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Small particles exhibit random motions due to collisions by particles composing the surrounding medium. Diffusivity
is one of the most important properties for the environment and the target particle. When the environment is
heterogeneous and/or the structure of the target particle changes with time, diffusivity becomes a dynamic quantity.
These heterogeneous structures are often observed in living cells, entangled polymer, and supercooled liquid, where
the diffusivity changes with time. Here, I show analytical results on fluctuations of the observed diffusivity using the
paradigmatic stochastic model of a particle diffusion, e.g., the Langevin equation with fluctuating diffusivity. Applying
the theoretical results to diffusion of a lipid molecule, a peripheral protein, and supercooled liquids, we show the
fluctuating diffusivity provides a novel physical phenomenon. Finally we provide a method to detect transition points

at which a state of the target particle or a property of the surrounding environment changes significantly.
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Intense laser pulses can generate carriers, spins, phonons, and magnons far from equilibrium states. Information
about the dynamical behavior of these nonequilibrium states can be elucidated by: 1) the electronic structure, 2) carrier
scattering and relaxation mechanisms, including carrier-phonon and carrier-carrier scattering, 3) spin and
magnetization dynamics, and 4) dynamical many-body interactions. For example, coherent acoustic phonons which
are ultrasonic strain pulses can result in a broad optical spectrum from GHz up to THz1,2,3,4 The possibility of
manipulating Coherent Phonons (CP) could lead to develop new techniques such acoustic imaging as well as better
understanding and control of electronic and optical properties in devices. Exploring the interaction of CP with carriers,
magnetic impurities, and photons can open new prospective of phononics on nanoscale. For example, the manipulation
of spins in semiconductors without the application of magnetic fields opens the door to the next generation of devices,
where the electronic computation and magnetic memory can be performed on the same chip. In this talk, I will present
several magneto-optical studies including CP generation and control in multifunctional materials such as

ferromagnetic semiconductors and mutliferroics 1,5.
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In crystals, quantum electrons can be spatially distributed in a way that the bulk solid supports macroscopic electric
multipole moments, which are deeply related with emergence of topology in condensed matter systems, such as the
topological insulators. However, unlike the classical multipoles in open space, defining multipoles in crystals is a non-
trivial task, and only the dipolar moment, namely polarization, has been successfully defined so far. This polarization,
materialized as Su-Schrieffer-Heeger chain, served as a classic example of modern discussions of topological insulators.

In this talk, we propose the many-body invariants, i.e., the general definition, for electric multipoles in crystals,
which is related with recently-discovererd higher-order topological insulators. We generalize Resta’s pioneering work
on polarizations to the multipoles, which are designed to measure the distribution of electron charge in unit cells and
thus can detect multipole moments purely from the bulk ground state wavefunctions. We provide analytic as well as
numerical supports for our invariants. Application of our invariants to spin systems as well as various other aspects

of the many-body invariants will be discussed.
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Time-resolved pump-probe experiments recently attracted great interest, since they allow to detect hidden states
and they provide new information on the underlying dynamics in solids in real time.

Recently, with the observation of a Higgs mode in superconductors it is now possible to investigate the
superconducting order parameter, and thus the ground state, directly. By comparison with analytical calculations we
now have a microscopic understanding of the Higgs mode in superconductors. After calculating the non-equilibrium
response of s- and d-wave superconductors we show that such non-equilibrium Higgs spectroscopy opens a unique

approach to distinguish between different symmetries of the condensate, even for new and unknown superconductors.
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R Bl > 7 4 — <))V 32— : Non-semiclassical spin dynamics in the triangular lattice quantum
antiferromagnet
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We discuss our recent collaboration between theory and neutron scattering experiments on the equilateral triangular
lattice Heisenberg antiferromagnet Ba3CoSb209 with the effective S = 1/2. The material is an ideal realization of this
quintessential frustrated quantum spin model with small anisotropy, fairly good two-dimensionality, and the high-
symmetric crystal structure precluding Dzyaloshinskii-Moriya interactions. We focus on spin dynamics in zero field
[1] and in the 1/3 magnetization plateau phase [2]. We first demonstrate that nonlinear spin wave theory reproduces
the spectrum in the plateau phase, thereby allowing us to determine model parameters. However, in zero field,
nonlinear spin wave theory fails to explain intrinsic anomalous features in the spectrum, such as magnon line
broadening throughout the whole Brillouin zone and the high intensity excitation continuum, even though the ground
state is the conventional 120-degree ordered state. Finally, we discuss development of the 1/N expansion for the
spectrum in magnetically ordered phases, a new framework alternative to the 1/S expansion, to study the zero-field

spin dynamics [3].

Reference:

[1] J. Ma et al., Phys. Rev. Lett. 116, 087201 (2016)

[2] Y. Kamiya et al., Nature Communications 9, 2666 (2018)
[3] E. A. Ghioldi et al., Phys. Rev. B 98, 184403 (2018)
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The exactly solvable Kitaev model on a honeycomb lattice provides a novel platform to achieve an elusive quantum
spin liquid and Majorana quasiparticles. In the quest for Kitaev honeycomb magnets, the two-dimensional layered
ruthenate a-RuCl3and iridates A2IrO3(A=Na, Li) are considered a prime candidate. In this seminar, I will discuss our
group’s endeavor to search the predicted exotic states of matter in Kitaev candidate materials.

First, we present the combined thermodynamic, Raman and neutron scattering results ofa-RuCl3. We provide
experimental signatures of itinerant Majorana excitationsas a Y-shape dispersive excitation around the I-point and a
magnetic continuum obeying Fermi statistics. The spin fractionalization is further corroborated by a two-stage release
of magnetic entropy by (R/2)In2. Second, we address an ensuing question whether Kitaev spin liquids are stabilized in
the three-dimensional analogue of the honeycomb iridates, B-andy-Li2IrO3. Using polarization-resolved Raman
spectroscopy, we find that the temperature dependence of the Raman spectral weight is dominated by the thermal
damping of fermionic excitations, similar to a-RuCl3. Finally, we discuss an on-going project on the newly discovered

copper iridate Cu2lrO3, being in closer proximity to the ideal geometry of the Kitaev honeycomb model than its
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predecessors A2IrO3(A = Na, Li) mainly due to the eclipsed stacking of adjacent layers. Preliminary characterizations

reveal random Kitaev magentism, evading a long-range magnetic order, unlike A2IrO3.
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The few layer transition metal dichalcogenides (TMDCs) are two dimensional materials that have an intrinsic gap
of the order of = 2eV. The reduced screening in two dimensions implies a rich excitonic physics and, as a consequence,
many potential applications in the field of opto-electronics. Here I show that a layer perpendicular electric field, by
which the gap size in these materials can be efficiently controlled, generates an anomalous inter-layer exciton whose
binding energy is independent of the gap size. I show this originates from the rich gap control and screening physics
of TMDCs in a bilayer geometry: gating the bilayer acts on one hand to increase intra-layer screening by reducing the
gap and, on the other hand, to decrease the inter-layer screening by field induced charge depletion. This constancy of
binding energy is both a striking exception to the universal reduction in binding energy with gap size that all materials
are believed to follow, as well as evidence of a degree of control over inter-layer excitons not found in their well studied
intra-layer counterparts. The ground-state density functional theory (DFT) calculations are performed using the
Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional using the PAW method as implemented in the VASP
code. I have employed the non-self-consistent GW method to determine the many-body gaps, with excitonic properties

calculated by solving the Bethe Salpeter equation (BSE) in the g—0 limit.
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Rare earth pyrochlores present many possible candidates for hosting Quantum spin liquids (QSL). In this talk, starting
with the most well-known QSL proposed for these materials— the Quantum Spin Ice, I will discuss the effect of an
external electric field to probe the QSL and drive transition. I will end with a discussion of possible alternatives
candidate QSLs beyond Quantum Spin Ice and in particular discuss the properties of a fermionic QSL and its

competition with magnetic phases in context of rare earth pyrochlores.
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The kagome lattice is a two-dimensional network of corner-sharing triangles known as a platform for exotic quantum
magnetic states. Theoretical work has predicted that the kagome lattice may also host exotic Dirac electronic states
including those with non-trivial topology. We here present our recent work in conducting, layered kagome materials
exploring these Dirac-like states, particularly in systems with magnetic order. We describe observations of massive
Dirac states and associated Berry curvature induced transport. We also demonstrate the detection of these states
from de Haas-van Alphen oscillations and their modification in magnetic field. Finally, we discuss the promise for

these materials in terms of realizing robust time-reversal-breaking topological phases.
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3.Asano T, et al. Front Neurosci 12:561 (2018).
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R - BEfiRE 2 ) — : Quantum spin dynamics on frustrated triangular lattice: Bulk and 23Na NMR
studies of NaYbO2 and NaYbS2
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Putative quantum spin liquid triangular materials, NaYbO2 (powder) and NaYbS2 (single-crystal) are investigated
by bulk magnetization and specific-heat measurements, as well as by 23Na NMR and Yb ESR techniques as local
probes. No signatures of long-range magnetic order are found down to 0.3 K for both materials, evidencing a highly
frustrated spin-liquid-like ground state in zero field. Under external magnetic fields ranging 3-7 T along the triangular
lattice plane, signatures of magnetic order are observed in thermodynamic measurements, suggesting a possibility of
an anisotropic field-induced quantum phase transition. The 23Na NMR relaxation rates reveal the absence of magnetic
order and persistent anisotropic magnetic fluctuations down to 0.3 K at very low fields, and confirm the bulk magnetic
order above 3 T, field parallel to the triangular lattice plane, by the critical slowing down behavior of the nuclear
relaxation, T1. The H-T phase diagram for the magnetic order is obtained and discussed along with the existing

theoretical concepts for layered spin-1/2 triangular-lattice antiferromagnets.

B - BIGR1 > 7 #—< )3 J— : The Achilles’ heel of surface codes and why flying qubits might save
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A quantum computer with only 100 perfect quantum bits could beat the largest existing classical computer for
certain specific tasks. However, quantum speedup also requires an unprecedented accuracy in the control of quantum
states. Quantum error correction codes are supposed to provide logical qubits that meet this challenge. In this talk, I
will first briefly discuss the main stream approach to quantum error correction — surface codes — and show that
although «topologically protected» from a mathematical perspective, they are vulnerable to local errors from a physics
perspective. I will then describe how flying qubits might be more resilient to errors than localized qubits. The bulk of
the talk will be devoted to the description of the progress made in Grenoble towards the realization of an electronic

flying qubit.

This seminar is partially supported by JST CREST Grant Number JPMJCR1876, Japan.
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S mTrtE - 2 A5 — )3 J—  Broadband Ferromagnetic Resonance Spectroscopy: The “Swiss
Army Knife” for Understanding Spin-Orbit Phenomena
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Modern spin-based technologies rely on multiple, simultaneous phenomena that originate from the spin-orbit
interaction in magnetic systems. These include damping, magnetic anisotropy, orbital moments, and spin-orbit torques
that are manifested in the spin-Hall and Rashba-Edelstein effects. While cavity based ferromagnetic resonance (FMR)
spectroscopy has been used to characterize magnetic materials for many decades, recent advances in broadband and
phase-sensitive FMR techniques have allowed further refinement, improved accuracy, and new measurement
capability. In fact, broadband FMR techniques can now precisely measure spin-orbit torques at the thin-film level
without the requirement of device fabrication [1].

Broadband FMR measurements have also improved our fundamental understanding of magnetic damping.
Numerous extrinsic relaxation mechanisms can obscure the measurement of the intrinsic damping of a material. This
created a challenge to our understanding of damping because experimental data were not always directly comparable
to theory. As a result of the improved ability to quantify all of these relaxation mechanisms, many theoretical models
have been refined. In fact, this has recently led to both the prediction [2] and discovery [3] of new materials with ultra-
low magnetic damping that will be essential for future technologies based on spintronics, magnonics, spin-logic and
high-frequency devices.

I will begin this lecture with a basic introduction to spin-orbit phenomena, followed by an overview of modern
broadband FMR techniques and analysis methods. I will then discuss some recent successes in applying broadband
FMR to improve our ability to control damping in metals and half-metals, quantify spin-orbit torques and spin-
diffusion lengths in multilayers, and determine the interrelationships among damping, orbital moments, and magnetic

anisotropy [4], [6]. The impact of these result on specific technologies will also be discussed.

[1] A. J. Berger, E. R. J. Edwards, H. T. Nembach, A. D. Karenowska, M. Weiler, and T. J. Silva, “Inductive detection
of fieldlike and dampinglike ac inverse spin-orbit torques in ferromagnet/normal-metal bilayers,” Phys. Rev. B, vol.
97, 094407, Mar. 2018.

[2] S. Mankovsky, D. Kédderitzsch, G. Woltersdorf, and H. Ebert, “First-principles calculation of the Gilbert damping
parameter via the linear response formalism with application to magnetic transition metals and alloys,” Phys. Rev.
B, vol. 87, 014430, Jan. 2013.

[3] M. A. W. Schoen, D. Thonig, M. L. Schneider, T. J. Silva, H. T. Nembach, O. Eriksson, O. Karis, and J. M. Shaw,
“Ultra-low magnetic damping of a metallic ferromagnet,” Nat. Phys., vol. 12, pp. 839-842, Sep. 2016.

[4] J. M. Shaw, H. T. Nembach, T. J. Silva, and C. T. Boone, “Precise determination of the spectroscopic g-factor by use
of broadband ferromagnetic resonance spectroscopy,” J. Appl. Phys., vol. 114, 243906, Dec. 2013.

[6] J. M. Shaw, H. T. Nembach, and T. J. Silva, “Resolving the controversy of a possible relationship between
perpendicular magnetic anisotropy and the magnetic damping parameter,” Appl. Phys. Lett., vol. 105, 062406, Aug.
2014.
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The fact that Tc in perovskite bismuth oxides can exceed 30 K has been known since right around the discovery of
the high-Tc cuprates. Yet for various reasons, the bismuthates were never studied to nearly the extent of cuprates or,
later, iron-based superconductors. This is pity, because their phenomenology and underlying physics connect with a
wide array of contemporary interests: not only unconventional/high-Tc superconductivity, but also metal-insulator and
insulator-superconductor transitions, (bi)polarons, DWs/charge-order, disordered systems, and so on. Recently we have
succeeded in performing ARPES in situ on high-quality films of Bal-xKxBiO3. We revealed that the band structure of
the insulating parent compound (x = 0) can be reasonably captured by simple LDA [1]. The gap opens in a
predominantly oxygen-derived band, signaling the role of a negative charge transfer energy and supporting the notion
that the ground state involving ordered BiO6 breathing distortions is “bond disproportionated,” as opposed to
classically charge-ordered among the bismuth cations. Our latest experiments [2] probe within the “under- to
optimally-doped” region of the phase diagram. There we see a strongly dispersing metallic band forming a Fermi
surface, despite an absence of peaks in the energy spectra that are the signatures of Landau-like quasiparticles. We
observe, moreover, two types of pseudogap-like behaviors — i.e., gap-like suppressions of spectral intensity in the
absence of an obvious gap-inducing symmetry. The first of these extends over a broad energy scale and persists above
room temperature; the other is set in a narrow region around EF and opens in a well-defined temperature range above
Te. This latter “pseudogap” is revealed to be a signature of metal-insulator phase separation. I will discuss how our
observations fit within a polaronic understanding of these materials. In particular, we view the transition to phase
separation as the precipitation of ordered bipolaronic insulating regions out of a disordered polaronic liquid. Some
possible implications for superconductivity will also be discussed. (For potential users of Swiss Light Source, this talk

will also mention recent developments and future plans for SIS beamline and the SLS as a whole.)
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The modern technologies, especially in the field of chemical engineering and energy related applications, are constant
search for new tunable and adaptable materials. Such task demands for a more rational approach to the chemical
design of new molecular systems. In many cases the structural methods of investigations are not sufficient since the
base functionality is governed by the mobility of selected molecular components. Hence the knowledge behind
molecular mobility mechanisms is essential. In my talk I will give a brief overview of how the combined use of solids
state 2H NMR and QENS can provide and efficient toolbox for probing molecular mobility in complex confined states.
I will focus on two characteristic examples of the hydrocarbons diffusion in microporous metal-organics frameworks

and protons migration in solid proton conductors and hydrates.
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Non-local quantum entanglement — “spooky action at a distance” — is the key feature that distinguishes quantum
from classical systems. The entanglement-entropy provides a measure of entanglement and for many-body systems is
intimately connected to the thermal-entropy. Out of equilibrium, in a driven system or after a quantum quench,
entanglement spreads ballistically with maximal entropy attained at long times — that is, complete disorder reigns.
But not (always!) with life on earth! Why? In this talk I will discuss several different mechanisms to tame entanglement
growth;
(1) by quenched disorder in systems exhibiting many-body localization,
(1) by coupling light quantum particles to heavy (almost classical) particles, and
(iii) by “looking repeatedly” at the system (i.e. making projective measurements)—a many-body quantum Zeno
effect.

In the latter case, I will explore a novel hybrid quantum circuit model consisting of both unitary gates and projective
measurements, presenting evidence for a new quantum dynamical phase transition between a weak measurement
phase and a quantum Zeno phase. Detailed steady-state and dynamic critical properties of this novel quantum

entanglement transition will be described.
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