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As symbolized by the K-computer, massively
parallel computation is actively used for solving
problems in materials science in recent years. In
fact, computer-aided science has been providing
answers to many problems ranging from the most
fundamental ones, such as critical phenomena in
quantum magnets, superconductors, and superfluids,
to the ones with direct industrial applications, such
as semiconductor devices and electrode chemical
reactions in batteries. Due to the recent hardware
trends, it is now crucial to develop a method for
breaking up our computational task and distribute
it to many computing units. In order to solve this
problem in an organized way, we coordinate the
use of the computational resources available to our
community, including “K-computer” and ISSP super-
computers. We also support the activities of CMSI,
an organization of the materials science community.
In particular, we operate the web site, MateriApps,
which offers easy access to various existing codes in
materials science as well as cooperative code-develop-
ment environments. In addition, we are also leading
these activities to solutions to problems with more
direct social impacts such as substitutions of rare
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Energy relative to Fermi energy (Ry)
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ZnS doped with Cr and Fe is predicted to be a half-metallic antiferromagnet
(compensated ferri-magnet) (HM-AF). Also we have predicted that many
other intermetallic compounds such as CrFeS; might be HM-AFE
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Computational materials design (CMD)
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KKR Green's function method and its applications
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Magnetism and development of new permanent magnets
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Our main objective is to theoretically produce new function-
ality materials by means of computational materials design
(CMD). In particular, the development of new high-perfor-
mance permanent magnets is one of our main targets. CMD
aims at to design materials and/or structures on the basis of
quantum mechanics. This corresponds to the inverse problem of
quantum simulation. In general, solving such a problem is very
difficult, but in the case of CMD we can solve this by making
use of the knowledge, which is obtained through quantum
simulations, about underlying mechanisms that realize a specific
feature of materials. In this regards, the developments of new
methods of quantum simulation are also our very important
subjects. Among them are developments of methods of accurate
first-principles electronic structure calculations in general, first-
principles non-equilibrium Green’s function method, screened
KKR-method that realizes exact order-N calculation for huge
systems, and the methods beyond LDA.
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The magnetic anisotropy energy (MAE) of a new type of magnet SmyFe;7N.
The experimental observation that MAE changes its sign from in-plane to
uniaxial anisotropy, which is necessary for permanent magnets, is correctly
reproduced by our first-principles calculation.
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(1) Truncation in real space
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Underlying idea of the O(N) Krylov subspace method. (1) Construction
of truncated cluster for each atom by picking atoms up within a sphere. (2)
Projection of the truncated subspace into a Krylov subspace. (3) Solution
of the eigenvalue problem in the Krylov subspace, calculation of Green’s
function associated with the central atom, and back-transformation to the
original space.
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In accordance with development of recent massively parallel
computers, first-principles calculations based on density
functional theories (DFT) have been playing a very important
role in understanding and designing properties of a wide variety
of materials. We have been developing efficient and accurate
methods and software packages to extend applicability of DFT
to more realistic systems as discussed in industry. Although
the computational cost of the conventional DFT method scales
as the third power of number of atoms, we have developed an
O(N) Krylov subspace method, of which computational cost
scales only linearly, based on nearsightedness of electron. The
O(N) method enables us to simulate Li ion battery, structural
materials, and graphene nanoribbon based devices which cannot
be easily treated by the conventional method, and to directly
compare simulations with experiments. In addition to this, we
are aiming at realization of materials design from first-princi-
ples. As a first step towards the materials design, we have been
trying to develop a method to predict complicated crystal struc-
tures based on machine learning techniques. Our continuous
methodological developments have been all implemented in
OpenMX (Open source package for Material eXplorer), which
has been released to public under GNU-GPL, and widely used
around world for studies of a wide variety of materials.
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Optimized semi-coherent interface structure between BCC Fe and NbC by
the O(N) method. BCC Fe (100) and NbC(100) in the NaCl structure forms
semi-coherent interface structure in the Baker-Nutting relation: [010]nbc//
[011]pe, [001]Nbc//[011]fe. Iron atoms approaches to carbon atom due to
strong interaction between carbon and iron atoms, resulting in that struc-
tural strain affects into the inner part of iron.
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Development of efficient methods and algorithms for first-principles electronic structure calculations

2. F-REBCEFEFEDOFRRE

Development of first-principles electronic transport calculations
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First-principles calculations of two-dimensional Si structures

4. BIEREBOMEIOBIE - HEEDKRR

First-principles exploration of permanent magnet materials

5. OpenMX DRAF & NFE
Development of OpenMX
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