varphi_{n\mathbf{k}}(\mathbf{r}) \leftrightarrow c_{n,\mathbf{k}+\mathbf{G}}$

Communication patterns

• Accumulation of electronic charge density

Communication patterns

- Other operations: (orthogonalization, non-local potential energy, Ritz diagonalization)
 - use the ScaLAPACK linear algebra library

The Platform: BlueGene/L

- 65,536 nodes, 128k CPUs
- 3D torus netwc
- 512 MB/node
- 367 TFlop peak

Mapping tasks to physical nodes

• Mapping a 2-D process grid to a 3-D torus

Mapping tasks to physical nodes

• Mapping a 2-D process grid to a 3-D torus

Mapping tasks to physical nodes

• Mapping a 2-D process grid to a 3-D torus

Single-node kernels

- Dual core
- Dual FPU
- Three-level cache memory hierarchy
- L1 caches not coherent
- L2, L3 coherent

Single-node kernels

- Exploiting the BG/L hardware
 - Use double FPU instructions ("double hummer")
 - Use both CPUs on the node
 - use virtual node mode, or
 - program for two cores
 - We use BG/L in co-processor mode
 - 1 MPI task per node
 - Use second core using dual-core kernels
- DGEMM/ZGEMM kernel (John Gunnels, IBM)
 - Hand optimized, uses double FPU very efficiently
 - Algorithm tailored to make best use of L1/L2/L3
 - Dual-core version available: uses all 4 FPUs on the node
- FFTW kernel (Technical University of Vienna)
 - Uses hand-coded intrinsics for DFPU instructions

ZGEMM Performance

- ZGEMM on one processor per node
 - In excess of 98% of peak (2.76/2.80 GF/node)
- ZGEMM in co-processor mode
 - 97% of peak (5.43/5.60 GF/node)
 - Uses fork/join construct
 - Flushes caches to maintain coherence
- Kernel performance
 - Over 99.5% of peak

The Test Problem

- Electronic structure of a 1000-atom Molybdenum sample
- p semi-core electrons included
- 12,000 electrons
- 32 non-local projectors for pseudopotentials
- 112 Ry plane-wave energy cutoff
- High-accuracy parameters

Obox performance results

- Single k-point calculation (k=0)
- single-core dgemm library
- co-processor mode
- bipartite y-z mapping at 64k nodes

46.70 TFlops on 64k nodes

Obox performance results

- Single k-point calculation (k=0)
- dual-core dgemm library
- co-processor mode
- bipartite y-z mapping

64.0 TFlops on 64k nodes

Obox performance results

- Multiple k-point calculations 1 k-point: 108.8 TFlop/s (30% of peak)
- complex arithmetic
- dual-core zgemm library
- co-processor mode

4 k-points: 187.7 TFlop/s (51% of peak)

Node mapping significantly affects performance

Node Mapping Optimization

- Analysis of the MPI tree broadcast algorithm in sub-communicators
 - The performance of MPI_Bcast is unsatisfactory for checkerboard mappings: the tree algorithm results in communication bottlenecks
 - Using a space-filling curve to assign tasks to nodes improves performance
 - performance gain: ~7 TFlops

- unnecessary Type_commit operations were removed in the BLACS
- performance gain: ~3 TFlops

History of First-Principles MD performance

History of FPMD performance

Computational cost of firstprinciples simulations

• The computational cost of solving the Kohn-Sham equations is $O(N^3)$

$$\begin{cases} -\Delta \varphi_i + V(\rho, \mathbf{r}) \varphi_i = \varepsilon_i \varphi_i & i = 1...N_{el} \\ V(\rho, \mathbf{r}) = V_{ion}(\mathbf{r}) + \int \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}' + V_{XC}(\rho(\mathbf{r}), \nabla \rho(\mathbf{r})) \\ \rho(\mathbf{r}) = \sum_{i=1}^{N_{el}} |\varphi_i(\mathbf{r})|^2 \\ \int \varphi_i^*(\mathbf{r}) \varphi_j(\mathbf{r}) d\mathbf{r} = \delta_{ij} \end{cases}$$

O(N³) algorithms onlarge parallel platforms

- Storage of electronic wavefunctions: O(N²) (N wavefunctions described in a volume O(N))
- Number of operations: O(N³) (orthogonalization)

Problem size	# ops	# CPUs	ops/CPU	storage	storage/CPU
Ν	N ³	Ν	N ²	N ²	Ν
Ν	N ³	N ²	N	N ²	1
Ν	N ³	N ³	1	N ²	1/N

Linear-scaling methods

- Achieve *linear scaling: O(N)* operations
- Introduce approximations to reduce the computational cost from *O(N³)* to *O(N)*.
- Several approaches proposed in the past 10 years
- Most successful approach: represent the solutions of the Kohn-Sham equations in terms of nonorthogonal, localized functions.
- An important goal is *controlled accuracy*, i.e.
 - Simple parameters (e.g. grid spacing) to control numerical accuracy
 - As robust as *O(N³)* methods

Linear-scaling methods

 Domain decomposition approach: wavefunctions are localized in spherical, overlapping domains.

$$S_{ij} = \left\langle \phi_i \left| \phi_j \right\rangle = \int_{\Omega} \phi_i^*(\mathbf{r}) \phi_j(\mathbf{r}) d^3 \mathbf{r} \right\rangle$$
$$H_{ij} = \left\langle \phi_i \left| H \phi_j \right\rangle = \int_{\Omega} \phi_i^*(\mathbf{r}) H \phi_j(\mathbf{r}) d^3 \mathbf{r} \right\rangle$$

 $E(Y) = \operatorname{tr}(S^{-1}Y^T HY) \quad Y \in R^{M \times N} \quad S = Y^T Y$

Localization of orbitals

 Spherical domains are attached to atoms or bonds

 "Linear-Scaling First-Principles Molecular Dynamics with Controlled Accuracy", J.L.Fattebert and F.Gygi, Comp. Phys. Comm. 162, 24 (2004)

O(N) with controlled accuracy

- Errors in computed ionic forces are decaying exponentially for large localization radii
- Errors are computed by comparison with O(N³) method with same numerical approximations

O(N) with controlled accuracy

• The accuracy of ionic forces is critical for molecular dynamics simulations

J.L. Fattebert and F. Gygi, Phys. Rev. B 73, 115124 (2006)

MD: using adaptive localization centers (ALC)

- Spherical domains move during the MD simulation
- The positions of the centers are recalculated at each time step using the center of charge of each orbital

J.L. Fattebert and F. Gygi, Phys. Rev. B 73, 115124 (2006)

O(N) Molecular Dynamics

H₂O 32 molecules MD simulation with adaptive localization centers

FIG. 2. Total energy and ALC displacements during molecular dynamics simulation of water (512 molecules) at 300 K with localization radius of 9 Bohr.

Controlling energy drift in MD

• H₂O 32 molecules MD simulation

TABLE I. Measure of energy drift and number of SC steps required for convergence.

Localization radius (Bohr)	Energy drift (mHa/at/ps)	No. SC iteration/ MD step
8	–0.222 (–47 K/ps)	29
9	–0.103 (–22 K/ps)	23
10	+0.001 (0 K/ps)	14

Comparison with O(N³): simulations of liquid water

Timings for 1 electronic step (processors Itanium 2, 1.4 GHz, Quadrics switch)

Linear-scaling methods

- Review articles:
 - G.Galli, "Linear Scaling Methods For Electronic Structure Calculations and Quantum Molecular Dynamics Calculations", *Current Opinion in Solid State and Materials Science*, 1, 864 (1996).
 - S.Goedecker, "Linear Scaling Electronic Structure Methods", *Rev. Mod. Phys.* 71, 1085 (1999).
- Our recent work on *O(N)* with controlled accuracy
 - J.L.Fattebert and F.Gygi, Comp. Phys. Comm. 162, 24 (2004).
 - J.L. Fattebert and F. Gygi, Phys. Rev. B 73, 115124 (2006)

Linear-scaling methods

- Outstanding remaining issues
 - The choice of localization radii is difficult a priori
 - Some orbitals may require larger radii than others
 - The description of unoccupied orbitals is more difficult than occupied orbitals
 - The description of metallic systems is not satisfactory
 - The initial choice of localization centers is not obvious
 - Use atoms in some systems, bonds in others
 - Moving localization centers in a smooth, continuous way

More research is needed to develop linear-scaling electronic structure methods that are suitable for MD simulations

Summary

- High-performance implementations of First-Principles Molecular Dynamics can be developed on large scale computers (up to 128k CPUs)
- Highly tuned single-node kernels are used
- Node mapping is critical for this application
- Linear scaling (O(N)) FPMD is the subject of more investigations to achieve *controlled accuracy*

Thanks to:

- •Lawrence Livermore National Laboratory
- •DOE ASC

•University of California Lawrence Livermore National Laboratory Contract W-7405-Eng-48

