26/July/2007, ISSP International Workshop: Foundations and Applications of the Density Functional Theory

Large scale electronic structure calculation theory and its application

Takeo FUJIWARA

Center for Research and Development of Higher Education, The University of Tokyo (former at Department of Applied Physics, UT)

1. Introduction

Problem in Electronic Structure Calculations, Multi-scale

2. Mathematics in Large-scale Calculations

- 2-1. Wannier state representation and Order-N method
- 2-2. Krylov subspace method
- 2-3. Hybrid method and parallelization

3. Examples

- 3-1. Fracture Propagation and Surface Creation in Si
- 3–2. Carbon Nanotube
- 3–3. Gold Helical Multishell Nanotube
- 4. Conclusions

Large-scale electronic-structure calculations

Why is it difficult for large systems? Because electronic wavefunctions are not localized and the CPU resorce should be proportional to N³.

Can we get the density matrix without a knowledge on eigenstates? Yes, we can get ρ without ϕ .

Calculating a physical quantity $\langle X
angle$

$$\langle \hat{X} \rangle = \sum_{i}^{\text{occ.}} \langle \phi_i | \hat{X} | \phi_i \rangle = \text{Tr}[\hat{\rho} \hat{X}] \qquad (1)$$

$$\hat{\rho} \equiv \sum_{i}^{\text{occ}} |\phi_i\rangle \langle \phi_i| \tag{2}$$

: (one-body) density matrix

Wannier representation.

Hoshi and Fujiwara

J. Phys. Soc. Jpn **69**, 3773 (2000) Order-N

Hoshi and Fujiwara

J. Phys. Soc. Jpn **72**, 2880 (2003) Krylov(Subspace Diagonalization) Takayama, Hoshi and Fujiwara

J. Phys. Soc. Jpn **73**, 1519 (2004) Nano-scale cleavage in Si

Hoshi, Iguchi, Fujiwara

Phys. Rev. B**72**, 075323 (2005) Krylov (Shifted COCG)

Takayama, Hoshi and Fujiwara Phys.Rev. B**73**, 165108 (2006) Hybrid Method

Hoshi and Fujiwara

J. Phys. Cond. Mat. 18, 10787 (2006)

Our Large-scale Electronic Structure Calculations

Usually **hybrid method with quantum mechanical MD** (in small region) **and classical mechanical MD** (in larger region)

Our method **hybrid method with different kinds of quantum mechanical MDs** (over whole region)

nonlinearity due to shape, force, inhomogenious contact, wavefunctions
non-equilibrium, transient process

Wannier state method without using eigen states

$$H_{\text{eff}}\psi_i = \sum_{j=1}^{\text{occ.}} \varepsilon_{ij}\psi_j \qquad \qquad \psi_j = \sum_k^{\text{occ.}} U_{jk}\psi_k^{\text{(eig)}}$$

$$\langle \hat{X} \rangle \equiv \sum_{k}^{\text{occ}} \langle \psi_k^{\text{(eig)}} | \hat{X} | \psi_k^{\text{(eig)}} \rangle = \sum_{j}^{\text{occ}} \langle \psi_j | \hat{X} | \psi_j \rangle$$

→"generalized Wannier states", "ab initio bonding orbitals"

Many ab initio applications ---> Exact, but not order-N

(1)
$$|\phi_j\rangle \approx C^{(0)}|\mathbf{b}_j\rangle + \sum_{i(\neq j)} C^{(\nu(i))}|\mathbf{a}_i\rangle. \qquad \frac{C^{(\nu)}}{C^{(0)}} = \frac{\langle a^{(\nu)}|H|b_k\rangle}{\varepsilon_{\mathbf{b}} - \varepsilon_{\mathbf{a}}}.$$

(2)
$$H_{WS}^{(k)}\psi_k = \varepsilon_{kk}\psi_k, \qquad H_{WS}^{(k)} = H - \bar{\rho}_k\Omega - \Omega\bar{\rho}_k$$

 $\bar{\rho}_k = \rho - |\psi_k\rangle\langle\psi_k| = \sum_{j\neq k}^N |\psi_j\rangle\langle\psi_j|$
 $\Omega = H - \mu \quad (\mu > \varepsilon_N)$

ab initio wfn. in Si crystal (Marzari & Vanderbilt '97)

Krylov Subspace

Krylov Subspace Method

start from any base $|i\rangle$ reduce the matrix to Krylov subspace (smaller size) Span $\{|i\rangle, H|i\rangle, H^2|i\rangle, H^{\nu-1}|i\rangle\}$ $H^{K(i)}=$

 $|K_1^{(i)}\rangle (\equiv |i\rangle), |K_2^{(i)}\rangle, |K_3^{(i)}\rangle, , |K_v^{(i)}\rangle$

Reduced matrix (finite size $v \sim 30$)

(1) Subspace diagonalization method(2) Shifted COCG method

with normalization

Takayama, Hoshi and Fujiwara Subspace Diagonalization J. Phys. Soc. Jpn 73, 1519 (2004) Diagonalize $H^{K(i)}$: $H^{K(i)}|w_{\alpha}\rangle = \varepsilon_{\alpha}|w_{\alpha}\rangle$ Density matrix operator: $\hat{\rho}^{K(i)} \equiv \sum_{\alpha}^{V} |w_{\alpha}\rangle \langle w_{\alpha} | f\left(\frac{\varepsilon_{\alpha} - \mu}{kT}\right),$ The replacement of the density matrix: $\langle i | \hat{\rho} | j \rangle \Rightarrow \langle i | \hat{\rho}^{K(i)} | j \rangle$ $|i\rangle$: an element of the KS $\langle i | \hat{\rho}^{K(i)} | j \rangle = \sum_{n=1}^{N} \langle i | \hat{\rho}^{K(i)} | K_n^{(i)} \rangle \langle K_n^{(i)} | j \rangle$ $|j\rangle$:not necessarily in the KS n The convergence of this summation validate the present method. The advantages of using eigenstates of $H^{K(i)}$ are • exact calc. is available within reduced Hilbert space

energy integration

→ reduced matrix size v

Error can be monitored.

$$\langle i | r_v^{(j)} \rangle = \langle i | I - (z - H) G_v^{(i)}(z) | j \rangle$$

Shifted COCG Method and Density Matrix

Takayama, Hoshi and Fujiwara: Phys.Rev.B73, 165108 (2006)

$$(z - H)|x_n^{(j)}\rangle = |j\rangle \qquad (z_{ref} + \sigma - H)|x_n^{\sigma j}(z_{ref} + \sigma) \geq |j\rangle$$

Green's Function

 $G_{ij}(z_k) \equiv \left\langle i | x^{(j)}(z_k) \right\rangle = \left\langle i | (z_k - H)^{-1} | j \right\rangle$

$$\rho_{ij} = -\frac{1}{\pi} \int_{-\infty}^{\infty} \operatorname{Im} G_{ij}(z) f\left(\frac{\varepsilon - \mu}{k_{\rm B}T}\right) \mathrm{d}\varepsilon$$

Krylov subspace by shifted z is identical to the original subspace.

La_{3/2} Sr_{1/2} NiO₃ Application to Many-Body Problem

Stripe order of charge and spin

S.Yamamoto and T.Fujiwara, unpublished

$$\rho = \rho_A + \rho_B \qquad \rho_A \rho_B = 0$$

$$H^{(A)} = H + 2\eta \rho_B - (H\rho_B + \rho_B H)$$

$$\cong H + 2(\eta - \varepsilon_B)\rho_B$$

$$H^{(A)} \rho_A - \rho_A H^{(A)} = 0$$

Division of the Hilbert space (not division of real space)

Large-scale Electronic Structure Calculation

10⁷ atoms !! ~(70 nm)³ system !!

Density Matrix Formalism

Wannier state representation Krylov subspace diagonalizatiopn shifted COCG method Hybrid method and parallelization

Applications

Fracture Propagation in Si Crystals Growth Mechanism of Carbon Nanotube Gold Helical Multishell Nanowire

> Dynamical Brittle Fracture Propagation J. Phys. Soc. Jpn 72, 2429 (2003) Nano-scale cleavage in Si Phys. Rev. B72, 075323 (2005)

METHODOLOGY Wannier function method J. Phys. Soc. Jpn **69**, 3773 (2000) Krylov Subspace Diagonalization J. Phys. Soc. Jpn **73**, 1519 (2004)

Fracture simulation (1)

[001] external load, isolated cluster with 91 atoms, an initial "defect" bond, exact diagonalization $v_0 = 0.1[K m/s]$ Tight-binding, T = 300 K

Reasonable crack-propagation speed $V_{crac k} \approx 2 [km/s]$ (Exp. $v_{crack} \lessapprox 3.8 [km/s]$)

Fracture begins as level crossings of several "defect" states.

Dynamical fracture simulation in Si(001) surface (4501atoms)

FIG. 2: Snapshots of a fracture process in the (001) plane. The sample size is $n_{100} \times n_{010} \times n_{001} = 33 \times 33 \times 33$ (4501 atoms). The time interval between two successive snapshots is 0.3 ps, except that between (f) and (g) (about 1.3 ps). A set of connected black rod and black ball corresponds to an asymmetric dimer, as in Fig. 1(b). The left-down area has not yet fractured.

Hoshi and Fujiwara, J. Phys. Soc. Jpn. 72, 2429 (2003)

Application : Si(111)-(2x1) cleavage simulation

 $\rightarrow \pi$ -bonded (Pandey) structure with tilting Steps are formed in large (10-nm-scale) samples

Hoshi, Iguchi and Fujiwara Phys.Rev. B72, 075323 (2005)

Surface (π -bonding) state

 $\label{eq:example} Example of STM experiment$

Mera, et al., Ultramicroscopy, (1992)

Application : Si(111)-(2x1) cleavage simulation

 $\rightarrow \pi$ -bonded (Pandey) structure with tilting Steps are formed in large (10-nm-scale) samples

Hoshi, Iguchi and Fujiwara Phys.Rev. B72, 075323 (2005)

Surface (π -bonding) state

Example of STM experiment

Mera, et al., Ultramicroscopy, (1992)

0.2

0

0.4

0.6

time [ps]

0.8

Bending of cleavage path into favorite planes

***************************************	0.0.0.0
	8-8-8-8-5
	RRRP
· · · · · · · · · · · · · · · · · · ·	POPOLOGY -
	Real Property in
	100000
	BEBER
	P.P.P.P.
	0000

Hoshi, Iguchi and Fujiwara Phys.Rev. B72, 075323 (2005)

Bending of cleavage path into favorite planes

Hoshi, Iguchi and Fujiwara Phys.Rev. B72, 075323 (2005)

Summary of Si fracture simulation 10²-10⁵ atoms

(**001**) *plane*

- (1) **Elementary process** for fracture : (2x1) structure
 - (a) Two-stage elementary process : dehybridization and charge transfer
 - (b) Formation of flat Si(001) surfaces with asymmetric dimers
 - (c) Two fracture mechanisms within a single atomic layer between the [110] and [1-10] directions
- (2) Anisotropic behavior and step formation
- (3) Crossover between nanoscale and macroscale behavior

(111) plane and change of cleavaged plane

- (1) Surface reconstruction for fracture : (2x1) structure Two-stage elementary process Charged atom and buckled bonded pair
- (2) Step formation through (1-1-1) and (100) planes

Application-2

Fracture Propagation in Si Crystals Growth Mechanism of Carbon Nanotube Gold Helical Multishell Nanowire

Zhang, Hoshi and Fujiwara unpublished

Elongated growth process of SWCNT from liquid carbon (acceleration test: high density, high temperature)

SWCNT : (9,0) Density : 1.7 g/cm3 Growth velocity: 30 m/s Simulation time : 86 ps

Elongated by more than 2nm Follow structure of wall Defects

The Nose-Hoover thermostat is used to control the total kinetic energy of the system. (T=4800 K)

The local temperature of the upper CNT tip is kept to be lower than that of the liquid part. (3800K)

Cooling process

The atoms come into CNT through surface region

Two-fold carbon atoms are majority in surface region

9.0 ps -> 20.1 ps

Defect Healing Process

Comparison with the ideal (9,0)CNT

Summary of Simulation for metallic systems : Growth mechanism of C-nanotube

Large scale Quantum Mechanical Simulation (Krylov subspace)

- (1) **Liquid precursor** for growth of C-nanotube
- (2) Linear chain-like structure in the surface region of liquid C
- (3) **Defect healing** process

Applications

Fracture Propagation in Si Crystals Growth Mechanism of Carbon Nanotube Gold Helical Multishell Nanowire

> Iguchi, Hoshi and Fujiwara, to be published in PRL

Gold helical multishell nanowires

Magic number, Multi-shell structure, Helicity

Y.Kondo and K.Takayanagi Science **289**, 606 (2000)

Y.Ohshima, Y.Kondo and K.Takayanagi, J. Electron Microscopy, **52**, 49 (2003) Magic number

Kondo et al., Science 289, 606 (2000)

13-6

14-7-1

15-8-1

1. Peak structure in appearance frequency

2. Difference of atom numbers between the outermost and next shells is seven. (Magic number)

Two-stage model for helical multishell nanowire

Stage 1: Dissociation of atoms on the outermost shell from the inner shell **Stage 2**: Slip deformation to introduce the helicity

Energy and structure change

11-4 nanowire

Gold helical multishell nanowires

Local Density of States (11-4 Au nanowire)

Summary of Simulation for metallic systems : Gold helical multishell nanowire

Two-stage model of gold helical multishell nanowire

(1) Effectivity of NRL Tight-binding Hamiltonian (2)Nano-science

- (1) Two stage model
 - a. Dissociation of atoms on the outermost shell from inner one.
 b. Slip deformation of atoms row with generating (111) surface.
- (2) Competition between s- and d-electrons.
- (3) Magic number, helicity, multi-shell structure.

10^{4~}10⁷ atoms (10[~]100nm) *Tight-binding formulation of the total electronic energy*

Generalized Wannier states ---- Unitarity freedom of eigen states

- (1) Density matrix represented by Wannier states
- (2) Insulators / semiconductors

Krylov Subspace Method

Subspace diagonalization method Shifted COCG method

- (1) Density matrix in Krylov subspace
- (2) Insulators / semiconductors and metals

Hybrid scheme by dividing the Hilbert space Prallelization

Original method and Program-Code

Problems in future : **Preparation for Hamiltonian**

Tight binding Hamiltonian * Possibly Outer Loop of LDA Hamiltonian

(1) Empirical TB Hamiltonian : [Si,Ge,C: sp³ model]Kwon et al., Phys.Rev.B**49**, 7242(1994). cf.sp³s* model (2) Non-orthogonal TB Hamiltonian (NRL): [Au, Cu, wide range of elements] M. J. Mehl and D. A. Papaconstantpoulos, Phys. Rev. B54, 4519 (1996), F. Kirchhoff et al., Phys. Rev. B**63**, 195101 (2001). (3)Orthogonal/Non-orthogonal TB Hamiltonian with repulsive potentials Xu et al., J. Phys. Cond. Matt. 4, 6047 (1992). Bond-order potential with repulsive potentials Mrovec et al., Phys. Rev. B69, 094115 (2004). (4) Gaussian or atomic orbital base (Gas phase parameters)