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The valence bond basis for S=1/2 spins
• Dates back to the 1930s; Pauling, Romer, Hulthen...
• Spans the singlet space

Consider N (even) spins
• divide into 2 groups; A and B 
• e.g., sublattices (not necessarily)
• bonds from A sites to B sites; singlets

Basis states:

The valence bond basis is overcomplete, non-orthogonal
• expansion of singlet sate not unique
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Overlap of VB states
• given by the number of loops Nl  in superimposed graphs
• all basis states overlap with each other (useful...)

Matrix elements
• spin correlations related to loop structure

More complicated matrix elements discussed in
K. Beach, A.S., Nucl. Phys. B 750, 142 (2006)



Projector Monte Carlo in the valence bond basis
(-H)n, or (C-H)n, projects out ground state from an arbitrary state 

S=1/2 Heisenberg model

Project with strings of bond operators

Action of bond operator on VB state

• No branching when acting on a VB basis state
• No minus signs for bipartite lattice if “direction” of singlet 
  (i,j) is                (i on sublattice A, j on sublattice B)

Arrow - ”direction” of (i,j)



Sampling the wave function

Simplest trial wave function; a single basis state |Vk>

The weight of the path is given by # of off-diagonal operations

How to sample? Trivial way: 
• Randomly replace m operators at string positions p1,...,pm
• Recalculate weight (noff) by propagating |Vk>
• Accept using Metropolis probability

• Gives good acceptance probability for 
• Works because of non-orthogonality of basis
• Faster way to calculate acceptance probability desired...



Calculating the energy

Consider the Neel state |N>
• All VB basis states have equal overlap with |N>

• The energy can be calculated using any equal-overlap state

Operation with                          gives sum of 1(diagonal) and 
1/2 (off-diagonal)

nd = number of diagonal bond operations Hij
no = number of off-diagonal operations Hij
Nb = number of bonds on the lattice (no+nd=Nb)



Direct improved estimator for the singlet-triplet gap
The valence bond basis spans the singlet sector
• with one triplet bond, one can study the lowest triplet state

Hij propagates the triplet off-diagonally almost like a singlet

but a diagonal operation gives zero (kills the triplet state)

E1 can be calculated by propagating a state with one triplet
• propagate for all initial triplet locations (N/2 different bonds) 
• surviving paths contribute to the triplet energy
• subset of singlet and triplet configurations are the same
  - error cancellations in                       , improved gap estimator 



General operator expectation values

Operator string notation: 

We have to project both a bra and a ket state:

Importance sampling of

Estimator to be averaged

Sampling by operator replacements as before
• note that the weight includes an overlap



IIlustration: 6-site chain, n=3

Note: in this basis the propagation is non-hermitean
• the left state is propagated from the left
• the right state is propagated from the right
• the propagated states always have some overlap



Sampling a bond-amplitude product state
Instead of using a single basis state as the trial state,
it is possible to sample a wave function

bond b of state k

Update by reconfiguring two bonds
[Liang, Doucot, Anderson, PRL 61, 365 (1988)]

Acceptance probability
c

d
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If reconfiguration accepted
• calculate change in string-projection weight as before 
• final accept/reject based on projection weight only

Liang [PRB 42, 6555 (1990)] used parametrized h(x,y) for 2D Heisenberg
• determined parameters variationally 
• improved the variational wave function by projection



Variational wave function
It is very time consuming to fully optimize all h(x,y) variationally
• Newton/conjugate-gradient method [J. Lou and A. S., cond-mat/0605034]

Energy Spin correlations

Asymptotic form h(x,y)=h(r)
• h(r) decays as 1/r3

• previous work gave 1/rp, p = 2-5
• mean-field theory [K. Beach]
  explains 1/r3 form

Variational energy error
• 25% smaller than Liang et al.’s 



Self-optimized trial wave function

Projector method can access the
bond-length probability P(x,y)
• related to the amplitude h(x,y)
• for wave function with h(x,y)
      P(x,y)     h(x,y)

Results for 2D Heisenberg

P(x,y) can be used to construct h(x,y) 
almost as good as the variational h

Definitions
• h(x,y) = bond amplitude of the trial state
• P0(x,y) = bond probability of the trial state
• Pn(x,y) = bond probability of the Hn projected state

For large enough n, Pn(x,y) is the exact ground-state distribution
• if P0(x,y) > Pn(x,y), then reduce h(x,y) 
• if P0(x,y) < Pn(x,y), then increase h(x,y) 
• repeat until P0(x,y)=Pn(x,y) for all x,y
• fast method to obtain almost optimal h(x,y)
• can be generalized to include bond correlations



Energy convergence; 2D Heisenberg, 162 spins
• comparison of different trial wave functions



Energy of self-optimized state



Convergence of long-distance correlation function



Correlation function of self-optimized state



2D Heisenberg model with 4-site interactions
• Neel to VBS quantum phase transition 
• Candidate for “deconfined” quantum-criticality
   - contunuous transition; “Landau rules” say 1st order

VBS order; open boundaries break symmetry - unique VBS
• order parameter; bond correlation

J=0 - columnar VBS Q=0 - no VBS order



Finite-size scaling
periodic boundaries
• dimer correlations
• submattice magnetization
• singlet-triplet gap
• J/Q=0.0; VBS
• J/Q=0.1; antiferromagnet



Singlet-triplet gap scaling; dynamic exponent z
z relates length and time scales

Critical gap:

Consistent with deconfined quantum-criticality (z=1 theory)

at J/Q≈0.04



Neel and VBS orders
• finite-size scaling

• order parameters
  vanish at the same
  coupling; (J/Q)c≈0.035

• correlation function
  exponent h is large;
  h ≈ 0.4 for spin
• smaller for dimers
• more careful analysis
   in progress



Frustrated systems
Consider the full valence-bond basis, including
• normal bonds, connecting A,B spins (sublattices)
• frustrated bonds, connecting A,A or B,B

For a non-frustrated system
• projection eliminates frustarted bonds

For a frustrated system
• frustrated bonds remain and cause a sign problem
• frustrated bonds can be eliminated using over-completeness

In a simulation, one of the branches can be randomly chosen
• but there is a sign problem



Summary

The valence bond basis can be used in projector QMC
• some observables easier to calculated than in z-basis
• easy to study certain types of multi-spin interactions
   - interesting phases/transitions; Neel-VBS
• self-optimized trial wave functions
   - including bond-correlations; explored currently

Sign problems for frustrated systems
•  but freedom offered by overcompleteness should be
   explored; potentially there are sign-problem-free
   frustrated systems

More details for 2D J-Q model in symposium talk
• evidence for deconfined quantum-criticality,
  including emergent U(1) symmetry


