# Field Induced Reentrant Phase Transitions in Quasi-One-Diemnseional Random Quantum Heisenberg Chains Saitama University Kazuo HIDA

- 1 Introduction
- 1.1 Quantum Magnets in the Magnetic Field
- 1. Magnetization Plateau

Field induced spin gap = Disordered Phase

- 2. Field Induced Antiferromagnetic Phase
- (a) Quasi-One-Dimensional System

Magnetic Field > Spin Gap⇒ Tomonaga-Luttinger Liquid

+ Weak interchain interaction



Antiferromagnetic Long Range Order

Disorder effects on the quantum spin systems in the magnetic field

- Revived spins⇒magnetic long range order
- Localized singlet pairs = plateau formation⇒Suppresss the magnetic order

Competition

 $\downarrow \downarrow$ 

Field induced reentrant transition

### 2 Model

Quasi-1-dimensional Random S=1/2 Heisenberg model with bond alternation

$$H = \sum_{j} \left\{ \sum_{i=1}^{N/2} J oldsymbol{S}_{2i-1,j} oldsymbol{S}_{2i,j} + \sum_{i=1}^{N/2} J_{ij} oldsymbol{S}_{2i,j} oldsymbol{S}_{2i+1,j} 
ight\}$$

#### intrachain

$$+\sum_{i=1}^{N}\sum_{< j,j'>}J_{\mathrm{int}}oldsymbol{S}_{i,j}oldsymbol{S}_{i,j'}$$
 interchain

• Intrachain Interaction:

$$J=1$$
  $J_{i,j}= egin{cases} J_{
m S} & ext{probability } p \ J_{
m W} & ext{probability } 1-p \ J_{
m S}>J>J_{
m W}>0 \end{cases}$ 

Method DMRG: Keeping  $60 \sim 160$  states.

## [Bond Configuration]



$$0 
 $J$ 
 $J_W$ 
 $J$ 
 $J_S$ 
 $J_S$ 
 $J_S$ 
 $J_S$ 
 $J_W$ 
 $J_S$$$

3 Magnetization Curve of an Isolated Chain at T=0.  $J_{\rm S}=2~J_{\rm W}=0.1~J=1$ 

1. Uniform Chain - DMRG



## 2. Magnetization Curve of Mixed Chain - Cluster picture



Averaged over 64 samples with  $N=120\,$  .



### 4 Effect of Interchain Interaction

Mean Field Approximation for the Interchain Interaction

$$\left\langle S_{i,j}^x\right\rangle = \begin{cases} (-1)^i m & J_{\rm int} < 0 & \text{Interchain ferromagnetic interaction} \\ (-1)^i P_j m & J_{\rm int} > 0 & \text{Interchain antiferromagnetic interaction} \end{cases}$$
 for  $J_{\rm int} > 0$ 

$$P_j = +1$$
  $j \in A$ -sublattice

$$P_j = -1$$
  $j \in \mathsf{B}$ -sublattice

Interchain mean field Hamiltonian

$$H^{\mathrm{IMF}} = \sum_{i=1}^{N} J S_{2i-1} S_{2i} + \sum_{i=1}^{N} J_{i} S_{2i} S_{2i+1}$$
 $-H_{\mathrm{st}} \sum_{i=1}^{N} (-1)^{i} S_{i}^{x}$ 

$$H_{
m St}=\lambda m(H_{
m St})$$
 Self-consistent equation  $\lambda\equiv z|J_{
m int}|$  
$$\lambda_c=\lim_{H_{
m St} o 0}H_{
m St}/m(H_{
m St})$$

## $\lambda_c$ : critical interchain interaction $\lambda$



Multiple reentrant transition

N=120. Averaged over 512 samples.

### • Fine peak structure



## • $H_c$ -dependence of $\lambda_c$



N=240,480 Averaged over 256 samples (middle 240 sites).

 $\lambda_c = 0$  only for discrete points?

## 5 Intrachain spin-spin correlation function



Averaged over 512 samples for N=240

## Exponential decay even for $\lambda_c = 0$

Non plateau state: Dense excited states near the ground state Staggered mean field mixes the excited state into the ground state



Long range order with weak interchain interaction

## 6 Summary

1. Quasi-one-dimensional random alternating bond S=1/2 Heisenberg model exhibits multiple reentrant transitions in the magnetic field.

Method: DMRG+Interchain mean field approximation

- 2. In the absence of interchain coupling, the spin-spin correlation function decays exponentially even in the non-plateau regime.
  - Mix up the low energy excited states by interchian interaction.
  - $\Rightarrow$ Long range order
- 3. Bose glass phase (Nohadani  $et\ al$ ) is not found Limitation of interchain mean field approximation
- 4. Reentrant transition in 3-D random dimer system Random destruction of singlet dimer⇒Local moment
  - Quasi-One-dimensional random alternating bond system
     Competition of 2 types of dimer patterns blocal moment
     More complicated features = Multiple reentrant transition

5. Speculated finite temperature phase daigram



6. Possibility of experimental observation: random substitution of anions on the superexchange path

Ref. K. Hida: J. Phys. Soc. Jpn. 75, 074709 (2006). cond-mat/0602016;