電子と正孔が結合した絶縁体において実現した 光誘起半金属状態

光を用いて物質の性質を自在に操る、というのが固体物 理学における目標の一つとなっている。これによって超高 速で環境に優しい光デバイスが実現できると考えられるか らである。しかしながら、単に熱平衡状態における高温相 に対応する高エントロピー相ではない相への光誘起相転移 の実現は一般には難しい。本研究では、励起子絶縁体と呼 ばれる相を含む Ta₂Ni(Se_{1-x}S_x)₅ において時間・角度分解 光電子分光(time- and angle-resolved photoemission spectroscopy, TARPES)という手法を用いて光誘起絶縁体 -金属転移の直接観測を実現した[1]。また、この系の動的 性質からは、金属相への転移の時間スケールに励起子相関 の遮蔽効果が果たす重要な役割を決定することができた。 直接ギャップ型の励起子絶縁体において思いがけなく観測 された非平衡金属状態は、電子-正孔結合系における光に よるバンド制御という技術確立に向けた新たな道を切り拓 くものと期待される。

研究背景

励起子絶縁体

半金属やバンドギャップが小さい半導体では、価電子帯 の正孔と伝導帯の電子が、クーロン相互作用の遮蔽が弱い ことによる束縛状態、すなわち励起子状態を形成すること がある。励起子は電子と正孔の結合の強さが弱いか強いか によって、Bardeen-Cooper-Schrieffer(BCS)型、もしく は Bose-Einstein 凝縮(BEC)型に凝縮することがある。こ のような基底状態は、"励起子絶縁体"と理論的に予言さ れている[2]。図 1a は、理論的に予言されている励起子絶 縁体の相図を本研究や最近の研究の進展に従って一部改変 したものである。最も典型的な励起子絶縁体の候補物質と して、1T-TiSe2 という物質が挙げられる[3,4]。この物質 は、価電子帯の頂上と伝導帯の底が Brillouin zone 内の異 なる場所に位置する間接型のバンド構造を持つ半金属であ るが、2×2×2の格子歪みを伴う電荷秩序相転移を示すこ とで、電子と正孔が結合して図 1a における BCS 型の励起 子絶縁体になると考えられている。しかしながら、間接型 のバンド構造を持つ物質では励起子絶縁体となる際に電荷 秩序形成によるバンドの折り畳みが必要になってしまうこ

極限コヒーレント光科学研究センター 岡﨑 浩三

とから、その基底状態が励起子絶縁体相であるのか電荷秩 序相であるのかの判別が本質的に難しい。また、間接型の バンド構造は将来的な応用を見据えた"光による制御"と いう観点からも不利であると考えられる。

図 1. 励起子絶縁体の相図と Ta₂NiSe₅の結晶構造と電子構造 a. 励起子絶縁体の相図. b. Ta₂NiSe₅の結晶構造. c. バンド構造のポンチ絵.

一方、本研究で対象とした Ta2NiSe5 は、唯一の BEC 型 励起子絶縁体の候補と考えられており、図 1b に示すよう に a 軸方向に伸びた Ni の鎖 1 本と Ta の鎖 2 本からなる 擬一次元結晶構造を持つ。価電子帯は Ni 3d 軌道と Se 4p 軌道の混成軌道、伝導帯は Ta 5d 軌道から成り、高温では 直接ギャップを持つ半導体となる[5-7]。328 K で高温相 の斜方晶から低温相の単斜晶へと構造相転移を起こすが、 1T-TiSe2 のような電荷秩序は示さない。一方、角度分解 光電子分光(ARPES)からは価電子帯のバンドの顕著な平 坦化が確認されることから、BEC 型の励起子絶縁体相の 証拠と考えられている[8-11]。このような電子構造を模式 的に示したのが図 1c である。

バンドギャップの起源の分類

本研究の当初の目的は、TARPES という手法を用いて Ta2NiSe5 が励起子絶縁体である証拠を得ることであった。

図 2. Ta₂NiSe₅ と Ta₂NiS₅の励起緩和過程とその励起強度依存性. a. 光励起による Ta₂NiSe₅の平坦バンドにおける TARPES 強度の時間依存性とその励起強度依存性. 矢印はその極小値を取る時間で定義される drop time τ_{Flat} .

もう一つの典型的な励起子絶縁体の候補物質である 1T-TiSe2 では、この物質の低温相が励起子絶縁体相である有 力な証拠が Hellmann らによる TARPES を用いた研究に よって既に得られているが[12,13]、その根拠となったア イディアは次のようなものである。TARPES ではポンプ 光を用いて価電子帯の電子を伝導帯へ励起し、その緩和過 程を直接観測することができるが、Hellmann らはバンド ギャップの起源によってその時間スケールが異なると提案 した。すなわち、電荷密度波(CDW)におけるパイエルス ギャップであればその時間スケールは CDW の振幅モード のエネルギースケール、モット絶縁体であればバンド幅、 それぞれの逆数に比例し、励起子絶縁体ではその時間ス ケールは電子-正孔間に働くクーロン相互作用の遮蔽効果 に依存するため、励起された電子のプラズマ振動数の逆数 に比例し、特徴的な励起強度依存性を示す、という考え方 である。彼らは参照物資として 1T-TaS2 などを用いるこ とでこの考え方を実験的に実証した。

図 3. ポンプ光照射前後での Ta₂NiSe₅の TARPES スペクトル. a. ポンプ光照射前.b. ポンプ光照射後. ポンプ光を照射する ことによって金属化していることがわかる.

実験結果

励起強度依存性

我々もこのアイディアに基づき、通常の直接ギャップ半 導体と考えられている Ta2NiS₅を参照物質として、光励起 緩和過程の励起強度依存性を調べた。TARPES 測定の光 源には、繰り返し周波数1 kHz、パルス幅約 30 fs のワン ボックス型チタンサファイアレーザー再生増幅器 (Coherent Astrella)を用いた。ポンプ光には基本波である 波長 800 nm の光を用い、プローブ光には、まず非線形光 学結晶であるβ-BaB₂O₄で第二高調波を発生し、さらにそ れをアルゴンガスに集光することで高次高調波を発生させ て、9 次高調波である 27.9 eV を選択した。図 2a は Ta2NiSe5 の平坦バンドにおける光励起緩和過程の時間依 存性とその励起強度依存性である。まず平坦バンドの電子 を励起するとその強度が減少し、極小値を示した後に回復 していくことがわかる。特筆すべきことは極小値を示すま での時間(図 2a 中の矢印)が時間分解能よりも有意に長く、 励起強度依存性も確認されたことである。平坦バンドの強 度が極小値を示すまでの時間は、光励起によってバンド ギャップが崩壊するまでの時間スケールに対応していると 考えられる。その時間スケールに励起強度依存性が見られ るということは、ギャップ崩壊のメカニズムとして、励起 電子によるクーロン相互作用の遮蔽効果が効いているとい うことを意味し、そのギャップの起源が励起子相関である

ということが強く示唆される。対照的に、通常の半導体と 考えられる Ta2NiS5ではその時間スケールは時間分解能程 度に速く、励起強度依存性を示さない。以上の結果から、 Ta2NiSe5 が励起子絶縁体であるという証拠が得られたと 考えられる。

光誘起金属相

さらに我々は、TARPES スペクトルの時間変化を詳細 に調べることで励起子絶縁体である Ta2NiSe5 がポンプ光 を照射することで金属化することを見出した。図3は励起 密度 1.56 mJ/cm² で励起した際の、励起前後での TARPES スペクトルの時間変化を示している。励起前の スペクトルでは励起子絶縁体特有の平坦バンドが確認でき るのに対し、励起後のスペクトルでは、赤と青の放物線で 示すようにフェルミ準位を横切る電子バンドと正孔バンド が現れていることがわかる。これは光励起によって金属化 したことの紛れも無い証拠と考えられる。さらに、熱平衡 状態では Ta2NiSe5 には高温においても金属相が存在しな い[14]ことから、我々が発見した光誘起金属相は熱平衡状 態では存在し得ない、光誘起特有の相であると言える。

この光誘起絶縁体-金属転移のメカニズムと、この光誘 起相転移の実現が Ta2NiSe5 の基本物性にどのように関係 しているか等のより詳細な議論については文献[1]を参照 して頂きたい。我々の成果は、絶縁体を金属に、金属を超 伝導体にするなど、光で物性を自在に制御するという究極 の目標実現への確かな礎になると考えている。

謝辞

本研究は以下の方々(小川 優、鈴木 剛、山本 貴士、 染谷 隆史、道前 翔矢、渡邉 真莉、魯 楊帆、野原 実、 高木 英典、片山 尚幸、澤 博、藤澤 正美、金井 輝人、 石井 順久、板谷 治郎、溝川 貴司、辛 埴 各氏)との共同 研究である。また、文部科学省国家課題対応型研究開発推 進事業「光・量子融合連携研究開発プログラム」、JSPS 科研費基盤研究(JP25220707, JP26610095)の助成のもと に行われた。ここに感謝申し上げます。

参考文献

K. Okazaki *et al.*, Nat. Commun. **9**, 4322 (2018).
M. F. Mott, Philos. Mag. **6**, 287 (1961).
H. Cercellier, *et al.*, Phys. Rev. Lett. **99**, 146403 (2007).
C. Monney *et al.*, Phys. Rev. B **79**, 045116 (2009).

- [5] F. J. Di Salvo *et al.* J. Less Common Metals **116**, 51 (1986).
- [6] S. Sunshine and J. Ibers, Inorg. Chem. 24, 3611 (1985).
- [7] A. Nakano et al., IUCrJ 5, 158 (2018).
- [8] Y. Wakisaka, et al. Phys. Rev. Lett. 103, 026402 (2009).
- [9] T. Kaneko, T. Toriyama, T. Konishi, and Y. Ohta, Phys. Rev. B 87, 035121 (2013).
- [10] K. Seki et al., Phys. Rev. B 90, 155116 (2014).
- [11] Y. Wakisaka *et al.*, J. Supercond. Nov. Magn. 25, 1231 (2012).
- [12] T. Rohwer et al., Nature 471, 490-493 (2011).
- [13] S. Hellmann et al., Nat. Commun. 3, 1069 (2012).
- [14] Y. F. Lu et al., Nat. Commun. 8, 14408 (2017).