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We study the interaction-induced magnetoresistance of a two-dimensional electron gas sub-
ject to a perpendicular magnetic field. While in a diffusive regime (very low temperatures)
Altshuler-Aronov corrections [1] lead to a negative magnetoresistance [2], ballistic magneto-
transport in high magnetic fields has not been investigated yet. This regime, which is directly
relevant to experiments on high-mobility systems, is addressed in the present work. Specifi-
cally, the ballistic regime corresponds to the range of relatively high temperatures 7' 2 h/T,
where 7 is the transport mean free time. Since in high-mobility samples i/7 can be as small
as 50 mK, it is the ballistic regime (rather than the diffusive one) that is realized in a typical
experiment.

We develop [3, 4] a general theory of the interaction—induced corrections do,, to the
conductivity tensor of 2D electrons valid for arbitrary temperatures, transverse magnetic
fields and disorder range. Making use of a “ballistic” generalization of the diffuson diagram
technique, we derive a general formula which expresses do,, in terms of propagators of classical
motion in the phase space (“ballistic diffusons”). Our formula contains as limiting cases all
the previously known results: the diffusive regime in zero [1] and strong [2] magnetic fields
and the ballistic regime with white-noise disorder in zero magnetic field [5]. Our formalism
allows us to calculate the magnetoresistance in systems with arbitrary type of disorder in the
full range of temperatures from the diffusive to the ballistic regimes.

We show that in the ballistic regime the interaction corrections are very sensitive to the
type of disorder. In particular, a T'7-contribution to the resistivity in zero magnetic field
(derived for the white-noise disorder in [5]) is proportional to the probability of backscattering
on disorder and therefore is exponentially suppressed in a smooth random potential. However,
the interaction correction reappears in a sufficiently strong magnetic field, w, 2> T'.

Generally, the magnetoresistivity is determined by return processes (diffusive or cyclotron
returns). We find that in the case of a smooth disorder characteristic for high-mobility het-
erostructures the interaction-induced magnetoresistance has the form
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/Oo = Tk G(TT). (1)

The function G(x) is shown in Fig.1 and has the following asymptotics: G(x < 1) ~ —Ilnz +
const and G(z > 1) ~ (co/2)x~"/2 with ¢y = 3¢(3/2)/16+/7 ~ 0.276. In other words, the
temperature dependence of the quadratic negative magnetoresistance changes from In(7'7) in
the diffusive regime (7'7/h < 1) to (I'7)~'/? in the ballistic one (7'7/h > 1). These results
have been confirmed by a very recent experiment [6].

We also discuss the experimentally relevant situation when two types of disorder are
present: rare short-range scatterers (residual impurities) and the smooth disorder.

Another realization of the ballistic regime is a high-frequency (w > 77') magnetotrans-
port. At frequencies larger than the cyclotron frequency w, the interaction correction to the
resistivity shows a sequence of peaks at w = nw, related to the cyclotron returns.



0 0.1 0.2 0.3 0.4
B(T)

Figure 1: Function G(7T't) determining the T-dependence of the interaction correction (1).
Figure 2: Development of the interaction-induced magnetoresistivity in the parallel direction
in a modulated system with lowering temperature (from top to bottom). The straight line is
the quasiclassical result in the absence of interaction.

We further apply the method to nanostructured systems. A quantum correction deter-
mined by the interplay of the interaction and disorder-induced scattering is of special interest
in the case of a 1D lateral superlattice, where the resistivity is anisotropic. We demonstrate
that in this case the correction (which has a distinct oscillatory form) shows up in the resis-
tivity in parallel (y) direction, which is unaffected by the modulation within the quasiclassical
theory, see Fig.2. This is because the interaction effects mix the two directions,
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This provides an explanation for puzzling oscillations in the parallel direction (in phase with
the commensurability oscillations in the transverse direction) observed recently [7].
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