# Giant Rashba spin splitting on monolayer-Pb-covered Ge(111) surface

Koichiro Yaji<sup>1,2</sup>, Akito Kakizaki<sup>1</sup>, and Tetsuya Aruga<sup>2,3</sup>

<sup>1</sup>Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan <sup>2</sup>JST CREST, Saitama 332-0012, Japan.

<sup>3</sup>Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.

## 1. Introduction

Rashba spin splitting of a surface state band on a semiconductor surface allows us to open a novel physics such as a spin transport at the surface. The Rashba spin-split bands on the semiconductor surfaces have been identified on Si(111) and Ge(111) surfaces so far [1-4]. Among them, monolayer lead (Pb) covered Ge(111) surface (Pb/Ge(111)- $\beta$ ) is remarkable because one of the surface state bands crosses Fermi level with the Rashba spin splitting [4]. We have pointed out that the Pb/Ge(111)- $\beta$  surface can become an ideal prototype for the spin transport study. On the other hand, the spin structures of the other surface-state bands are unclear. In the present article, we report on a giant Rashba spin-split band of Pb/Ge(111)- $\beta$ 

near the  $\overline{M}$  point measured with angle-resolved photoelectron spectroscopy (ARPES) and spin- and angle-resolved photoelectron spectroscopy (SARPES).

## 2. Experimental methods

A Ge(111) substrate was prepared by several cycles of 0.5-keV Ar<sup>+</sup> bombardment and annealing up to 900 K for a minute. Clean surface of Ge(111) was checked by observing a sharp (2×8) LEED pattern. Pb was deposited onto the surface at room temperature from an alumina crucible heated with a tungsten filament. The surface was then annealed at 570 K for three minutes to prepare a well-ordered wide terrace of Pb/Ge(111) with  $(\sqrt{3}\times\sqrt{3})R30^\circ$  periodicity. The Pb coverage of Pb/Ge(111)- $\beta$  was checked by an intensity ratio between Ge 3dand Pb  $5d_{5/2}$  core-level spectra, a full-width at half-maximum of the Pb  $5d_{5/2}$  core level spectra, and the observation of the sharp  $(\sqrt{3}\times\sqrt{3})R30^{\circ}$  LEED pattern. ARPES and SARPES were performed at BL19A in Photon Factory. The sample temperature was to room temperature during set the measurements.

#### 3. Results and discussion

Figure 1(b) shows the ARPES image taken along  $\overline{\Gamma} \ \overline{M} \ \overline{\Gamma}$  of  $(\sqrt{3} \times \sqrt{3})R30^\circ$  surface Brillouin zone (SBZ) shown in Fig. 1(a). The photon energy  $(h\nu)$  was set to 21 eV. We



Fig. 1 (a) SBZ of Pb/Ge(111)- $\beta$ . (b) ARPES image taken along green line in the SBZ shown in (a). Dashed curves represent two branches of  $S_2$ .

found three Pb-induced bands named  $S_1$ ,  $S_2$ and  $S_3$ . These bands were also observed with hv = 25, 30 eV. This indicates that  $S_1$ ,  $S_2$  and  $S_3$  are surely surface states or surface resonances. The  $S_1$  band, which shows free-electron-like metallic feature, splits into two due to the Rashba effect [4]. The  $S_2$  and S<sub>3</sub> bands are surface resonances because the states appear within the projection of Ge bulk bands. In Fig. 2, the SARPES spectra taken at k points shown by the arrows in Fig. 1(b) are shown. The red and blue spectra represent spin-up and spin-down states, respectively. We found that the spin-up and spin-down branches of  $S_2$  are degenerate at the  $\overline{M}$  point. The peaks of  $S_2$  show the spin splitting at k points away from  $\overline{M}$ . The peak positions of the spin-up and spin-down branches are inverted around  $\overline{M}$ . We therefore conclude that the  $S_2$  band splits into two due to the surface Rashba effect. The Rashba parameter is roughly evaluated to be 1.9 eV Å, which is comparable with the other giant Rashba



Fig. 2 SARPES spectra taken with the arrows shown in (b). Red and blue lines represent the up and down spin states, respectively.

systems [1-3]. On the other hand, we could not observe the Rashba spin splitting of  $S_3$  because the intensity of the spin-down state of  $S_3$  is always larger than that of the spin-up state even at  $\overline{M}$ .

We found that Pb/Ge(111)- $\beta$  exhibits the giant Rashba spin-split band around  $\overline{M}$ . Similar surface-state bands with the giant Rashba spin splitting around  $\overline{M}$  have been identified on Bi adsorbed Si(111) and Ge(111) surfaces [1-3]. Here, the Rashba spin-split bands of Bi/Si(111) and Bi/Ge(111) are ascribed to the bonding orbitals between the Bi atoms near the T<sub>1</sub> sites and the Si (Ge) atoms in the topmost layer of the substrates. Concerning Pb/Ge(111)- $\beta$ , there are two positions for the Pb adsorption in the unit cell, where one Pb atom is located at an H<sub>3</sub> site and three Pb atoms are located near the T<sub>1</sub> sites. The Pb atoms near the T<sub>1</sub> sites and the Ge atoms in the topmost layer make the Pb-Ge bonding orbitals, which is the origin of the S<sub>2</sub> band [5]. This hybridization can produce the strong perpendicular asymmetry of the wave function, which explains the giant Rashba effect around  $\overline{M}$  of Pb/Ge(111)- $\beta$ . The resemblance of the local adsorption geometries at T<sub>1</sub> and the hybridization between the adsorbates may explain the similar giant Rashba spin splitting in Bi/Si(111), Bi/Ge(111) and Pb/Ge(111)- $\beta$ .

#### 4. Summary

We have studied the electronic structure of Pb/Ge(111)- $\beta$  by ARPES and SARPES. We

found the surface-state band ( $S_2$ ) with the giant Rashba spin splitting around  $\overline{M}$ . The Rashba parameter is evaluated to be 1.9 eV Å, which is comparable with the other giant Rashba systems such as Bi/Si(111) and Bi/Ge(111). Also, the feature of the giant Rashba band for Pb/Ge(111)- $\beta$  is similar to those for Bi/Si(111) and Bi/Ge(111). The resemblance comes from the similar local adsorption geometries at T<sub>1</sub> sites and the characters of the bands.

### [References]

- [1] I. Gierz et al., PRL 103, 046803 (2009).
- [2] S. Hatta et al., PRB 80, 113309 (2009).
- [3] K. Sakamoto et al., PRL 103, 156801 (2009).
- [4] K. Yaji et al., Nature. Commun. 1, 17 (2010).
- [5] K. Yaji et al., unpublished.