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Mapping D-dimensional quantum system
to (D+1)-dimensional classical system
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Factorizing by time

Factorizing by space

global state (worldline config.) local statelocal unit
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Monte Carlo sampling of world-lines
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S : world-line configuration

local interaction "u"

world-line

Suzuki 1976



The method used before 1993

A lot of problems



Problems with the old method

１．critical slowing-down
２．systematic error due to time-discretization
３．slowing-down due to time-discretization
４．off-diagonal Green's function
５．grand canonical average
６．artificial conservation (winding number, etc)
７．negative sign problem



Fortuin-Kasteleyn Formulation
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Introducing ''auxiliary field'' G b
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Swendsen-Wang Algorithm

S G S’

clusters that don't flip
clusters that flip

Swendsen-Wang 1987
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Updating by Loops



Generalization of FK Formulation

''auxiliary field'' G b introduced
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Series Expansion Formulation

arrived at the same expression!

Introducing L "boxes" 
and filling variable 
Gk=0,1
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Tr is replaced by 
a sum over "world-line"
configurations



The Simplest Example

S=1/2 Antiferromagnetic 
Heisenberg Model



Loop Algorithm

Cluster algorithm with path-integral representation

A graph element
(The building block
of graphs)

Evertz-Lana-Marcu 1993



Ｓ＝１／２ ＸＹ model

Harada-Kawashima 1998

Tc = 0.34271(5)J



Ｓ＞１／２ problems in 1D

S.Todo and K.Kato 2001

S-dependence of 1D antiferromagnetic Heisenberg model



SU(N) model
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（（（（Fundamental repl. for A sublattice and its conjugate for
B sublattice）））） N dimensions for each site

A general extension of the Ｓ＝Ｓ＝Ｓ＝Ｓ＝１１１１／／／／２２２２ Heisenberg model

non-binary loops ... Harada (Aug. 3)
... Kawashima (Aug. 9) 



Off Diagonal Green's Function
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Meron Algorithm

Negative sign problem for spinless fermion can be r emoved.

The condition for the meron algorithm to work:１１１１））））The global sign can be factorized into local signs.２２２２））））Graphs with meron has no contribution to Z.３３３３））））Graphs with no meron has positive contributions to Z.
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Updating by Worms



Problem with Loop Algorithm

Effect of magnetic 
field is not taken 
into account in 
graph construction

A bottle neck 
appears in the
phase space

ー Magnetic field that competes 
against exchange interaction ー
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Introducing Discontinuities to Worldlines
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Updating with Worms

[Worm] = [Discontinuity point on world lines]

The worm feels its environment while moving around.

Prokofiev-Svistunov-Tupitsyn 1996
See Prokof'ev (Aug. 8)



Syljuasen-Sandvik Framework
Syljuasen-Sandvik 2002

Vertices (=graph elements) are placed
before world-line configuration is altered
like the loop algorithm.

World-line configuration is updated by 
worms, but the worm head can hop to the
neighboring site only at a vertex. 

See Sandvik (Tomorrow!)



Worm update reduces to the single-spin
update for Ising-like XXZ model

If applied to the Ising model, the worm head cannot hop
to the neighboring site. It just goes up and down along 
the same vertical line. Therefore, the best it can do in
a single cycle is just flipping a single spin.

On the other hand, when the loop algorithm is applied
to the Ising model, it reduces to the Swendsen-Wang
algorithm, which is nice. But it cannot be generalized to
the systems with frustrations.



Loop vs. Worm

GOODS and BADS

• LOOP
- The size of clusters is just right
- Critical slowing-down is reduced
- Cannot handle the field competing 

with exchange interactions

• WORM
- Robust  (Competing fields are OK)
- Reduces to local update in some cases



Improvements Achieved Since 1993

● No need for time-discretization
● Critical slowing-down is reduced
● Grand canonical averages and winding number 

fluctuation can be computed
● Some off-diagonal Green's functions can be computed
● Solvable negative-sign problem was found
● General algorithm applicable to a broad class of 

quantum system has been developed.
● Bose systems can be handled
● Can be fit in the extended ensemble method 



Future Problems

■ Crystalline field (tetragonal, cubic, etc)
■ Generalization of worm update to cover the Ising 

like XXZ model
■ Negative sign problem 

(Does the general solution exist?)
■ Frustration with no negative signs

--- Extended ensemble methods



Extended Ensemble Method
There are cases, such as the frustrated Ising like XXZ model,
in which the worm update reduces to the single-spin update.
In order to overcome the critical slowing-down, therefore,
we need to use some other techniques.

... Extended ensemble methods are promising candidates.

◇ Multi canonical ensemble method (Berg & Neuhaus (1991))

◇ Broad histogram method (Oliveira et al (1996))

◇ Replica exchange method (Hukushima & Nemoto (1996))

◇ Simulated tempering (Marinari & Parisi (1992))

◇ Wang-Landau method (F. Wang & Landau (2001))

etc.

There are many possible implementations.


