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The aim of this laboratory is to study the physical
properties of matter (such as semiconductors,
magnetic materials, metals, insulators) under ultra-
high magnetic field conditions. Such a high magnetic
field is also used for realizing the new material phase
and functions. Our pulse magnets can generate up to
80 Tesla by non-destructive way, and up to 730 Tesla
by destructive (the single turn coil and the electro-
magnetic flux compression) methods. The former
serves for the physical precision measurements (the
electro-conductance, the optics, and the magneti-
zation). The multiple extreme physical conditions
combining the strong magnetic field with ultra-low
temperature and ultra-high pressure are also available,
and are open for domestic as well as for international
scientists. The magnet technologies are intensively
devoted to developments for the quasi-steady long
pulse magnet (an order of 1-10 sec) energized by the
world largest DC generator (210 MJ), and also to
a 100 Tesla class nondestructive magnet. Whereas,
the explosive pulse magnets capable of generating
over 100 T are oriented for new horizons in material
science under such extreme quantum limit condi-
tions. Development for 1000 T-generation by means
of the electro-magnetic flux compression method is

also our mission.
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Newly installed electro-magnetic flux compression (EMFC) system. The new EMFC gen-
erator energized by the 10 modules of 50 kV condensers, all together 5 M]J, is designed to
generate 1000 T ultra-high magnetic fields. Another 2 MJ main condenser modules are
used to inject an energy to the relatively light EMFC system for frequent use, but capable of
generating around 600 T. The seed field coils, generating the initial magnetic field, which is
compressed by the EMFC, are connected to the sub condenser bank modules of 20 kV, 2 MJ.
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We are engaged in development for generating ultra-high
magnetic fields above 100 T, and pursue the solid-state science
realized under such an extreme condition. We employ two methods
for the ultra-high magnetic field generation, one is the electro-
magnetic flux compression (EMFC) and the other is the single-
turn coil (STC) method. We have established a new type of coil
for the EMFC, and currently the maximum magnetic field is 730 T.
This value is the highest achieved thus far in an indoor setting in
the world. Further development is underway for achieving much
higher fields, more precise and reliable measurements for the
solid-state physics. We are now involved in construction of ultra-
high magnetic field generator system under the 1000 T project.
The horizontal and vertical (H- and V-) STCs are used for more
precise measurements up to 300 T, respectively, in accordance with
their magnetic field axes. The H-STC is mainly used for magneto-
optical measurements by use of laser optics, whilst the V-STC is
more suitable for the study of low-temperature magnetization in a
cryogenic bath. We are conducting the studies on magneto-optics
of carbon nano-materials or of semiconductor nano-structures as
well as on the critical magnetic fields in superconducting materials
and on the high-field magnetization processes of the magnetic
materials with highly frustrated quantum spin systems.
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Newly-developed ultra-high magnetic field generator of the
electro-magnetic flux compression method. The 5M] fast
condenser bank is capable of supplying maximum electrical
current of amount to 8 mega-ampere, which is injected to a
primary coil through the collector plate. By upgrading the
performance such as the maximum charging voltage and the
residual impedance, ultra-high magnetic fields up to 1000 T
are planned to generate.
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The exciton Aharonov-Bohm(A-B) splitting in semiconducting carbon nanotubes (CNT) was
observed by streak spectroscopic measurements in ultra-high magnetic fields above 300 T.
Upon applying a very intense magnetic field along an axis of a semiconducting single-walled
CNT, the band-edge exciton absorption spectrum shows up as a splitting as a result of A-B
magnetic flux. A magnetic field of 367 T, generated by the electromagnetic flux compression
destructing pulsed magnet-coil technique, was applied to single-chirality semiconducting
CNTs. Using streak spectroscopy, we demonstrated separation of the independent band-edge
bright exciton states at the K and K’ points of the Brillouin zone after the mixing of the dark
and bright states above 100 T. These results enable a quantitative discussion of the whole pic-

ture of the A-B effect in single-walled CN'Ts.

1. 100 T Bl EDBBEHHAE & PIEEHRIBAT R

Technical developments for ultra-high magnetic field magnets above 100 T and for solid-state physics measurements

2. EREISHIICENR
Magneto-optics in ultra-high magnetic fields
3. EBREISHBE, BEARDRANS

Magnetization processes of magnetic materials and the critical magnetic field in superconducting materials in ultra-high magnetic fields
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Profile of magnetic field for Short pulse magnet. The maximum field of

85T is the highest record for mono-coil field. This magnet is used for the
75T-measurements as a user’s coil.

1. EFRAEYRYE ORI
Study on magnetism of quantum spin systems
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We carry out precise measurements under non-destructive
pulsed high magnetic fields that are generated by capacitor
banks and flywheel DC generator installed at the facility. Various
magnets have been developed at user’s requests. Up to now,
available field conditions for users are as follows.

1. Short pulse magnet: Pulse duration 5 ms, maximum field 75 T
2. Mid pulse magnet: Pulse duration 30 ms, maximum field 65 T
3. Long pulse magnet: Pulse duration 1 sec, maximum field 43 T

Short pulse magnet is used mainly for magnetization
measurements on insulating materials and Mid pulse magnet
is used for various measurements on metallic materials. Our
magnet has been breaking the world record of non-destructive
mono-coil field and we continue to develop a new magnet
aiming at the new world record of 100 T. We have installed the
flywheel DC generator on May 2008. The generator enables us
to generate long pulsed field with the duration of 1 second. The
Long pulsed field is used for the heat capacity measurement
under high field and the p-T measurement can be done by use
of flat-top field. Higher long pulsed field is under development.
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Profiles of magnetic field for Long pulse magnet. The maximum field of

43 T is used for the heat capacity-measurements under high field.

Study on magnetism and conductivity of strongly correlated electron systems

3. FEWIE 100 TRV RY N DRFE
Development of non-destructive 100 T-magnet

4. BOYVT VAR T Ry ~ DRAF
Development of ultra-long pulse magnet
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Magnetoresistance of a single crystal of black phosphorus under multiple
extreme conditions. Inset shows schematic illustration of the crystal structure.
Resistance along the ¢ axis was measured in magnetic fields applied along the
a axis. We observed huge positive magnetoresistance larger than 1,000 times of
the value at zero field together with superposed Shubnikov-de Haas oscillations.

1. NIVLF 7 04 v 7 PEOHIGHEEERE
Field-induced transitions in multiferroic materials

2. EFMRREICE T 2EFIHEGERE
Electronic phase transitions in the quantum limit state
3. JNLRARBIEIS T ICH T 2 ERENEMIRER
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Magnetic fields have been extensively used in broad research
fields of solid state physics because they can directly tune the spins,
orbitals and phases of electrons in materials. We study various
kinds of phase transitions in high magnetic fields with using
non-destructive pulse magnets and developing/up-grading various
experimental techniques; e.g. magnetization, magnetoresistance,
electric polarization, polarizing optical microscopy, and so on.

As one of our recent projects, we focus on the electronic states
in the quantum limit state. Since charge carriers are confined
in the smallest cyclotron orbit, Coulomb interaction dominates
over the kinetic energy. Therefore, we can realize strongly corre-
lated electron systems in the quantum limit states. In particular,
we have been focusing on the semimetals having even number
of electrons and holes, and found a novel field-induced phase in
graphite and anomalous quantum transport properties in black
phosphorus under multiple extreme conditions.

We are also studying multiferroic materials using high preci-
sion experiments realized in pulsed-fields. We found a field-
induced novel multiferroic phase in a triangular lattice chiral
antiferromagnet CsCuCl; and bipolar resistive memory effects
in a room temperature multiferroic material BiFeOs.

In addition to these in-house studies, we accept about 40 joint
research projects per year and study various localized/itinerant
magnets and topological materials in high magnetic fields.
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(left) Schematic illustration of the arrangement of Cu ions in a chiral
antiferromagnet CsCuCls. (right) Field-induced changes of electric
polarization along the a axis in applied magnetic fields along the b* axis.
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High-speed polarizing microscope imaging in pulsed-high magnetic fields

4. MRAIAIVYE ORISR
High-field study of topological materials
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Temperature-magnetic field phase diagram of LaCoOj3 that is constructed
based on the magnetization process. The field-induced magnetic phases
(B1, B2) are obtained by applying magnetic field to the low spin phase (A1)
or the high-temperature magnetic phase (A2). Spin state ordering state is
expected to realize in the high-field phases.
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Properties of matters that emerge under ultrahigh magnetic
fields are being studied. Ground state of matter can dramati-
cally change by applying strong magnetic fields, since spin and
kinetic motion of electrons are directly affected by magnetic
field. Various kinds of novel phases are expected to emerge
in the strong magnetic fields through the phenomena such as
formation of nontrivial magnetic structure in low dimensional
spin systems, exotic local-itinerant transition in transition metal
compounds, and strong spin-lattice coupling in molecular
solids. Recent discovery of the novel 6 phase of solid oxygen
at over around 120 T is a specific example of the field-induced
novel phases; it realizes due to the field-induced structural phase
transition from the low temperature antiferromagnetic a phase.
At higher fields in the range of 1000 T, exploring unknown high-
field ground sates in materials with strong interaction is possible,
and hence, we have also been developing the techniques for
generation of the ultrahigh magnetic fields as well as for various
kinds of measurements at such ultrahigh fields.
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(a) Magnetization process and (b) Magnetic field derivative of the magne-
tization (dM/dB) plotted as a function of magnetic field. Two field-induced
transitions are observed at 55 and 102 T, respectively. The semiconductor-
metal transition occurs at the lower transition field, and a heavy fermion
state is expected to appear.

Electronic state of heavy fermion and valence fluctuating systems at ultrahigh magnetic fields

2. EFAE Y ROBEBISHBE

Ultrahigh-magnetic-field magnetization process of quantum spin systems

3. BKEBITMRZ BVWBRESICE T 5HISFHERGRE O

Study of magnetic field-induced phase transition at ultrahigh magnetic fields using magnetic birefringence

4. EFERR OWSFHEBEREE

Magnetic field-induced structural phase transition in solid oxygen

5. A FESROHSFHLERE-EEER

Magnetic field-induced insulator-metal transition in molecular conductors
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Visiting Associate Professor

In the strongly-correlated electron systems, unusual physical
properties often manifest itself, such as high-temperature supercon-
ductivity, colossal magnetoresistance effects, and giant thermoelec-
tric effects. These phenomena originate from the strong electron-
electron interaction as well as the coupling with local magnetic
moments and phonons in solids, which the conventional band
theory can hardly predict. Our group experimentally explores such
correlated phenomena by synthesizing novel materials with extreme
conditions, such as high pressure and high vacuum. We also aim to
reveal the underlying physics by measuring their transport proper-
ties down to cryogenic temperatures in high magnetic fields.

One of our recent research projects is to develop new magnets
hosting relativistic Dirac fermions as conducting carriers. We
have successfully synthesized single crystals of a new Dirac
antiferromagnet, where the high-mobility transport of Dirac
fermions is strongly coupled with a magnetic order. In collabo-
ration with Tokunaga group, with the pulsed magnetic field up
to ~55 T, we are studying the unconventional quantum transport
controllable by the magnetic states in solids. Furthermore, we
are interested in revealing the microscopic electronic structures
for such strongly-correlated Dirac fermions by high-resolution
photoemission spectroscopy developed in Shin group.

L 3IAVS
KIM, Yongmin

NAEANEESHER

Visiting Professor

Magneto-optical and magneto-transport measurements on van der
Waals heterostructures and III-V compound semiconductor based
nano-structures will be conducted in pulsed high magnetic fields.

Van der Waals heterostructures, consisted of different
two-dimensional (2D) layered materials such as graphene, MoS2,
and etc, have attracted a great deal of interests in condensed
matter physics due to their novel physical properties and possible
electronic applications. We investigate quantum tunneling and
Coulomb drag effects between 2D layered materials separated by
a different 2D layer in pulsed magnetic fields.

III-V compound semiconductor quantum structures have
potential applications to the lasers and solar cells. We already
reported a strong negative diamagnetic shift in GaP-InP lateral
nanowire system under pulsed magnetic fields. Understanding
the exciton behavior in an isolated quantum dot under magnetic
fields is of important for possible applications to the quantum
information devices. For this reason, we try to investigate
magneto-photoluminescence transitions from an isolated single
dot under pulsed magnetic fields by using a ball-shaped optical
fiber probe. We are also interested in the Aharonov-Bohm effect
and the quantum Hall physics at the extreme quantum limit
induced in various III-V quantum structures.
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