2012/2/17 ISSP workshop 「東京大学アウトステーション(SPring-8 BL07LSU) での研究成果と今後の展望」

可視光応答性光触媒RhドープSrTiO₃の電子状態: 軟X線吸収・発光分光による研究

東大物性研 吉信 淳

共同研究者

東大物性研

川崎聖治,中辻寛,山本達,松田巌,小森文夫, 原田 慈久,高橋竜太,ミック・リップマー

> 東京理科大 工藤 昭彦

東北大WPI 赤木和人

環境浄化型光触媒とエネルギー変換型光触媒

有機物の光分解

化学エネルギーへの変換

新学術領域「オペランド表面化学」 (松本吉泰代表:H23プロポーザル資料より)

可視光応答水分解光触媒

可視光応答への戦略:遷移金属ドーピング

R.Konta, T.Ishii, H.Kato, and A.Kudo, J. Phys. Chem. B 108, 8992 (2004).

Previous study on Rh:SrTiO₃ photocatalyst

XAS & XES experiments @ SPring-8

BL07LSU@SPring-8

High Resolution XAS & XES

BL07LSU of SPring-8. $E/\Delta E \approx 3600$.

Samples for XAS&XES @ SPring-8

O 1s XAS @ SPring-8 BL07LSU

O 1s XES @ SPring-8 BL07LSU

First principles calculations by Prof. Akagi

First-principles calculation

Density of states (DOS) calculated VASP using HSE functional for 3x3x3 SrTiO₃ For Rh⁴⁺:SrTiO₃, a Rh atom was substituted at a Ti site For Rh³⁺:SrTiO₃, an additional e⁻ was inserted into the Rh⁴⁺:SrTiO₃ cell

Sr

- 1.Positions of Rh³⁺ and Rh⁴⁺ in-gap levels were estimated.
- 2. Hybridization between O2p and Rh4d was found at the top of the valence band for both Rh⁴⁺:SrTiO₃ and Rh³⁺:SrTiO₃
- 3. The position of E_f is changed with Rh doping in SrTiO₃

The calculation results are consistent with the present XAS/XES results.

In-situ XAS/XES measurement

Pure-H₂O

Rh4+(5%):STO

STO

Rh³⁺(5%):STO

 H_2 -annealed 300°C, 2h

Suspension

0.8g(powder)/300ml(H₂O) r.t., 500rpm, circulation cell

Measurement XAS & XES

In-situ XAS of Rh-SrTiO₃ @ SPring-8: raw data

In-situ XAS of Rh-SrTiO₃ @ SPring-8

In-situ XES Rh-SrTiO₃ @ SPring-8

Summary

- 可視光応答光触媒Rh:SrTiO₃(ペレット)の電子状態をO1s-XES/XASにより測定し、Rhのドープ量、価数状態の違いにより、SrTiO₃のin-gapに存在するピークを観測した.
- ◆ 第一原理計算の結果と比較することにより、これらはRhドープにより誘起されたと状態と考え、以下のように帰属した.
 - ኦ XASで観測されたピーク:Rh⁴⁺によるアクセプター準位.
 - ▶ XESによる価電子帯上端のショルダー: O2pとRh4dの軌道の混成状態
- ◆ 水中に分散させたRh:SrTiO₃(粉体)のin-situ XAS/XES測定を行った。
 - ペレットで観測されたピークとだいたい一致したが、ピーク幅や強度比などにわずかな違いが見られた。
- ◆ In-situ(水中)さらにオペランド観測(光触媒反応中)を行い, 定量的議論をするためには, シグナル強度の増大や光照射のためのセル開発が必要である.