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A great deal of interest has been focussed on the anomalous behavior of 2D electron(hole)
systems,[1] whose resistivity unexpectedly decreases as the temperature is lowered, exhibiting a
behavior generally associated with metals, rather than insulators. Recently, low-T transport of
dilute 2D systems has been considered in Ref.[2] taking into account both the carrier degeneracy
and thermal correction[3] owing Peltier and Seebeck effects combined. The current causes
heating(cooling) at the first(second) sample contact due to the Peltier effect. Under adiabatic
conditions the temperature gradient is linear in current, the contact temperatures are different.
The measured voltage includes Peltier effect-induced thermoemf which is linear in current.
The total resistivity yields[2]

ρtot = ρ
(
1 + α2/L

)
, (1)

where ρ is the ohmic resistivity, α the 2D thermopower, L the Lorentz number. We report
on a study of α and compressibility, K = dN

dµ
, for dilute 2D system within MIT regime. Both

quantities exhibit density and temperature dependencies which give the strong evidence of
thermodynamic nature of 2D MIT. Simultaneous measurements data[4−6] for ρ, α and K confirm
our predictions.

Let us consider, for clarity, Si-MOSFET 2DEG within strong inversion regime. At fixed gate
voltage the quasi-Fermi level, µ, in the semiconductor bulk is shifted with respect to that of
the metal gate. The number of occupied states below quasi-Fermi level denotes the density of
electrons assumed to occupy the first quantum-well subband with isotropic energy spectrum.
Using Gibbs statistics, thermopower yields α = −k

e

[
2F1(1/ξ)
F0(1/ξ)

− 1
ξ

]
, where Fn is the Fermi integral,

ξ = kT/µ the dimensionless temperature. Here, we assumed that the electron scattering
is characterized by energy-independent momentum relaxation time. Within Boltzman limit
(µ < 0, |ξ| ¿ 1) the thermopower yields α = −k

e
(2 − 1/ξ). For strongly degenerated 2DEG

(ξ ¿ 1), we obtain α = −k
e

π2ξ
3

. Then, at elevated temperatures (ξ > 1) the thermopower

approaches the universal value αs = −k
e

π2

6 ln 2
. Our support of the above behavior( see Fig.1a,

insert ) is confirmed by diffusion thermopower data,[4] found to diverge at certain value ∼ 0.6k/e
being of the order of αs.

We now discuss 2DEG compressibility, known to be a fundamental quantity generally more
amenable to theoretical and experimental analysis. Within our simple approach the 2D density
yields N = −dΩ

dµ
= N0ξF0(1/ξ), where where Ω is the thermodynamic potential, D = 2m

πh̄2 the

density of states, N0 = Dµ the density of strongly degenerate 2DEG. Therefore, K = DF ′
0(1/ξ),

where F ′
n(z) is the derivative of the Fermi function. Fig.1b represents the dependence of inverse

compressibility parameter d(µ) = ε/Ke2. For strongly degenerated electrons(ξ ¿ 1) one
obtains a constant value d0 = ε/De2 in consistent with experiments.[5] However, at µ → 0
the inverse compressibility data[5,6] known to diminish and, furthermore, become negative.
Usually, this behavior is explained[5] in terms of Hartree-Fock exchange omitted within our
simple model. However, further diminishing of 2D density results in an abrupt upturn of
inverse compressibility which cannot be explained within Hartree-Fock scenario. We argue
that the above feature has the natural explanation within our model(see dashed line in Fig.1b)
since d = d0 exp(−1/ |ξ|) at µ < 0, |ξ| ¿ 1 and, hence, exhibits T-activated behavior.
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Figure 1: a) T-dependence of resistivity(see [2] and Eq.(1)) and thermopower(inset) for µ/k =
TF [K]=2-0.25(step 0.25), 0.2-0.05( step 0.05), 0.01, 0(bold line),-0.1,-0.2. b) Dimensionless inverse
compressibility vs Fermi temperature at zero magnetic field(thin lines) and h̄ωc = 1K(bold lines) at
fixed temperatures T=0.15,0.25K. Dashed line depict zero-field asymptote at µ < 0, |ξ| ¿ 1

In general, for 2DEG placed in perpendicular magnetic field the compressibility yields

K =
D

4ξν

∑
n

1

cosh
(

εn−µ
2kT

)2 ' D

[
F ′

0(1/ξ) + 4π2ξν
∑

k

(−1)kk cos(2πνk)

sinh(2π2kνξ)

]
, (2)

where we use the thermodynamic potential modified with respect to spin-unresolved zero-
width Landau level(LL) energy spectrum εn = h̄ωc(n + 1/2), where n = 0, 1.. in the LL
number, ωc = eB⊥

mc
the cyclotron frequency. Then, ν = µ

h̄ωc
is the filing factor. According to

Eq.(2), at fixed magnetic field and temperature the dependence d(µ) can be viewed(see Fig.1b)
as a superposition of zero-field dependence and LLs related oscillations. These findings are
consistent with experimental observations.[5,6]
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