グラフェンデバイスの電子状態のナノ分析

吹留博一¹⁾、永村直佳^{2), 3)}、篠原稔宏²⁾、井出隆之¹⁾、黒角翔大²⁾、豊田智史^{2),3)}、堀場弘司^{2),3)} 長汐晃輔²⁾、末光真希¹⁾、鳥海明²⁾、尾嶋正治^{2),3)}

1) 東北大学電気通信研究所、2)東京大学大学院工学研究科,
 3)東京大学放射光連携機構、

COHCOHCOHCOHCOH

(今回の発表内容は、2011A/B期・S課題(堀場)の一部、2011B期・G課題(吹留) のビームタイムを用いて得られた結果である。 尚、発表内容の一部は、<u>永村さんを中心に</u>まとめられているところである.)

【序論】なぜ、3D NanoESCAでグラフェンを観察するのか?

- 0. グラフェンの特徴と課題
- 1. これまでの研究
- 2. 残された課題
- 3. なぜ、3D NanoESCA?
- 4. 目的

【結果と考察】 3D NanoESCAでグラフェンは観察出来るのか?

- O. 用いた(標準)試料
- 1. 3D NanoESCAでグラフェンが見えるのか?
- 2. グラフェン/金属界面
- 3. グラフェン/基板界面

【まとめ】

【今後の展望】

<u>何故、グラフェンを、3D NanoESCAで、観察するのか?</u>

Dirac電子系に属し、新奇・優れた多様な物性を有する
熱的・化学的安定性に優れる ⇒ (素子)応用に適した材料
E_r変調(ゲート電圧印加)により、物性が変化するという特徴

グラフェン物性の多彩さは素子応用の際の弱点にもなり得る。 (シンプルな原理・物性に基づいたからこそ、Si-LSIは成功した)

デバイス応用に適した基板(ex. Si)上にグラフェンを成長させ、 かつ、用途に応じて物性を制御することが重要となる

(3)何故、NanoESCA?

1

	PEEM	LEEM	3D NanoESCA
原理	光電子の一括投影型 イメージング(17SU)	回折電子による イメージング(17SU)	光電子の走査型 イメージング(07LSU)
分解能	22 nm	∼ 2 nm	70 nm
長所	・分子軌道識別可能 (顕微X線吸収分光)	 ・高い空間分解能 ・デジタル層数計測 	 ・三次元的・高分解能な 内殻電子状態測定 (内殻光電子分光) ・試料周りをいじり易い ⇒電圧印加が容易
短所	高エネルギー分解能な 内殻光電子分光は苦手	・直接的な電子 状態観察は×	現状では、顕微X線 吸収分光は難しい

これらを相補的に活用しつつ、 3D NanoESCA ⇒ 電圧印加下のグラフェンデバイスの3D内殻電子状態を観察

<u>3D NanoESCAで、グラフェンは、観察出来たのか?</u>

GOSは発展途上 ⇒ デバイス用・エピ用の二種類の標準試料を準備

(1) グラフェン見える?:A. デバイス構成部位の識別

(1) グラフェン見える?:B. グラフェンとコンタミの識別

₽∞₽∞₽∞₽∞₽

(N. Nagamura et al., in preparation.)

内殻電子状態の直接観察可能な顕微分光研究は無い ⇒電荷移動領域の直接的な証拠は得られていない ⇒ NanoESCAでやるべき第一のターゲット

(2)グラフェン/金属界面:B.電荷移動領域の実証

(10x10 µm²)

(N. Nagamura et al., in preparation.)

(2)グラフェン/金属界面:C. 疑問点 Screening?

(3):グラフェン⇔基板相互作用:Gra./SiC

【グラフェンと3D NanoESCAのマッチング】

デバイスの各構成部位の識別、及び、グラフェンと炭素汚染物の識別に成功

⇒ グラフェンデバイス研究に於ける3D NanoESCAの有用性が示された。

【グラフェン/基板界面】

・グラフェン/SiC: (縦方向の)グラフェン/SiC界面電荷移動量が、層数により変化 ⇒(横方向の)一層・二層界面に電位勾配が生じている?

 ② グラフェンデバイスのアクセス領域
 S 、 ゲート、 D

 (ソース・ゲート間)でのフェルミ準位変調
 絶縁物

Graphene