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Introduction Quantum point contact (QPC) is the simplest quantum system, connecting
two macroscopic reservoirs with a region shorter than the mean free path and as narrow as the
Fermi wave length. QPC is an important element as a high sensitive potential meter, since
its conductance (G) changes sharply with the gate voltage (potential). However, its transport
characteristics have not fully been understood yet. The conductance anomaly found in a linear
transport regime|1], is now believed to be originated from a many-body effect. We have been
trying to explain this phenomenon as an additional electron scattering by exchange enhanced
spin fluctuations localized to QPC region.|2]

Current noise spectrum, S(w), which is a Fourier transform of symmetrized correlation
function of the current fluctuations, is one of the important quantities since it manifests the
dynamics/statistics of the electron transport. Low-frequency 1/f noise in QPC had been
investigated experimentally[3], indicating the excess noise proportional to (g—G)QV2 where pu, V
are chemical potential and applied bias, respectively. For relatively high—ﬁrequency regime,
the shot noise characteristics had been predicted[4] and experimentally confirmed, where S
|\V|T'(p)(1 —T(w)) with transmission probability 7'(x) giving Landauer’s formula G = %T(u).
Recently, a shot noise experiment had been conducted for the lowest one-dimensional sub-
bands|[5]. It shows suppression of shot noise near the gate bias voltages at which the conductance
anomaly is observed. In this report, we study the effect of classical fluctuating field on the shot
noise spectrum using time-dependent perturbation theory. By identifying this classical field to
the internal thermal spin fluctuation, part of the features of the observed shot noise suppression
can be explained.

Model We consider effective one-dimensional system described by a Hamiltonian, H =
—%VZ +U(x)+ 06U (x,t), with localized fluctuating potential near QPC, 06U (z, t), with proper-
ties U (x,t) = 0 and W (x, z,t—t') = 0U(z,t)6U (2, ') # 0 where the over-bar means statistical
average. The system of strongly localized oscillating potential had been investigated[6], and a
formula of average current is obtained[7]. The noise characteristics with harmonic oscillations
of the barrier had been discussed in [8]. Here, we follow the scheme proposed by Levinson and
Wolfle[9] where the current correlation function is decomposed into quantum mechanical and
statistical parts:

S(z,2") = Sy(z,2')+ Ss(z, 2), (1)
Sq(zv Z/) = QZjnm(Z)jmn(zl) [fn(l - fm) + fm(l - fn)]

Ss(z, Z/) = SZ[jnn(z) Jmm(2') = Jan(2) * Jmm (2")] frfms

where 7,,, is current nm matrix element with n’s identifying the eigenfunctions of H and
z = (x,t). After the Fourier transform and taking low-frequency limit (but not as low as 1/f
regime), we obtain the noise formula, S = lim, ;o0 w0 S(2, 2/, ).

Results We execute perturbation expansion of the eigenfunctions in 60U and then make
statistical average. The lowest order is given by

SO =2e2S"T272{ fr(1 — fr) + fr(1 — fr)} + 2TR{fr(1 — fr) + fr(1L — fu)}. (2




which is a well-known form[4] with f;,r being Fermi distribution function of the reservoir (L/R)
at energy F and T, R transmission/reflection probabilities at energy E. The low-temperature
condition, kT < e|V|, yields Ség)ot = %26|V|T(/,L)R(,u). The first order vanishes and the
second order is evaluated, and following is the form at low-temperature condition, kgT < e|V|,

; v
S5 = 22elV11Qu() + L 10u(0) ®)

We have evaluated Q,, Qs as a function of p numerically for the system with a model static
potential given by U(z) = ug/cosh?(2x/L) with a spatial extension parameter L. We also
assumed that the fluctuating potential 0U(z, t) is localized in the region L. The characteristic
frequency of the fluctuation W(x,2’,t) is assumed to be smaller than the inverse transit time
of the electron through the QPC, wrpoutess = vr/L, where vp is the Fermi velocity. We found
for kpL > 1 that Q,() and Qy(p) show p dependences roughly proportional to %T(u) and
%T(u), respectively.

Discussions and Summary For low bias conditions, main contribution of the shot noise
is proportional to T'(p) R(1) + Qa(1). Since Q. (1) has a large negative region when g is about
equal to ug, the total shot noise is suppressed compared with the value without fluctuating
field in these region. In our previous analysis[2] in the same model, we have correction in the
average current, proportional to %T (1) at the same region of chemical potential. Therefore,
we expect conductance anomaly and suppression of shot noise at the same values of chemical
potential. The pu dependence of ), has a simple explanation. Under quasi-adiabatic condition,
krL > 1, the potential fluctuation éU(zx,t) is equivalent to the fluctuation of injection energy
as E(t) = p+ 2a,coswt. (Here we took only one w component since cross terms do not
contribute. We need to sum over w with relevant weights, a.) For the validity of perturbation
expansion, a, < p should hold. Now the shot noise correction is obtained by the Taylor
expansion of SY, , in a, with p replaced by E(t) and the temporal average of the second order

term yields, Qq(u) ~ ai%[T(u)R(u)]. By noting that for smooth scattering potential U(z),
T(u)R(p) ~ &%T(u) where a > 0 characterizes the smoothness (curvature) of the potential
o3

(constriction), we obtain that Qa(p) o< 5T (p). Higher bias quadratic behavior proportional
to @ is consistent with [8,9].

In summary, we have studied the noise spectrum of the quantum point contact (QPC) with
the effect of fluctuating classical field. We found suppression of the shot noise by this field,
which is synchronized with the anomaly of the conductance. This analysis cannot account for
the effect of quantum fluctuation of spin. Nevertheless, the effect of thermal fluctuation of spin
on the transport through QPC would be related to this results.
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