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  It has been known that the interlayer magnetoresistance of multilayer systems, for example,
GaAs/AlGaAs superlattice or organic layered conductors, shows remarkable angular dependent
behaviors when magnetic field orientation is changed. Although these angular effects essentially
originate from the modulation of single tunneling probability between neighboring two layers, they
have been usually explained by semiclassical orbital motion on Fermi surfaces and the Boltzmann
transport theory. In the present work, we have additionally applied electric fields parallel to the
stacking axis, and studied the change of the angular effects in interlayer transport both theoretically
and experimentally.
  Here, we discuss quasi-one-dimensional (Q1D) multilayer systems, where each layer consists of
coupled conducting 1D chains (see Fig.1), since they show rich angular effects, Lebed resonance,
Danner-Chaikin oscillations, and the third angular effect, depending on rotating directions of
magnetic fields. Among them, the Lebed resonance is the most fundamental effect, and the others
are just its amplitude modulation. The Lebed resonance is resonant increase of interlayer
conduction which occurs when magnetic field becomes parallel to one of the lattice planes
including the conducting 1D axis. In Q1D conductors under magnetic fields, semiclassically, an
electron carries out orbital motion on a sheetlike Fermi surface. At the Lebed resonance, electron
orbits become periodic on Fermi sheets, and the interlayer group velocity averaged over an orbit
becomes finite causing resonant increase of interlayer conduction. When we additionally apply
electric fields along the stacking axis, electron orbits are modified in the different way on two Fermi
sheets: When electric field accelerates an orbital electron on one Fermi sheet, it slows down an
electron on another Fermi sheet. Therefore, under electric fields, electron orbits on two Fermi sheets
become periodic at different field orientations. This causes the doubly splitting of Lebed resonance.
The electric field effects on other angular effects, which are amplitude modulation of Lebed
resonance, can be understood from this splitting.
  In order to demonstrate the above effect experimentally, we have chosen a layered organic
conductor α-(BEDT-TTF)2KHg(SCN)4 as a Q1D multilayer system. It is known that this material
has sheetlike Fermi surfaces in low temperature region as a result of Fermi surface reconstruction.
This material shows a series of very sharp and clear Lebed resonances, which means the existence
of sheetlike Fermi surfaces, and its interlayer resistance is so large that we can easily apply high
electric fields along the stacking direction. Single crystal samples were rotated in fixed magnetic
fields up to 13T. To avoid sample heating, the electric field was applied to samples as successive
voltage pulses with width of 5µs and duty ratio of 1/3000. The waveforms of both voltage and
current pulses were recorded in the 12bit digitizer. As shown in Fig. 2(a), when the height of
voltage pulses is small enough, the interlayer current shows a series of Lebed resonance peaks as a
function of the tilt angle of magnetic fields. Figure 2(b) indicates the waveform of one Lebed
resonance peak (p=1) for several interlayer electric fields. We can see that the Lebed resonance
peak shows doubly splitting as expected above, and this split becomes larger as the voltage pulse
height is increased. Figure 2(c) shows the split width as a function of interlayer electric fields for
five Lebed resonances. Since the split width depends on the resonance position, the abscissa is
normalized so as to be independent from resonance position. In Fig.2(c), the splits of all resonances
are proportional to the electric field and scaled on a single line. This fact strongly suggests that the
observed splitting originates from the mechanism discussed above. If it is true, we can estimate the
Fermi velocity from the observed splitting as vF=8x105m/s. This value is consistent with the result



of the infrared study of the other group. In this way, the split effect of Lebed resonance under
electric fields would possibly give a useful experimental tool to determine the Fermi velocity of
Q1D conductors.
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Fig. 1 Schematic structure of the Q1D
multilayer system. Coupled conducting
chains (//x-axis) form conducting layers
(//xy-plane). Electric fields are applied
parallel to the stacking axis (z-axis).

Fig. 2 (a) Angular dependence of interlayer
conduction in an organic conductor α-(BEDT-
TTF)2KHg(SCN)4 under very weak electric fields.
Temperature was kept at 1.7 K and the total magnetic
field was fixed to 13 T. Arrows indicate the Lebed
resonances. (b) p=1 Lebed resonance under several
interlayer electric fields. (c) Plot of split width against
normalized electric field.


