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In one-dimensional electron-lattice systems with a half-filled electronic band it is well-known
that the lowest energy state of the system has the Peierls distortion with a wave number 7, the
lattice constant is unity, and that the system behaves as an insulator. In recent studies [1,2], it is
reported that the Peierls distortions in a two-dimensional square lattice system described by the
SSH (Su-Schrieffer-Heeger) model have different properties from those in the well-known one-
dimensional case; in this two-dimensional case the Peierls distortions are composed of Fourier
components with various wave vectors parallel to Q@ = (m,7) including Q itself (we call this
state Multi-Mode Peierls State: MMPS). The known properties of this MMPS are summarized
as follows; (1) there are an infinite number of degenerate ground states at absolute zero of
temperature, which have non-equivalent different patterns of lattice distortions and the same
electronic energy structure, (2) the Fourier components of lattice distortions concerning the
MMPS vanish all together at a critical temperature T¢, and (3) The infinite degeneracy of the
lowest energy states survives at finite temperatures lower than 7, [3]. In order to understand
the mechanism of the Peierls transition in this two-dimensional system, it will be useful to
study the phonon dispersion relations at finite temperatures taking account of the effect of the
electron-lattice interaction.

In this work, we discuss phonon dispersion relations at non-zero temperatures, and partic-
ularly study the softening of multi-phonon-mode related to the Peierls distortions. The details
of the formulation used here are described in [4]. The model Hamiltonian treated in this work
is given by
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where the field operators ¢; ;, and (z;r’j’s annihilate and create an electron with spin s at the
site (i, j), respectively, and ¢ is the transfer integral for the equidistant lattice, o the electron-
lattice coupling constant, w(%,j) = (u,(¢, ), u,(i,j)) the lattice displacement vector, K the
force constant describing ionic coupling strength in the lattice system. The periodic boundary
conditions (PBC) are assumed for both directions. The phonon normal modes are obtained
through a standard linear mode analysis. In the temperature region higher than 7¢, the system
has no lattice distortion, and therefore the electronic eigenfunctions in the absence of phonon
excitations are described by simple plane waves, o%(r) = Lileik'r, where L is the system size
and r stands for a site (4, ). As a consequence the phonon normal modes are expressed in the
form of plane waves, du(r,t) = G(q,w)e@" %! with q represents a wave vector of a phonon



mode and w the corresponding eigenfrequency. The linear mode equations in the temperature
region higher than 7, are given in the following form,

w*G(q,w) =U(4)G(q,w), (2)
where
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Here f(ey) is Fermi distribution function for eigenenegy €, which is given by e, = —2t¢(cos(k,)+

cos(k,)). The above equation is easily solved and we find softening of transverse phonon modes
with various wave vectors parallel to Q when the temperature is lowered (see Fig. 1).
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Figure 1 indicates that all eigenfrequencies connected to MMPS cross 0 at the same temperature
T, ~ 0.33ty/kp. The negative values for w? mean that those modes are unstable. In the case of
longitudinal modes we find that only the -mode shows a softening at 7.. In Fig. 2, the whole
dispersion relation for the transverse modes at 1. is depicted, which clearly shows that all the
transverse modes with wave vectors parallel to ¢ are equal to zero. These behavior is confirmed
to be consistent with the structure of the Peierls distortion below 7.. Although the treatment
of the phonon modes in the temperature region lower than 7 is a bit more complicated because
of the presence of static Peierls distortions, similar analysis can be performed.
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