Introduction to the
Stochastic Series Expansion method

Anders Sandvik, Boston University

e [llustration of concept; classical Monte Carlo example
e Detailed account of SSE for the S=1/2 Heisenberg model

This presentation is based on material available at
http://physics.bu.edu/~sandvik/programs/

A simple SSE program (Fortran90) for the
2D Heisenberg model can be downloaded from this site



Warm-up: SSE for a classical problem

Classical thermal expectation value

(f) =22 fl@)e P, Z=) PO
{o} {o}

Classical (e.g., Ising) spins: 0 = {o1,09,...,0nN}
Classical Monte Carlo: Importance sampling of spin configurations

Probability of generating a configuration
1
P(o) = ZWl(o), W(o)= e~ PE(?)

Estimate of expectation value based on sampled configurations

) =(Hw = - 1 Z f(oli])

N samples

Imagine that we are not able to evaluate the exponential function
How could we proceed then?



Use Taylor expansion of the exponential function

_ )’E i o (—JE) n
DRI =)
{g} n=0 {o} n=0
Expansion power n is a new “dimension” of the configuration space

To ensure positive-definitness we may have to shift E (must be < 0)
E(o) — FE(o) —
The sampling weight for the configurations (o,n) is
A"e — E(o)|"
n!

The function to be averaged (estimator) f(0) is the same as before;
it does not depend on n

() = N~ —— 3 1l

Ng amples

Wio,n) =

However, if f(0) is a function of the energy it can be rewritten
as a function of n only!



Define: H (o) = ¢ — E(0)

:i H(o)W(o,n), Z= Wi(o,n),
DIAGL >

o.n o,n

Shift summation index: m=n+1

ZH YW (o, n) Z EH (o, m)

Therefore the energy expeetation value is

1 1

(H) = ,d’< n)w = E—F—§< n)w

We can also easily obtain

. 1
(H*) = gz {n(n - 1))w
And thus the specific heat ¢ = 31 ((E?) —

C = S({n) = (n)? = ()

Wi(o,n) =

(E)%) is

;3H’H(O') n

n!



What range of expansion orders n is sampled?

From the preceding results we obtain
(n)y = pB(e — F)
(n?) — (n)? =B(C +€e—E)
Consider low T; C —= 0

(n2) — (n)2 = (n)

Thus, for a system with N spins:

Average expansion order o¢ (7/V

Width of distribution oc \/ /3N

These results hold true for quantum systems as well

In the quantum case H consists of non-commuting operators:
H"™ requires more complicated treatment



Quantum-mechanical SSE

Thermal expectation value

(A) = ETI*{_;’le-‘m b, 4= Tr{_e_-’”f_}
Choose a basis and Taylor expand the exponential operator
))H
Z=). Z )" o)

o n=I0

Write the hamiltonian as a sum of local operators
H — Z H, a = operator type (e.g., I=diagonal, 2=off-diagonal)
o a.o

b = lattice unit (e.g., bond connecting sites 1,)
a.,b

such that for every a, b: H, ;|a) = h, ,(«)|a’) (no branching)
Write the powers of H in terms of “strings” of these operators

> 1 Hew v

{IIH!!} } p_J-



Operator strings of varying length n
* as in the classical case (n) = —3(H )

Fixed-length operator strings: introduce unit operator: /145 = 1

Expansion cut-off M: add M-n unit operators to each string

e there are M!/n!(M-n)! ways of doing this =
(M — n)In) n = number

I\ — | H, of non-[0,0]
(=H) {;} M! }1_[1 {(p).b(p) operators,

The truncation should not be considered an approximation
* M can be chosen such that the truncation error is negligible

u )
[ = Z Z L - <(}, HH{I{H]EJfI) (},>
=1

o {Hgp}
The terms (o, {H,;,}) are sampled according to weight in this sum
e requires positive-definiteness
* to this end, a constant may have to be added to diagonal H,,
* there can still be a “sign problem” arising from off-diagonal H_,




SSE algorithm for the S=1/2 Heisenberg model

e The algorithm for this model is particularly simple and efficient

—]ZS S.

(1,7)
Consider bipartite lattice (sign problem for frustrated systems)
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Standard z-component basis:
|f.-}f> = D7 .y ,,Qi*> th — I

[
Bond operators: bond b connects sites 1(b),j(b)

H = Z[ wSim+ 5 (s*+ S~ + 57, s*ﬁb))]

o |



B 2
H = HH b

b=1 a=1
Diagonal and off-diagonal bond operators
- 12 V2 o - f—  — -+
Hl b — 1 ’Sf.(b} ’S;{b) ) Hz-b o Z (’Sf.[m 'Sj (b) ! 'S'.i.[b] ’S_j (b) )

A minus sign in front of the off-diagonal H,, is neglected
e this corresponds to a sublattice rotation; 180 degree rotation in
the xy-plane of the spin operators on sublattice B

 The sign is irrelevant for a bipartite lattice (will be shown later)
M

: 29 |30 [31 |32

SSE operator string H H o (1) b(p) 414\1 415 e

N\ 13
p=1 9 15—
' 26

27 |28
Represented in the computer program by

opstring|p| = 2b(p) + a(p) — 1
Spin state lo> represented by

spin|i| = 257



SSE partition function

x {-'“ruf: }

Both H,, and H,, give O when acting on parallel spins
* non-zero matrix element = 1/2 in both cases

Define propagated states
P

— H Hoj).6(5)l00) ) = |a(0))

=1
For a contributing configuration: |a(M)) = |a(0)) (periodic)

The configuration weight is then

S B\" (M —n)!
IV (( X, {H ab } ) — ( 2) M

Periodicity requires an even number of spin flips
* This is why the sign of H,, 1s irrelevant for a bipartite lattice
* For a frustrated lattice an odd number of flips 1s possible




Graphical representation
e 1D example; 8 spins, M=12 1D: bond b connects sites b and b+1

i= 12 3 4 5 6 7 8
spin[i] = +1 +1 -1 -1 +1 -1 +1 -1

P a(p) b(p) opstring(p]
® © O O @ O @ O
— 1 1 2 4
® © O O @ O 0 O
2 0 0 0
® ©¢ O O @ O 0 O
— 3 2 4 9
® © O ® O O @ O
— 4 2 6 13
® ¢ O e O @ O O
— 5 1 3 6
® e O ® O ® OO
6 0 0 0
® ¢ O @ O @ O O
7 0 0 0
® e O ® O ®6 O O
— 8 1 2 4
® 6 O ® O @ O O
— 9 2 6 13
® © O ® O O @ O
10 0 0
® © O ® O O @ O
— 11 2 4 9
® ©¢ O O @ O 0 O
— 12 1 7 14
® © O O @ O @ O



Linked-list representation
e vertex: operator and spins before and after the operator has acted

o e ® O ® O ® O
o o ® O

* replace spins between vertices by links

1 2 3 4 5 6 7 8
spin[i] = +1 +1 -1 -1 +1 -1 +1 -1

i =

P a(p) b(p) opstring[p]
® ¢ OO @@ O 0 O
— 1 1 2 4
oo | |
2 0 0 0
o e
— 3 2 4 9
® O O o
1 — 4 2 6 13
o e ® O
— 5 1 3 6
o e
| 6 0 0 0
7 0 0 0
® O
— 8 1 2 4
® O ® O
— 9 2 6 13
o e
10 0 0
® O |
— 11 2 4 9
o e ® O
— 12 1 7 14

® 6 0O O O @ O

e linked vertex list used in some parts of the program



A vertex has 4 “legs”, numbered 1=0,1,2,3:

0 1 0 1 0 1 0 1
| | | | | | | |
o e ® O e O ® O
— —3 — —
o e ® O o e o e
| | | | | | |
2 3 2 3 2 3 2 3

position p of operator in operator string opstring[p], vertex leg |
=> position v in linked vertex list: v=1+1+4* (p-1)

vertexlist[v] contains the element # to which v 1s linked

1 = 0 1 2 3 p
[v] vertexlist[v]: [ 11 31 [ 2] 32 [ 31 29 [ 4] 17 1
[ 51 ©O [ 6] ©O [ 71 © [ 81 © 2

[ 91 43 [10] 44 [11] 18 [12] 42 3

[13] 35 [14] 47 [15] 33 [16] 34 4

[17] 4 [18] 11 [19] 30 [20] 41 5

[21] O [22] O [23] © [24] O 6

[25] © [26] O [27] © [28] O 7

[29] 3 [30] 18 [31] 1 [32] 2 8

[33] 15 [34] 16 [35] 13 [36] 45 9

[37] © [38] © [39] © [40] © 10

[41] 20 [42] 12 [43] 9 [44] 10 11

[45] 36 [46] 48 [47] 14 [48] 46 12



Sampling the SSE configurations; updates

1) Diagonal update
- replace unit operator by diagonal operator, and vice versa
H{),U — Hl._b

2) Off-diagonal update (local or loop)
- change the operator type, diagonal <«— off-diagonal,
for two (local) or several (lIoop) operators

{Ha-lgbl ) Haz-bz? et Hﬂr:rrnb-m} A {HB_(LI b1 HB_fLerQ’ DR H:;_a--rnsbm,}

3) Flip spins in the state lo>
- unconstrained “free” spins; weight unchanged after flip

- only possible at high temperatures; strictly not necessary
S; — =87

Updates satisty detailed balance:

W (B)Psclect (B — A) l)

W (A)Pscloct (A — B)’

I {1.{:{:(_'&13‘((1’1 — B ) = min (



Diagonal update

e Carried outin opstring[p] for p=I1,....M
e State lou(p-1)> stored in spin|]

1 2 3 4 5 6 jnsertion of

i= 12 3 45 6
diagonal operator

-1 +1 -1 +1 +1 -1

spin[i] =
O @0 @ @ O
—_— —
O @0 @ @ O
-1 +1 -1 +1 +1 -1
i = 1 2 3 4 5 6 1 2 3 4 5 6 removal of
spin[i] = -1 +1 -1 +1 +1 -1 diagonal operator
O @ 0O e @ O
— o
O e 0O @ e O
~1 +1 -1 +1 +1 -1
i = 1 2 3 4 5 6 1 2 3 4 5 6 off—diagonal
spin[i] = -1 41 -1 +1 +1 -1 no change,

O @ O @ @ O propagate state

— —_— —
O e ¢ O ¢ O

-1 41 +1 -1 41 -1



Insertion of a diagonal operator if opstring[p]=0

Generate bond index b at random, attempt opstring[p]=2*b
e can only be done if spin[i(b)]= spin[j(b)]
* n increases by 1; weight ratio

Wn+1) 3/2

W(n) M —n
Removal of a diagonal operator if opstring[p]=0
* n decreases by 1; weight ratio

Wn-1) M-n+1
W(n)  B3/2

B ways of selecting b but only one way of removing an operator;

}];r;('al(':{:t(b 7 0) o

}%%(':l(':{:t(o — b) -

crees _ B3/2
ACCQDt Dl’ObabllltleS. RLCCD])J[-(??" — N _I_ 1) — min 11 . 1
M —n

M —n+1 ]
B3/2

Piccept(n — n — 1) = min (



Local off-diagonal update (obsolete)

Change type of 2 operators on the same bond
e cannot always be done; check for constraining operators
* no weight change; accept with fixed probability (e.g., P=1)

i=1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

P opstring[p] opstring[p]
® ¢ O O O @ O ® ® O O @ O ¢
1 — 4 — 4
e o | | e o | |
2 i 0 0
10 @, o e
3 :—. 9 — 9
@ Orj0 o ®@ O O o
4 1 m— 13 [ — 12
o e ® O o e o e
5 — 6 — 6
o e o o
6 | 0 | 0
7 0 0
® O ® O
8 —3 4 —3 4
® O ® O ® O o e
9 — 13 3 12
o e o e
10 I 0 0
® O, | ® O |
11 | m— 9 — 9
O0_ @& ® O o e [
12 — 14 — 14




Note: periodic boundary conditions in the “propagation” direction
 update spanning across the boundary affects the stored state lo>

i=1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

P opstring[p] opstring[p]
® ¢ O|0O 0 O @ O ® ¢ O ¢ O O @ O
= | = |
2 0 0
o e ® O
3 — 9 — 8
@ Ol O o ®@ O O o
4 I — 13 I — 13
o e ® O o o ® O
5 — 6 — 6
O e O e
6 | 0 | 0
7 0 0
® O ® O
8 —3 4 — 4
®@ O ® O ® O ® O
9 — 13 m— 13
o e o e
10 0 0
® o | e o | |
11 — 9 — 8
o e ® O ® O @ O
12 — 14 — 14
® ¢ O |0 o O ¢ O ® & O ¢ O O ¢ O

Local updates typically are not very efficient
e critical slowing-down
* no winding-number or particle-number fluctuations



Loop update

e carried out in the linked-vertex-list representation

* move “vertically” along links and “horizontally” on the same operator

* spins flipped at all vertex-legs visited; operator type changes; weight unchanged
e construct all loops, flip with probability 1/2 (as in Swendsen-Wang)

i=1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
P opstring|[p] opstring|[p]
® ¢ O O ® O @ O ® ¢ O O @ O @ O
1 — 4 — 5
= | | oo | |
2 0 L 0
o © " 9 O @
3 — 9 . 1 =3 8
@ O O o r " O ®@ O o
4 — 13 oo — 13
® O " 0 @ O
5 — 6 e . 6
C @ o .__O .
6 0 LI 0
o o . -
[ | [ | - [}

! ;—l_ ’ % ! °
8 — 4 — 5
® O ® O ® O , » @@ O

10 o e 0 . 1 O e
é O | 0" e |

11 — 9 — 8
o e ® O C @ ® O

12 — 14 — 14

o
®
o
(o)
®
o
®
o
o
@
o
o
o
o
®
o



Monte Carlo step

e a cycle of diagonal updates (p=1,...,M in opstringl[p])
e construction of the linked vertex list

e construct all loops, flip each with probability 1/2

e map updated vertex list back to opstring[], spin[]

Starting the simulation

¢

e “empty” perator string, opstring[pl=0, p=1,...,M
e M 1s arbitrary, e.g., M=20

e random spin state; spin[p]=+1, -1

Determining the cut-off M

e after each, MC step, compare expansion order n with M
e if M-n<n/a, with, e.g., a=3, then M=n+n/a

500 — | ' I ' I ' I '
40N)

= 300
200
100

{'} | I ] I | I | I |
0 500 1000 1500 2000 2500

Monte Carlo step

|

!
S
=




Generalization of loop update; directed loops

In the case of the isotropic S=1/2 model
e There are only 4 non-0 vertices
* The operators uniquely define all loops
* Loops are non-self-intersecting

Directed loops

* In general, there are more than 4 allowed vertices

e A vertex 1s entered at some entrance leg

* The path can proceed (exit) through any of the 4 legs

e Exit probabilities are obtained from directed-loop equations
e Loops can back-track (“bounce”) and self-intersect

e Bounces can be avoided for some models (more efficient)



