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Molecular Electronics

left lead L
central 

region C
right lead R

Bias between L and R is turned on: U(t) V  for large t

A steady current, I, may develop as a result.

• Calculate current-voltage characteristics  I(V)
• Control path of current through molecule by laser

Dream: Use single molecules as basic units (transistors, 
diodes, …) of electronic devices



Molecular Electronics

left lead right lead 

Control the path of the current with laser

Molecular Electronics

left lead right lead 

Control the path of the current with laser



Outline

• Traditional Landauer approach

• Why time-dependent transport?

• Computational issues (open, nonperiodic system)

• Numerical examples for model systems

•Recovering Landauer steady state

•Transients and AC bias

•Electron pumping

• Does a system always evolve into a steady state?



Standard approach: Landauer formalism plus static DFT

left lead L
central 

region C right lead R
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Transmission function T(E,V) calculated
from static (ground-state) DFT

 
2

eV
  E   F1,2 m=μ

Comparison with experiment: Qualitative agreement, BUT 
conductance often 1-3 orders of magnitued too high.

eigenstates of static KS Hamiltonian of the complete system 

(no periodicity!)
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Define Green’s functions of the static leads

( ) ( ) 1=− EGHE stat
L

stat
LL   
 

( ) ( ) 1=− EGHE stat
R
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RR   
 



Substitute ϕL and ϕR in equation for central region

(HCLGLHLC +  HCC +  HCRGRHRC) ϕC =  E ϕC

Effective KS equation for the central region

ΣL := HCL GL HLC ΣR := HCR GR HRC

g =  ( E - HCC - ΣL - ΣR )-1

( )+ΣΣ=Γ L  L L  i   - ( )+ΣΣ=Γ R  R R  i   -

( )+ΓΓ= gg  R  L racet  T 
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Chryzazine: A possible optical switch
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• Use ground-state DFT within Landauer formalism

• Fix left and right chemical potentials

• Solve self-consistently for KS Green’s function 

• Transmission function has resonances at KS levels

• No empirical parameters, suggests confidence level 
of ground-state DFT calculations

Summary of standard approach



• allows the study of transients: How does the steady 
state evolve, does it appear at all?

• AC effects
• laser-induced isomerization
• optimal control of current

• TDDFT allows proper inclusion of e-e interaction 
effects: 
Note: When static DFT is used for effective potential 
together with Landauer formula → resonant tunneling
occurs at the wrong energies.

Why time-dependent transport?

Chrysazine 2 b

-8

-7

-6

-5

-4

-3

-2

-5 0 5 10 15 20
Density of States (1/eV

0.00001 0.0001 0.001 0.01 0.1 1

Transmission Function (1/eV)

-7.21

-6.28

-4.49

-3.39
-1.99

-4.10

-6.47

-6.75

-7.36
-7.38

-7.59

E
n

er
g

y 
(e

V
)



• Landauer theory is for non-interacting electrons. If static DFT is 

used for effective potential → resonant tunneling occurs at the 

wrong energies → Landauer current does not give true current 

even for the exact exchange-correlation potential of static DFT. 
→ [Landauer + static DFT]-approach in principle wrong.

Atom 
Experimental Excitation 

Energies 1S→1P 
(in Ry) 

KS energy 
differences 
Δ∈KS (Ry) 

TDDFT 
response

(Ry) 

Be 0.388 0.259 0.391 

Mg 0.319 0.234 0.327 

Ca 0.216 0.157 0.234 

Zn 0.426 0.315 0.423 

Sr 0.198 0.141 0.210 

Cd 0.398 0.269 0.391 

from: M. Petersilka, U. J. Gossmann, E.K.U.G., PRL 76, 1212 (1996)

How serious is this problem?
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Molecular Electronics with TDDFT

left lead L
central 

region C
right lead R

TDKS equation

Propagate TDKS equation on spatial grid

( ) ( ) ( )( )K,t,r,t,rt 21A vector      ϕϕ=ϕ•

( ) nHamiltonia TDKS of blocks-grid ingcorrespondtHAB =•   

is purely kinetic, because KS 
potential is local

( ) BAtH for      AB ≠

RCCRLCCL HHHH   ,  ,  , are time-independent

0HH RLLR ==

with grid points r1, r2, …
in region A (A = L, C, R)
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Next step: Solve inhomogeneous Schrödinger equations          ,           for 
ϕL, ϕR using Green’s functions of L, R, leads

L R
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Define Green’s Functions of left and right leads:
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                        r.h.s. of L solution of hom. SE

r.h.s. of R solution of hom. SE

explicity:
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CLCLL ϕ+ϕ=ϕ ∫  
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insert this in equation C



Effective TDKS Equation for the central (molecular) region

S. Kurth, G. Stefanucci, C.O. Almbladh, A. Rubio, E.K.U.G., 
Phys. Rev. B 72, 035308 (2005)
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t
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source term:   L → C  and  R → C  charge injection

memory term:   C → L → C and  C → R → C hopping

( ) ( ) ( ) ( )00,tGiH00,tGiH RRCRLLCL ϕ+ϕ+   

( ) ( )[ ] ( )∫ ϕ++
t

0

CRCRCRLCLCL 'tH't,tGHH't,tGH'dt  

Necessary input to start time propagation:

• lead Green’s functions  GL,  GR

• initial orbitals ϕC(0)  in central region as initial condition 

for time propagation

• initial orbitals ϕL(0), ϕR(0)  in leads (for source terms)



Calculation of lead Green’s functions:
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( ) ( )tUHtH R
stat
RRRR += ( ) ( ) =− tUtU, RL       likewise total potential drop 

across central region

Simplest situation:  Bias acts as spatially uniform potential in leads 

(instantaneous metallic screening)

initial lead states are calculated as linear combinations of periodic bulk states

initial orbitals in C region

eigenstates of static KS Hamiltonian of the complete system 

(no periodicity!)
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Define Green’s functions of the static leads

( ) ( ) 1=− EGHE stat
L

stat
LL   
 

( ) ( ) 1=− EGHE stat
R

stat
RR   
 

Effective static KS equation for central region

( ) ( )( ) ( ) ( )0
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stat
CC EHEGHHEGHH ϕ=ϕ++       

       

In the traditional Landauer + static DFT approach, this equation 
is used to calculate the transmission function. Here we use it only
to calculate the initial states in the C-region.

U
V(x)

left lead right leadcentral region

Numerical examples for non-interacting electrons

Recovering the Landauer steady state

Time evolution of current in response to bias switched on at time t = 0, 

Fermi energy  εF = 0.3 a.u.

Steady state coincides with Landauer formula 

and is reached after a few femtoseconds

U



U V(x)

left lead right leadcentral region

Time evolution of  current

Time evolution of total number of 
electrons in central region

barrier height: 0.5 a.u.
∈F= 0.3 a.u.

Charge accumulation in device

Transients

Current through double square barrier for different ways to switch on 
the bias

solid lines: ( ) ( ) ( )
( )⎩

⎨
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ωπ>
ωπ≤≤ω
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0
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same steady state!



Time-dependent bias

Current through square potential barrier for AC bias

( ) ( )tsinUtU 0L  ω=

barrier height: 0.6 a.u.
Fermi energy: 0.5 a.u.

with ω= 1.0 a.u.

ELECTRON PUMP

Device which generates a net current between two 
electrodes (with no static bias) by applying a time-
dependent potential in the device region  

Recent experimental realization : Pumping through 
carbon nanotube by surface acoustic waves on 
piezoelectric surface (Leek et al, PRL 95, 256802 (2005)) 
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Pumping through a square barrier 
(of height 0.5 a.u.) using a 
travelling wave in device region
U(x,t) = Uosin(kx-wt)
(k = 1.6 a.u., w = 0.2 a.u.
Fermi energy = 0.3 a.u.)

Patent: Archimedes (250 b.c.)

Simple 1-D model showing current inversion:
Superimpose travelling wave on static potential with corrugation which 
appears to be crucial to obtain current inversion

Static potential for |x|<6: V(x) = V0 (1 + cos(kx)), V0=0.5 a.u., k=5.2 a.u.
Travelling wave only for |x|<6:
U(x,t) = Uosin(qx-ωt) (Uo= 0.5a.u.,q = 0.6 a.u., ω = 0.8 a.u., Fermi energy: 0.3 a .u.)



Current goes in direction opposite to the external field !!

Position dependence of current

TD current averaged over one period of traveling wave



G. Stefanucci, S. Kurth, A. Rubio, E.K.U.G., cond-mat/0701279. 

Time-averaged current

Experimental result:

Bound state oscillations and memory effects
Analytical: G. Stefanucci, Phys. Rev. B, 195115 (2007))
Numerical: G. Stefanucci, S. Kurth, A. Rubio, E.K.U.G., cond-mat/0701279

If Hamiltonian of a (non-interacting) biased system in the long-time limit supports 

two or more bound states → total current in long-time limit has two parts

)()(lim )()( tIItI DS
t ααα +=∞→

])sin[(2)( '
',

''
)( tftI bb

bb
bbbb

D εεα
α −Λ= ∑

Steady-state part Iα(S) and dynamical part

sum runs over the bound states of the biased Hamiltonian in the long-time limit. 

Note: - Λbb’ depends on history of time-dependent Hamiltonian (memory!)
- Landauer/DFT approach to transport rests on the assumption of a 

time-independent KS potential in the long-time limit   



1-D model:
Simple square well: V(x) = -1.4 a.u. for |x|<1.2 a.u., 0 otherwise → two bound states  
At t=0 switch on static bias UR=0.1 a.u. in right lead, also the biased Hamiltonian has 
two bound states → current oscillations

Time-Frequency Analysis of Time-Dependent Current 
Fourier transform of TD current for finite time interval with  T0=800 a.u.
and (tp,tp+T0), tp=(2+p)×100 a.u.

Amplitude of oscillation with frequency of transition between bound 
states is independent of tp !

Time-Frequency Analysis of Time-Dependent Current 
Zoom in on transitions between bound states and continuum

Amplitude of bound-continuum transitions decay slowly (~1/t) with time 



1-D model:
start with flat potential, switch on constant bias, wait until transients die out, switch 
on gate potential with different switching times to create two bound states

note: amplitude of bound-state
oscillations may not be small 
compared to steady-state current

History dependence of undamped oscillations

amplitude of current oscillations as function of switching time of gate

question: what is the physical reason behind the maximum of
oscillation amplitude ?



Pumping by travelling wave: Fourier Analysis of Time-Dependent Current 
Frequency decomposition of current for different amplitudes, U1, of pump wave

Fourier Analysis of Time-Dependent Current (with Pumping) 
Oscillations originating from transitions between bound states: 
Dependence on amplitude of pump wave
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Conclusions

• Standard approach to molecular transport: static DFT + Landauer

-- Chrysazine may serve as an optical switch

• TDDFT approach to transport properties 

• Algorithm for time propagation of open systems

• Electron pumping

• Persistent current oscillations from transition between bound states

• Memory effect: amplitude of oscillations depends on history of the system

In progress

• Spin transport

• Inclusion of (nonlinear) Hxc potentials 

--Does a steady state exist?  

-- If so, is it unique or does it depend on the switching-on

• Implementation for realistic 3D  molecules

• Inclusion of nuclear motion: Local heating, current-induced isomerization

• Combination with superconducting leads (treated with TD-SCDFT)

--Molecular Josephson effect

--Molecluar proximity effect


